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Abstract We present several schemes for joint remote preparation of arbitrary
two- and three-qubit entangled states with complex coefficients via two and three
GHZ states as the quantum channel, respectively. In these schemes, two senders
(or N senders) share the original state which they wish to help the receiver to remotely
prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis
vectors are introduced. It is shown that, only if two senders (or N senders) collaborate
with each other, and perform projective measurements under suitable measuring basis
on their own qubits, respectively, the receiver can reconstruct the original state by
means of some appropriate unitary operations. The advantage of the present schemes
is that the success probability in all the considered JRSP can reach 1.

Keywords Joint remote state preparation · General two-qubit entangled state ·
Arbitrary three-qubit entangled state · Two- and three-qubit projective measurement

1 Introduction

Quantum communication plays a significant role in the ongoing field of informa-
tion theory. It is well known that novel phenomena including quantum teleporta-
tion [1], quantum key distribution [2] and quantum dense coding [3] are striking
application of quantum entanglement in quantum information processing. In the last
decade, Lo [4], Pati [5] and Bennett et al. [6] presented a new quantum communi-
cation scheme that uses classical communication and a previously shared entangled
resource to remotely prepare a quantum state. This communication scheme is called
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remote state preparation (RSP). Compared with teleportation, RSP requires less clas-
sical communication cost than teleportation for some special ensembles [5] Since
then, various theoretical protocols for generalization of RSP have been proposed and
experimental implementations of RSP scheme have been presented [7–26]. One can
note easily that the above schemes assume the case that only one sender knows the
original state.

Recently, a novel aspect of PSP, called as the joint remote state preparation(JRSP),
has been proposed [27–37]. In these schemes of the JRSP [27–37], two senders (or
N senders) know partly of original state they want to remotely preparation, respec-
tively. If and only if all the senders agree to collaborate, the receiver can reconstruct
the original quantum state. Up to now, however, no schemes have been reported for
JRSP which can be realized with unit success probability. In this paper, we propose
several schemes for joint remote preparation of arbitrary two- and three-qubit entan-
gled states with complex coefficients. In our schemes, two senders (or N senders)
share the original state, but each sender only partly knows the state. To complete the
JRSP schemes, inspired by the method in Ref. [21], several novel sets of two-qubit and
three-qubit mutually orthogonal basis vectors have been introduced. It is shown that, if
and only if all the sender agree to collaboration, and perform projective measurements
under appropriate measuring basis on their own qubit(s), respectively, the receiver can
recover the original state with unit successful probability.

This paper is organized as follows. In Sect. 2, the joint remote preparation of a gen-
eral two-qubit entangled state with two senders and N senders is studied, respectively,
by two schemes using two three-qubit GHZ states (Sect. 2.1) and two (N + 1)-qubit
GHZ states (Sect. 2.2) as the quantum channel. Furthermore, Sect. 3 presents two
schemes for the JRSP of an arbitrary three-qubit entangled state with two senders and
N senders, respectively, where the quantum channel is composed of three three-qubit
(Sect. 3.1) and three (N + 1)-qubit (Sect. 3.2) GHZ entangled states, respectively.
Conclusions are given in Sect. 4.

2 JRSP of an arbitrary two-qubit entangled state with complex coefficients

We firstly present the joint remote preparation of an arbitrary two-qubit entangled
state with complex coefficients. In the first scheme the original state is shared by two
senders, while the prepared state is shared by N senders in the second scheme.

2.1 JRSP with two senders

Suppose that the state Alice and Bob wish to help the receiver Charlie remotely prepare
is an arbitrary two-qubit entangled state

|p〉 = x |00〉 + yeiα|01〉 + zeiβ |10〉 + weiγ |11〉, (1)

where x, y, z, w, α, β, γ are real, and x2 + y2 + z2 + w2 = 1. We find out that,
similar to Ref. [21], if the coefficients in Eq. (1) are split into two subsets, modulus
coefficients (x, y, z, w) and phase coefficients (α, β, γ ), the unit success probability

123
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can be achieved. Accordingly, we suppose that Alice and Bob share the original state
Eq. (1) and they know the state partly, that is Alice know x, y, z, w, Bob knowsα, β, γ ,
but Charlie does not know them at all. Thus, neither Alice nor Bob can complete the
RSP alone by means of usual RSP schemes only if they agree to collaborate. We also
suppose that the quantum channel shared by Alice, Bob, and Charlie are two GHZ
states

|φ1〉 = 1√
2
(|000〉 + |111〉)A1 B1C1 ,

|φ2〉 = 1√
2
(|000〉 + |111〉)A2 B2C2 , (2)

where the qubits A1 and A2 belong to Alice, qubits B1 and B2 to Bob, and qubits C1 and
c2 to Charlie, respectively. In order to help Charlie remotely prepare the original state
|p〉, what Alice and Bob need to do is to perform two-qubit projective measurement on
their own qubits A1,A2 and B1,B2, respectively. The first measuring basis chosen by
Alice is a set of mutually orthogonal basis vectors (MOBVs) {|μk〉}(k = 0, 1, 2, 3),
which is given by

⎛
⎜⎜⎝

|μ0〉
|μ1〉
|μ2〉
|μ3〉

⎞
⎟⎟⎠ = F

⎛
⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎠ , (3)

where

F =

⎛
⎜⎜⎝

x y z w

y −x w −z
z −w −x y
w z −y −x

⎞
⎟⎟⎠ . (4)

The second measuring bases chosen by Bob are four sets of MOBVs {|λ(k)j 〉}(k, j =
0, 1, 2, 3), which are given by

⎛
⎜⎜⎜⎜⎝

|λ(k)0 〉
|λ(k)1 〉
|λ(k)2 〉
|λ(k)3 〉

⎞
⎟⎟⎟⎟⎠

= G(k)

⎛
⎜⎜⎜⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎟⎟⎟⎠
, (5)

where

G(0) =

⎛
⎜⎜⎝

1 g1 g2 g3
1 −g1 g2 −g3
1 −g1 −g2 g3
1 g1 −g2 −g3

⎞
⎟⎟⎠ , G(1) =

⎛
⎜⎜⎝

g1 1 g3 g2
g1 −1 g3 −g2
g1 −1 −g3 g2
g1 1 −g3 −g2

⎞
⎟⎟⎠ ,
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Table 1 Corresponding relation between the measurement results (MR) of Alice and Bob and the local
unitary operations UC performed by Charlie

MR UC MR UC

ξ0ζ
(0)
0 (I )C1 ⊗ (I )C2 ξ2ζ

(2)
0 (−iσy)C1 ⊗ (σz)C2

ξ0ζ
(0)
1 (I )C1 ⊗ (σz)C2 ξ2ζ

(2)
1 (−iσy)C1 ⊗ (I )C2

ξ0ζ
(0)
2 (σz)C1 ⊗ (σz)C2 ξ2ζ

(2)
2 (σx )C1 ⊗ (I )C2

ξ0ζ
(0)
3 (σz)C1 ⊗ (I )C2 ξ2ζ

(2)
3 (σx )C1 ⊗ (σz)C2

ξ1ζ
(1)
0 (I )C1 ⊗ (−iσy)C2 ξ3ζ

(3)
0 (−iσy)C1 ⊗ (σx )C2

ξ1ζ
(1)
1 (I )C1 ⊗ (σx )C2 ξ3ζ

(3)
1 (−iσy)C1 ⊗ (−iσy)C2

ξ1ζ
(1)
2 (σz)C1 ⊗ (σx )C2 ξ3ζ

(3)
2 (σx )C1 ⊗ (−iσy)C2

ξ1ζ
(1)
3 (σz)C1 ⊗ (−iσy)C2 ξ3ζ

(3)
3 (σx )C1 ⊗ (σx )C2

(ξk → |μk 〉A1 A2 ), (ζ
(k)
j → |λ(k)j 〉B1 B2 , k, j = 0, 1, 2, 3)

G(2) =

⎛
⎜⎜⎝

g2 g3 1 g1
g2 −g3 1 −g1
g2 −g3 −1 g1
g2 g3 −1 −g1

⎞
⎟⎟⎠ , G(3) =

⎛
⎜⎜⎝

g3 g2 g1 1
g3 −g2 g1 −1
g3 −g2 −g1 1
g3 g2 −g1 −1

⎞
⎟⎟⎠ , (6)

where g1 = e−iα, g2 = e−iβ , and g3 = e−iγ .
In order to realize the JRSP, Alice first performs the two-qubit projective mea-

surement on the qubits A1 andA2 under the basis {|μk〉}(k = 0, 1, 2, 3) and pub-
licly announces her measurement outcome. Next, according to Alice’s measurement
result, Bob should choose one of the measuring bases {|λ(k)j 〉}(k, j = 0, 1, 2, 3) to
measure his qubits B1 and B2. After the measurement, Bob informs Charlie of his
result of measurement by the classical channel. In accord with Alice’s and Bob’s
results, Charlie can recover the original state |p〉 by suitable unitary operation. For
instance, without loss of generality, assume Alice’s measurement outcome is |μ0〉A1 A2 ,
Bob should choose measuring basis {|λ(0)j 〉}( j = 0, 1, 2, 3) to measure the qubits B1
and B2, and then inform Charlie of his measurement outcome by classical channel.
If Bob’s measurement result is |λ(0)2 〉B1 B2 , the qubits C1 and C2 will collapse into
the state 1

2 (x |00〉 − yeiα|01〉 + zeiβ |10〉 − weiγ |11〉)C1C2 . According to Alice’s and
Bob’s public announcement, Charlie can perform the local unitary operation UC =
(I )C1 ⊗(σz)C2 on his qubits C1 and C2, then the original state |p〉 can be reconstructed
at his side. If Alice’s measurement results are the other 3 cases, i.e. |μ1〉A1 A2 , |μ2〉A1 A2

and |μ3〉A1 A2 , Bob should choose appropriate measuring bases {|λ(1)j 〉}, {|λ(2)j 〉}, and

{|λ(3)j 〉}( j = 0, 1, 2, 3) to measure his qubits B1 and B2, respectively. Then Charlie
performs appropriate unitary transformation on qubits C1 and C2, and the original
state can be recovered. The relation between the results obtained by Alice and Bob
and appropriate unitary operation performed by Charlie is shown in Table 1. It is easily
found that, for all the 16 measurement outcomes of Alice and Bob, the receiver Charlie
can reconstruct the original state |p〉 by performing suitable unitary operations UC .
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Deterministic joint remote preparation 1001

Compared with the previous scheme in Ref. [31], in our scheme, the consumed amount
of entanglement and the required classical communication cost (four bits) are the same
as that in [31] and the advantage of our scheme is that the total success probability
process being 1. In this sense, our scheme is an optimal one.

2.2 JRSP with N senders

Now we will generalize the above scheme to the case of N senders. Suppose that N
senders Alice and Bob1,Bob2, . . . ,BobN−1 share an arbitrary two-qubit entangled
state

|P〉 = x |00〉 + yeiα|01〉 + zeiβ |10〉 + weiγ |11〉, (7)

where x, y, z, w, α, β, γ are real, and x2 + y2 + z2 +w2 = 1, Assume the N senders
wish to help the receiver Charlie remotely prepare the original state |P〉, and they
know the state |P〉 partly, i.e. Alice knows x, y, z, w,Bob1 knows α1, β1, γ1,Bob2
knows α2, β2, γ2, . . . ,BobN−1 knows αN−1, βN−1, γN−1, where α = α1+α2 +· · ·+
αN−1, β = β1 + β2 + · · · + βN−1, γ = γ1 + γ2 + · · · + γN−1, but Charlie does not
know them at all. We also suppose that two (N + 1)-qubit GHZ states are shared by
N senders and Charlie as the quantum channel, which are given by

|Φ1〉 = 1√
2
(|0〉⊗(N+1) + |1〉⊗(N+1))

A(1)B(1)1 B(1)2 ···B(1)N−1C(1)
,

|Φ2〉 = 1√
2
(|0〉⊗(N+1) + |1〉⊗(N+1))

A(2)B(2)1 B(2)2 ···B(2)N−1C(2)
, (8)

where qubits A(1) and A(2) belong to Alice, qubits B(1)1 and B(2)1 to Bob1, . . ., qubits

B(1)N−1 and B(2)N−1 to BobN−1 and qubits C(1) and C(2) to Charlie, respectively. Similar to
above scheme, the N senders must construct their own measuring basis. The first mea-
suring basis chosen by Alice is still in Eqs. (3) and (4), and the measuring bases chosen
by Bob1, . . . ,BobN−1 are 4(N − 1) sets of MOBVs {|λ(k)jl 〉}(k, j = 0, 1, 2, 3; l =
1, 2, . . . , N − 1), which are given by

⎛
⎜⎜⎜⎝

|λ(k)0l 〉
|λ(k)1l 〉
|λ(k)2l 〉
|λ(k)3l 〉

⎞
⎟⎟⎟⎠ = G(k)

l

⎛
⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎠ , (9)

where

G(0)
l =

⎛
⎜⎜⎝

1 g1l g2l g3l

1 −g1l g2l −g3l

1 −g1l −g2l g3l

1 g1l −g2l −g3l

⎞
⎟⎟⎠ , G(1)

l =

⎛
⎜⎜⎝

g1l 1 g3l g2l

g1l −1 g3l −g2l

g1l −1 −g3l g2l

g1l 1 −g3l −g2l

⎞
⎟⎟⎠ ,
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G(2)
l =

⎛
⎜⎜⎝

g2l g3l 1 g1l

g2l −g3l 1 −g1l

g2l −g3l −1 g1l

g2l g3l −1 −g1l

⎞
⎟⎟⎠ , G(3)

l =

⎛
⎜⎜⎝

g3l g2l g1l 1
g3l −g2l g1l −1
g3l −g2l −g1l 1
g3l g2l −g1l −1

⎞
⎟⎟⎠ , (10)

where g1l = e−iαl , g2l = e−iβl , and g3l = e−iγl (l = 1, 2, . . . , N − 1).
Now let Alice first perform the two-qubit projective measurement on her qubits

A(1) and A(2) under the basis {|μk〉} [see Eqs. (3) and (4)] and publicly announces her
outcome of measurement. In accord with the Alice’s result, Bob1,Bob2, . . . ,BobN−1

should choose suitable measuring basis in the MOBVs {|λ(k)jl 〉} to measure their own

qubits B(1)l and B(2)l (l = 1, 2, . . . , N − 1), and then inform Charlie of their measure-
ment outcomes, respectively. According to the results of N senders, the receiver Charlie
can reconstruct the original state |P〉. For instance, without loss of generality, suppose
that Alice’s measurement outcome is |μ0〉A1 A2 , then Bob1,Bob2, . . . ,BobN−1 should
choose suitable measuring bases {|λ(0)j1 〉}, {|λ(0)j2 〉}, . . . , {|λ(0)j (N−1)〉}( j = 0, 1, 2, 3) to

measure their own qubits (B1(1),B(2)1 ), (B2(1),B(2)2 ),. . . , and (BN − 1(1) ,B(2)N−1),

respectively. Assume that the Bob1’s measurement outcome is only |λ(0)11 〉
B(1)1 B(2)1

while

all other sender’s results are |λ(0)0m〉
B(1)m B(2)m

(m = 2, 3, . . . , N − 1), respectively, the

qubits C(1) andC(2) will be collapsed into the state 1
2 (x |00〉 − yeiα|01〉 + zeiβ |10〉 −

weiγ |11〉)C(1)C(2) . In accord with the outcomes of N senders, Charlie should perform
the unitary operation (I )C(1)⊗(σz)C(2) on the qubits C(1) andC(2), then the original state
|P〉 can be reconstructed. If N senders obtain other measurement results, similar to
above method, the receiver Charlie can reconstruct the original state |P〉 by appropriate
unitary operations, and the total success probability of the JRSP is still 1. Here we no
longer depict them one by one. The required classical communication cost is 2N bits.

3 JRSP of an arbitrary three-qubit state with complex coefficients

Now let us further propose the joint remote preparation of an arbitrary three-qubit
entangled state with complex coefficients. In the first case the original state is shared
by two senders, while N senders are considered in the second case.

3.1 JRSP with two senders

Suppose that two senders Alice and Bob wish to help the receiver Charlie remotely
prepare the state

|q〉 = x0|000〉 + x1eiδ1 |001〉 + x2eiδ2 |010〉 + x3eiδ3 |011〉
+x4eiδ4 |100〉 + x5eiδ5 |101〉 + x6eiδ6 |110〉 + x7eiδ7 |111〉, (11)

where x j and δ j ( j = 0, 1, . . . , 7) are real, δ0 = 0 and
∑7

j=0 x2
j = 1. Assume that

Alice and Bob share the state |q〉 and they know the state partly, that is Alice knows
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x j ( j = 0, 1, . . . , 7), and Bob knows δ j ( j = 0, 1, . . . , 7), but Charlie does not know
them at all. We also suppose that the state shared by Alice, Bob, and Charlie as quantum
channel are three GHZ states

|ψ1(2,3)〉 = 1√
2
(|000〉 + |111〉)A1 B1C1(A2 B2C2,A3 B3C3), (12)

where the qubits A1, A2, A3 belong to Alice, qubits B1, B2, B3 to Bob, and qubits
C1,C2,C3 to Charlie, respectively.

In order to complete the JRSP, Alice and Bob should construct their measuring
bases. The first measuring basis chosen by Alice is a set of MOBVs {|ηk〉}(k =
0, 1, . . . , 7), which is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|η0〉
|η1〉
|η2〉
|η3〉
|η4〉
|η5〉
|η6〉
|η7〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 x1 x2 x3 x4 x5 x6 x7
x1 −x0 x3 −x2 x5 −x4 x7 −x6
x2 −x3 −x0 x1 −x6 x7 x4 −x5
x3 x2 −x1 −x0 x7 x6 −x5 −x4
x4 −x5 x6 −x7 −x0 x1 −x2 x3
x5 x4 −x7 −x6 −x1 −x0 x3 x2
x6 −x7 −x4 x5 x2 −x3 −x0 x1
x7 x6 x5 x4 −x3 −x2 −x1 −x0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The second measuring bases chosen by Bob are eight sets of MOBVs {|τ (k)j 〉}, which
are given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|τ (k)0 〉
|τ (k)1 〉
|τ (k)2 〉
|τ (k)3 〉
|τ (k)4 〉
|τ (k)5 〉
|τ (k)6 〉
|τ (k)7 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M (k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)
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where k = 0, 1, . . . , 7, and M (k)is a 8 × 8 matrix,

M (0) = M(1, r1, r2, r3, r4, r5, r6, r7),

M (1) = M(r1, 1, r3, r2, r5, r4, r7, r6),

M (2) = M(r2, r3, 1, r1, r6, r7, r4, r5),

M (3) = M(r3, r2, r1, 1, r7, r6, r5, r4),

M (4) = M(r4, r5, r6, r7, 1, r1, r2, r3),

M (5) = M(r5, r4, r7, r6, r1, 1, r3, r2),

M (6) = M(r6, r7, r4, r5, r2, r3, 1, r1),

M (7) = M(r7, r6, r5, r4, r3, r2, r1, 1), (16)

where r j = e−iδ j ( j = 0, 1, . . . , 7), δ0 = 0, and M(a1,a2,a3,a4,a5,a6,a7,a8) in Eq. (16)
is given by

M(a1,a2,a3,a4,a5,a6,a7,a8) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 a5 a6 a7 a8
a1 −a2 a3 −a4 a5 −a6 a7 −a8
a1 −a2 −a3 a4 −a5 a6 a7 −a8
a1 a2 −a3 −a4 a5 a6 −a7 −a8
a1 −a2 a3 −a4 −a5 a6 −a7 a8
a1 a2 −a3 −a4 −a5 −a6 a7 a8
a1 −a2 −a3 a4 a5 −a6 −a7 a8
a1 a2 a3 a4 −a5 −a6 −a7 −a8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(17)

Now let Alice first perform three-qubit projective measurement on the qubits
A1, A2, A3 by using the basis {|ηk〉}(k = 0, 1, . . . , 7) and publicly announces her
measurement outcome. Next, in accord with Alice’s result of measurement, Bob should
choose one of the measuring bases {|τ (k)j 〉}(k, j = 0, 1, . . . , 7) to measure his qubits
B1, B2 and B3. After the measurement, Bob informs Charlie of his result of measure-
ment by the classical channel. According to Alice’s and Bob’s results, Charlie can
reconstruct the original state |q〉 by suitable unitary operation. For example, without
loss of generality, assume Alice’s measurement outcome is |η1〉A1 A2 A3 , Bob should
choose measuring basis {|τ (1)j 〉}, which is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|τ (1)0 〉
|τ (1)1 〉
|τ (1)2 〉
|τ (1)3 〉
|τ (1)4 〉
|τ (1)5 〉
|τ (1)6 〉
|τ (1)7 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 1 r3 r2 r5 r4 r7 r6
r1 −1 r3 −r2 r5 −r4 r7 −r6
r1 −1 −r3 r2 −r5 r4 r7 −r6
r1 1 −r3 −r2 r5 r4 −r7 −r6
r1 −1 r3 −r2 −r5 r4 −r7 r6
r1 1 −r3 −r2 −r5 −r4 r7 r6
r1 −1 −r3 r2 r5 −r4 −r7 r6
r1 1 r3 r2 −r5 −r4 −r7 −r6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)
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Deterministic joint remote preparation 1005

to measure the qubits B1, B2, B3, and then inform Charlie of his measurement result
by classical channel. If Bob’s measurement result is |τ (1)3 〉B1 B2 B3 , the qubits C1,C2

and C3 will collapse into the state 1
2
√

2
(x1eiδ1 |000〉 + x0|001〉 − x3eiδ3 |010〉 −

x2eiδ2 |011〉− x5eiδ5 |100〉− x4eiδ4 |101〉+ x7eiδ7 |110〉+ x6eiδ6 |111〉)C1C2C3 . Accord-
ing to Alice’s and Bob’s public announcements, Charlie can perform the local unitary
operation (σz)C1 ⊗ (σz)C2 ⊗ (σx )C3 on his qubits C1,C2 and C3, thus the original
state can be recovered. If Alice’s measurement outcomes are the other 7 cases in
the basis {|ηk〉}(k = 0, 1, . . . , 7), Bob should choose appropriate measuring bases
{|τ (k)j 〉}(k, j = 0, 1, . . . , 7) to measure his qubits B1, B2 and B3. The corresponding

relation of Alice’s measurement result |ηk〉A1 A2 A3 and the measuring basis {|τ (k)j 〉}
performed by Bob can be described as |ηk〉A1 A2 A3 → {|τ (k)j 〉}(k, j = 0, 1, . . . , 7).
Explicitly,

|η0〉A1 A2 A3 −→ {|τ (0)j 〉},
|η1〉A1 A2 A3 −→ {|τ (1)j 〉},
|η2〉A1 A2 A3 −→ {|τ (2)j 〉},
|η3〉A1 A2 A3 −→ {|τ (3)j 〉}, (19)

|η4〉A1 A2 A3 −→ {|τ (4)j 〉},
|η5〉A1 A2 A3 −→ {|τ (5)j 〉},
|η6〉A1 A2 A3 −→ {|τ (6)j 〉},
|η7〉A1 A2 A3 −→ {|τ (7)j 〉},

where j = 0, 1, . . . , 7. Similar to above approach, after Alice’s and Bob’s measure-
ments, Charlie can reconstruct the original state |q〉 by appropriate unitary operation
at his side. Compared with the previous scheme in Ref. [34], in our scheme, the con-
sumed amount of entanglement is the same as that in [34], and the required classical
communication cost is six bits. Especially, it is easily found that the total success
probability of our scheme can reach 1.

3.2 JRSP with N senders

The scheme in Sect. 3.1 can be generalized to the case of N senders. Suppose that Alice
and Bob1,Bob2, . . . ,BobN−1 wish to help the receiver Charlie remotely prepare an
arbitrary three-qubit entangled state

|Q〉 = x0|000〉 + x1eiϕ1 |001〉 + x2eiϕ2 |010〉 + x3eiϕ3 |011〉
+x4eiϕ4 |100〉 + x5eiϕ5 |101〉 + x6eiϕ6 |110〉 + x7eiϕ7 |111〉, (20)

where x j and ϕ j ( j = 0, 1, . . . , 7) are real, ϕ0 = 0 and
∑7

j=0 x2
j = 1. Assume that

the N senders know the state |Q〉 partly, i.e. Alice knows x j ( j = 0, 1, . . . , 7),Bob1
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knows ϕ(1)j ,Bob2 knows ϕ(2)j , . . . ,BobN−1 knows ϕ(N−1)
j , where ϕ j = ϕ

(1)
j +ϕ(2)j +

· · ·+ϕ(N−1)
j ( j = 0, 1, . . . , 7), but Charlie does not know them at all. We also suppose

that the N sender and receiver Charlie share three (N + 1)-qubit GHZ states as the
quantum channel, which are given by

|Ψ1〉 = 1√
2
(|0〉⊗(N+1) + |1〉⊗(N+1))

A(1)B(1)1 B(1)2 ···B(1)N−1C(1)
,

|Ψ2〉 = 1√
2
(|0〉⊗(N+1) + |1〉⊗(N+1))

A(2)B(2)1 B(2)2 ···B(2)N−1C(2)
, (21)

|Ψ3〉 = 1√
2
(|0〉⊗(N+1) + |1〉⊗(N+1))

A(3)B(3)1 B(3)2 ···B(3)N−1C(3)
,

where qubits A(1), A(2) and A(3) belong to Alice, qubits B(1)1 , B(2)1 and B(3)1 to

Bob1, . . ., qubits B(1)N−1, B(2)N−1 and B(3)N−1 to BobN−1, and qubits C (1),C (2) and C (3)

to Charlie, respectively. As in the above scheme, the N senders must construct their
own measurement basis. The first measuring basis chosen by Alice is still in Eqs. (13)
and (14), and the measuring bases chosen by Bob1,Bob2, . . . ,BobN−1 are 8(N − 1)
sets of MOBVs {|τ (k)jl 〉}(k, j = 0, 1, . . . , 7, l = 1, 2, . . . , N − 1), which are given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|τ (k)0l 〉
|τ (k)1l 〉
|τ (k)2l 〉
|τ (k)3l 〉
|τ (k)4l 〉
|τ (k)5l 〉
|τ (k)6l 〉
|τ (k)7l 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= R(k)l

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where k = 0, 1, . . . , 7; l = 1, 2, . . . , N − 1, and

R(0)l = R(1, r1l , r2l , r3l , r4l , r5l , r6l , r7l),

R(1)l = R(r1l , 1, r3l , r2l , r5l , r4l , r7l , r6l),

R(2)l = R(r2l , r3l , 1, r1l , r6l , r7l , r4l , r5l),

R(3)l = R(r3l , r2l , r1l , 1, r7l , r6l , r5l , r4l),

R(4)l = R(r4l , r5l , r6l , r7l , 1, r1l , r2l , r3l),

R(5)l = R(r5l , r4l , r7l , r6l , r1l , 1, r3l , r2l),

R(6)l = R(r6l , r7l , r4l , r5l , r2l , r3l , 1, r1l),

R(7)l = R(r7l , r6l , r5l , r4l , r3l , r2l , r1l , 1), (23)
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where r jl = e−iϕ(l)j ( j = 0, 1, . . . , 7, l = 1, 2, . . . , N − 1), and R(a1, a2, a3, a4, a5,

a6, a7, a8) is also a 8 × 8 matrix which similar to Eq. (17).
Alice first performs the three-qubit projective measurement on her qubits A(1), A(2)

and A(3) under the basis {|ηk〉} [see Eqs. (13) and (14)] and publicly announces
her result of measurement. According to Alice’s outcome, Bob1,Bob2, . . . ,BobN−1

should choose suitable measuring basis in the MOBVs {|τ (k)jl 〉}(k, j = 0, 1, . . . , 7, l =
1, 2, . . . , N − 1) to measure their own qubits (B(1)1 , B(2)1 , B(3)1 ), (B(1)2 , B(2)2 ,

B(3)2 ), . . . , (B(1)N−1, B(2)N−1, B(3)N−1), and then inform Charlie of their measurement
results, respectively. In accord with the announcement of N senders, the receiver
Charlie can reconstruct the original state |Q〉 by using appropriate unitary operation.
For example, without loss of generality, suppose that Alice’s measurement result is
|η0〉A1 A2 A3 , then Bob1,Bob2, . . . ,BobN−1 should choose suitable measuring bases
{|τ (0)j1 〉}, {|τ (0)j2 〉}, . . . , {|τ (0)j (N−1)〉} [see Eqs. (22) and (23)] to measure their own qubits,

respectively. Assume that the Bob1’s measurement result is only |τ (0)11 〉
B(1)1 B(2)1 B(3)1

while all other senders’ results are |τ (0)0m 〉
B(1)m B(2)m B(3)m

(m = 2, 3, . . . , N − 1),

respectively, the qubits C (1),C (2) and C (3) will be collapsed into the state 1√
2
(x0|000〉

− x1eiϕ1 |001〉+ x2eiϕ2 |010〉− x3eiϕ3 |011〉+ x4eiϕ4 |100〉− x5eiϕ5 |101〉+ x6eiϕ6 |110〉
− x7eiϕ7 |111〉)C(1)C(2)C(3) . According to the results of N senders, Charlie can perform
the unitary operation (I )C(1) ⊗ (I )C(2) ⊗ (σz)C(3) on the qubits C (1),C (2) and C (3),
then the original state |Q〉 can be reconstructed. If Alice’s measurement results are the
other 7 cases in the basis {|ηk〉}(k = 0, 1, . . . , 7),Bob1,Bob2, . . . ,BobN−1 should
choose suitable measuring bases {|τ (k)jl 〉}(k, j = 0, 1, . . . , 7, l = 1, 2, . . . , N − 1) to
measure their own qubits, respectively, then Charlie can recover the original state |Q〉
by appropriate unitary operations. Here we no longer depict them one by one. The cor-
responding relation of Alice’s measurement outcome |ηk〉A1 A2 A3 and the measuring
basis {|τ (k)jl 〉} performed by Bob1,Bob2, . . . ,BobN−1 can be described as

|η0〉A1 A2 A3 −→ {τ (0)jl 〉},
|η1〉A1 A2 A3 −→ {τ (1)jl 〉},
|η2〉A1 A2 A3 −→ {τ (2)jl 〉},
|η3〉A1 A2 A3 −→ {τ (3)jl 〉}, (24)

|η4〉A1 A2 A3 −→ {τ (4)jl 〉},
|η5〉A1 A2 A3 −→ {τ (5)jl 〉},
|η6〉A1 A2 A3 −→ {τ (6)jl 〉},
|η7〉A1 A2 A3 −→ {τ (7)jl 〉},

where j = 0, 1, . . . , 7, l = 1, 2, . . . , N − 1. In this scheme, the total successful prob-
ability of the JRSP is still 1, and the required classical communication cost is 3N bits.
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4 Conclusion

In conclusion, we have presented several new schemes for joint remote preparation of
arbitrary two- and three-qubit entangled states. In these schemes, the coefficients of
the original states to be co-prepared are all complex. In the first scheme, two sender
share an arbitrary two-qubit state, but each sender only partly knows the state, and
two three-qubit GHZ states are exploited as the quantum channel. In order to help
the receiver remotely prepare the original state, in accord with the knowledge of the
original state which she/he known, each sender must construct her/his own two-qubit
measuring basis. Firstly, a sender performs a two-qubit projective measurement on
her qubits, then another sender should choose, according to the measurement result
of the first sender, an appropriate two-qubit measuring basis to measure his qubits.
After these projective measurements, the receiver can reconstruct the original state by
means of appropriate unitary operation. Then we generalize the scheme to N senders
case. In the generalized scheme, the original state is shared by the N senders and
the quantum channel shared by the N senders and the receiver are two (N + 1)-qubit
GHZ states. It is shown that, only if when N senders collaborate with each other,
the receiver can remotely reconstruct the original state. Next, we have proposed two
schemes for JRSP of arbitrary three-qubit entangled state with two senders and N
senders via three three-qubit GHZ states and three (N + 1)-qubit GHZ states as the
quantum channel, respectively. To complete the JRSP schemes, some novel sets of
two-qubit mutually orthogonal basis vectors have been introduced. After the projec-
tive measurements by two senders (or N senders) under these bases, respectively, the
original state can be recovered by the receiver. Compared with the previous schemes
of JSRP in Refs. [27–37], the advantage of all the present schemes is that the total
success probability reaches 1. In this sense, our schemes are optimal. Thus, we hope
that our schemes will be helpful in the deeper understanding of the process of RSP,
and may be useful for the further studies on quantum information science, such as
quantum secret sharing and quantum network communication.
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