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Abstract In the paper, a scheme is proposed for hierarchical quantum information
splitting with an unknown eight-qubit cluster state. The Boss Alice wants to distribute
a quantum secret to seven distant agents who are divided into two grades. Three agents
are in the upper grade and four agents are in the lower grade. Every agent of the upper
grade only needs the collaboration of three of the other six agents to get the secret, but
all the agents of the lower grade need the collaboration of all the other six agents. In
other words, different agents in different grades have different authorities to recover
Boss’ secret. And the agent in upper grade is more powerful than the one in the lower
grades which needs more information to recover the secret.

Keywords Quantum secret · Hierarchical quantum information splitting ·
Cluster state · Unitary operation

1 Introduction

Entanglement is an unique physical resource of quantum physics with many appli-
cations in quantum information processing and quantum computation [1]. Quantum
teleportation is an important technique for information transmission between two
or more parties, with a distributed entangled state and a classical communication
channel. Since Bennett et al. [2] presented the first protocol of quantum teleporta-
tion through an entangled channel of EPR pair in 1993, many teleportation protocols
have been devised by using multi-partite entangled states, such as the prototype-GHZ
states [3], generalized W states [4] and cluster states [5–7]. In 1999, Hillery et al.
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first demonstrated that an entangled three-qubit GHZ state can be used for quantum
information splitting(QIS) [8]. The basic idea of QIS is to share quantum information
among a group of participants so that the original information cannot be completely
reconstructed by any one of the parties individually.In the Ref. [9–12] QIS are also
articulated.

Although entanglement is the significant resource of quantum information science,
and plays a powerful role in transferring quantum states, actually not all entangled
states can be used to implement perfect quantum teleportation. Whether an entangled
state can implement teleportation is determined by the property of entanglement [13].
Thus teleportation can show some properties of entangled states, especially multipar-
tite entangled states [14]. QIS can be considered as a generalization of classical secret
sharing to quantum scenario. Classical secret sharing is one of the most important
information-security cryptographic protocols and is germane to online auctions, elec-
tronic voting, shared electronic banking, cooperative activation of bombs, and so on.
Also, QIS has extensive applications in quantum information science, such as creating
joint checking accounts containing quantum money [15], secure distributed quantum
computation [16], and so on.

In the last decade, quantum information splitting has been attracting much atten-
tion [7–17], and a scheme has already been realized experimentally [18]. Up to now,
in the existing schemes of QIS, quantum states (such as Bell states [25], four-qubit
(five-qubit, six-qubit) cluster state [11,14], genuinely entangled five-qubit (six-qubit)
state [26,27], GHZ states [28]) are chosen as quantum channel. In essence, QIS equals
to controlled teleportation [25]. That is to say, all the agents in a QIS scheme can be
considered as the controllers to an unique receiver to recover the quantum information
in a quantum teleportation. In the case of teleporting an unknown single-qubit state,
Zhan et al. [29] have investigated a deterministic teleportation via high-dimensional
entangled state. Yin et al. [30] proposed a scheme for teleportation of simplified four-
qubit cluster state. Nie et al. [31] have discussed the quantum teleportation by GHZ
state.

It is well known that the n-qubit(n > 3) cluster state is maximally connected with
better persistency than the GHZ state [32]. In other words, cluster state has the proper-
ties of both the GHZ-class and the W-class entangled states, and is more difficult to be
destroyed by local operations than GHZ-class states. Briegel [33], Raussendorf [34],
Schlingemann [35] and Walther [36] investigated that cluster state can be used in one
way quantum computation and quantum error correction, and it has been experimen-
tally proved [36]. It is a remarkable fact that all of the aforementioned schemes are
focused on the symmetric case which every agent has the same status, i.e., the same
authority for getting the sender’s secret. In other words, every agent can recover the
secret(quantum state) successfully with the help of the other agents. The symmetry of
quantum channel leads all the receivers to have the same power to recover the secret.
But in the real world, based on a certain purpose, the boss wants to send his/her secret
to different agents with different grades to recover corresponding information. Thus,
a more general QIS scheme should contain the asymmetric case in which different
agents have different authorities to recover the secret information. Wang et al. [19]
introduced the concept of hierarchical QIS which is (1, 2)-hierarchy model of quan-
tum information splitting. Then they investigated (2, 3)-hierarchy model [20]. In the
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two schemes, they adopted four-qubit and six-qubit cluster state as the quantum chan-
nel respectively. It is worth noting that the two models are discussed with maximally
entangled channel. As mentioned before, eight-qubit cluster state has better persis-
tency than the GHZ state. And it has been experimentally proved to realize [37]. So
quantum information splitting of asymmetric case is an important part of quantum
information processing.

Based on the above reasons, it is worth discussing quantum information splitting
based on asymmetric and non-maximally entangled channel. It gives us motivation to
study new application of non-maximally entangled channel for QIS protocol. In this
paper, we propose a new scheme for hierarchical quantum information splitting of
an unknown single-qubit state.In our scheme a non-maximally entangled eight-qubit
cluster state is chosen as the quantum channel shared by the sender and other agents.
The eight-qubit cluster state is easy to be adopted to investigate the QIS. The sender
performs Bell-state measurement on her qubits pair, then the agents makes the pro-
jective measurements on his qubit. Finally the receiver applies some appropriately
transformations on his qubit according to the measured results from both the sender
and part or all of other agents. Thus the task of QIS of an unknown single-qubit state
is completed. In our scheme, the agent (Bob1,Bob2,Bob3) in upper grade is more
powerful than in the lower grades(Bob4,Bob5,Bob6 and Bob7). The agents in upper
grade need less information than the one in the lower grade to recover the secret.
Nowadays, the hierarchical QIS has been investigated with two grades. But in real
world, all the receivers may be divided into more than two grades in order to satisfy
some physical facts. Thus it is meaningful to make further discussion of hierarchical
QIS.

The paper is organized as follows. In Sect. 2, we describe the hierarchical quan-
tum information splitting with non-maximally eight-qubit cluster states in detail. In
Sect. 3, the conclusion is obtained.

2 Hierarchical quantum information splitting with eight-qubit cluster states

Suppose Alice has an unknown single-qubit state, which can be described as follows

|ϕ〉x = α|0〉x + β|1〉x , (1)

where α, β are complex numbers with |α|2 + |β|2 = 1. As the Boss of QIS,
Alice wants to share the secret quantum state |ψ〉x with her seven agents, i.e.,
Bob1,Bob2, . . . ,Bob7. She chooses an unknown no-maximally entangled eight-qubit
cluster state

|C8〉1234578 =(a|0000000〉 + a|00001111〉+b|11110000〉−b|11111111〉)12345678,

(2)

where a, b are arbitrary nonzero real numbers and satisfying |a|2 + |b|2 = 1
2 and

|a| ≥ |b|. The particles x and 1 belong to Alice, the particle i belongs to Bobi−1, i =
2, 3, . . . , 7 respectively.
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The state of the whole system is

|ϕ〉x12345678 = |ϕ〉x ⊗ |C8〉12345678. (3)

In order to express the state of the whole system easily, we denote

|G〉2345678 = |000〉(|0000〉 + |1111〉), |G′〉2345678 = |111〉(|0000〉 − |1111〉). (4)

Then

|ϕ〉x12345678 = aα|00〉x1|G〉2345678 + bα|01〉x1|G′〉2345678

+ aβ|10〉x1|G〉2345678 + bβ|11〉x1|G′〉2345678.
(5)

In the scheme, Alice wants to distribute her secret |ϕ〉x to her seven agents such that
any one of them can recover the secret state with the assistance of part or all of the
others. Because the Bell-state measurement for particles can be well realized accord-
ing to recent relational reports [21–23], at first, Alice performs a joint measurement
on her particles x and 1 using the Bell basis |Ψ±〉x1 and |Φ±〉x1. The four Bell states
are given by

|Ψ±〉x1 = 1√
2
(|00〉 ± |11〉)x1, |Φ±〉x1 = 1√

2
(|01〉 ± |10〉)x1. (6)

After performing Bell measurement, the state of whole system will be collapsed into
one of four possible entangled states |ψ±〉2345678 and |φ±〉2345678.

|ψ±〉2345678 = |Ψ±〉x1 ⊗ |ϕ〉x12345678 = aα|G〉2345678 ± bβ|G′〉2345678,

|φ±〉2345678 = |Φ±〉x1 ⊗ |ϕ〉x12345678 = bα|G′〉2345678 ± aβ|G′〉2345678.
(7)

And then Alice tells the measurement outcomes to all her agents via classical channel.
According to the non-cloning theorem [24], only one particle allows to be in the state
|ϕ〉. Hence any one of Alice’s seven agents Bobi (i = 1, 2, . . . , 7), but not all, can
recover the state |ϕ〉.

Without loss of generality, we assume that all the Bobs agree to let Bob1 possess
the secret. Now we rewrite |ψ±〉2345678 and |φ±〉2345678 as

|ψ±〉2345678 = (aα|0〉2 ± bβ|1〉2) · |ψ1〉345678 + (aα|0〉2 ∓ bβ|1〉2) · |ψ2〉345678,

|φ±〉2345678 = (aβ|0〉2 ± bα|1〉2) · |φ1〉345678 + (aβ|0〉2 ∓ bα|1〉2) · |φ2〉345678,
(8)

where

|ψ1〉345678 = 1√
2
[|+〉3|+〉4|0000〉5678 + |+〉3|−〉4|1111〉5678

+|−〉3|+〉4|1111〉5678 + |−〉3|−〉4|0000〉5678],
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|ψ2〉345678 = 1√
2
[|+〉3|+〉4|1111〉5678 + |+〉3|−〉4|0000〉5678

+|−〉3|+〉4|0000〉5678 + |−〉3|−〉4|1111〉5678],
|φ1〉345678 = 1√

2
[|+〉3|+〉4|0000〉5678 + |+〉3|−〉4|1111〉5678

+|−〉3|+〉4|1111〉5678 + |−〉3|−〉4|0000〉5678],
|φ2〉345678 = 1√

2
[|+〉3|+〉4|1111〉5678 + |+〉3|−〉4|0000〉5678

+|−〉3|+〉4|0000〉5678 + |−〉3|−〉4|1111〉5678],
|+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

In order to assist Bob1 to reconstruct Alice’s secret state, the other agents need to
measure their particles using appropriate bases and broadcast the outcomes to other
suitable agents. Obviously, if Bob4,Bob5,Bob6 and Bob7 measure their particles using
the basis {|0〉, |1〉}, their outcomes are always correlated, i.e., anyone’s outcome can
deduce the others’. This shows that only one of them, to be referred to as ”Bob∗”,
is needed to inform Bob1 of his single-particle measurement outcome. Suppose that
Bob2 and Bob3 measure their particle 3 and 4 using the basis {|+〉, |−〉} respectively.
Then Bob1 can reconstruct the state |ϕ〉 on particle 2 by appropriate local operations
based on the measurement outcomes of Bob2, Bob3 and Bob∗. In other words, if Bob1
wants to reconstruct the original state |ϕ〉, he only needs the result of three of six other
agents, i.e., Bob2,Bob3 and Bob∗.

Because the parameters a and b are arbitrary nonzero real numbers in quantum
channel, Bob1 recovers the secret state with a certain probability. Now we describe
the process to recover the secret state by Bob1 in detail.

According to Eq. (8), without loss of generality, suppose Bob2,Bob3 and Bob4’s
measurement results are |−〉3, |−〉4 and |0〉5, and Alice’s measurement result is
|Φ−〉x1, then the joint state of whole system will be collapsed to

|φ〉2 = aβ|0〉2 − bα|1〉2. (9)

Now, in order to recover the original state |ϕ〉,Bob1 performs an unitary transfor-
mation U = σ z

2σ
x
2 on her particles 2, which transforms |φ〉2 into

|φ1〉2 = bα|0〉2 + aβ|1〉2, (10)

where σ x = |0〉〈1| + |1〉〈0| and σ z = |0〉〈0| − |1〉〈1| are the usual Pauli operators.
As proposed before, the state taken as the quantum channel,which are shared among

Alice and Bobi (i = 1, 2, ..., 7), i.e., Bob1 has complete knowledge of non-maximally
entangled states. Therefore Bob1 introduces an auxiliary particle m in the initial state
|0〉m . Now, the compositive state of the particles 2 and m in Bob1’s position is

|φ〉2m = |φ1〉2|0〉m = bα|00〉2m + aβ|10〉2m . (11)
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This compositive state can be rewritten as

|φ〉2m = 1

2
(|G1〉 ⊗ |E1〉 + |G2〉 ⊗ |E2〉), (12)

where |G1〉 = α|0〉2 + β|1〉2, |G2〉 = α|0〉2 − β|1〉2, |E1〉 = b|0〉m + a|1〉m , |E2〉 =
b|0〉m − a|1〉m .

From above Eq. (12), one can see that Bob1 can get the state |Gi 〉(i = 1, 2) of his
particle 2 provided that |Ei 〉(i = 1, 2) are obtained via appropriate measurements on
his auxiliary particle m. Unfortunately, the states |Ei 〉(i = 1, 2) are not orthogonal in
general. As a consequence, they cannot be differentiated deterministically. In order to
distinguish the two states with a certain probability, Bob adopts to perform an optimal
POVM measurement on the auxiliary particle m. The POVM takes the following form

P1 = 1

ω
|M1〉〈M1|, P2 = 1

ω
|M2〉〈|M2|, P3 = I − P1 − P2. (13)

where

|M1〉= 1√
η

(
1

b
|0〉+ 1

a
|1〉

)
m
, |M2〉= 1√

η

(
1

b
|0〉− 1

a
|1〉

)
m
, η= 1

b2 + 1

a2 = 1

2a2b2 .

(14)

I is an identity operator, and the coefficient ω, which relates to a and b, should be able
to assure P3 to be a positive operator. In order to determine exactly coefficient ω, we
would like to rewrite the three operators Pi (i = 1, 2, 3) in the matrix forms.

P1 = 1

ωη

(
1
b2

1
ab

1
ab

1
a2

)
, P2 = 1

ωη

(
1
b2 − 1

ab
− 1

ab
1

a2

)
, P3 =

(
1 − 2

ωηb2 0

0 1 − 2
ωηa2 ,

)
. (15)

Evidently, to let P3 be a positive operator, the parameter ω should be an appropriate
value satisfying ω ≥ 1, as is strongly relative to a and b.

After performing the above POVM operation on the auxiliary particle m,Bob1 can
definitively get Pi (i = 1, 2) with the probability

p(Pi ) = 2m〈φ|Pi |φ〉2m = 1

ωη
, i = 1, 2. (16)

Alternatively, in terms of the POVM value, Bob can positively conclude the state
|Ei 〉(i = 1, 2) of the particle m. Once Bob1 determines the |Ei 〉(i = 1, 2), this means
he also knows the state |Gi 〉(i = 1, 2) of his particle 2. As a consequence, Bob1
can reconstruct the original state in his particle 2 by performing an appropriate unitary
operation. That is, if Bob knows that the state of his particle 2 is |G1〉 or |G2〉, he needs
only to perform the unitary operation I2 = |0〉2〈0|+ |1〉2〈1| or σ z

2 = |0〉2〈0|− |1〉2〈1|
respectively. According to the above equation, one can see that the QSTS probability
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depends on the parameter ω and the small coefficients of the states taken as the quan-
tum channel. As mentioned before, ω can be varied from 1 to 2, however, it should
still be carefully chosen such that P3 is a nonnegative operator. If a = b = 1

2 and one
can choose ω = 1, the success probability is 1, that is to say, the quantum channel
consists of maximally entangled states, and the present QIS scheme turns out to be
deterministic.

Because |C8〉 is unchanged under the permutation of particles 2, 3 and 4, the above
method on particle 2 can apply to particles 3 and 4. In other words, Bob1,Bob2 and
Bob3 have the same status in our QIS scheme.

Similarly, according to the symmetric structure of |C8〉,Bob4,Bob5,Bob6 and Bob7
have the same status in this scheme. Without loss of generality, we suppose that Bob7
can possess Alice’s secret, i.e., recover the state |ϕ〉 with authorization by all the
other agents. Based on the assumption, the states |ψ±〉2345678 and |φ±〉2345678 can be
rewritten as

|ψ±〉2345678 = |ψ1〉234567(aα|+〉8 ± bβ|−〉8)+|ψ2〉234567(aα|−〉8 ± bβ|+〉8)

+|ψ3〉234567(aα|+〉8 ∓ bβ|−〉8)+ |ψ4〉234567(aα|−〉8 ∓ bβ|+〉8)

|φ±〉2345678 = |ψ1〉234567(bα|−〉8 ± aβ|+〉8)+|ψ2〉234567(bα|+〉8 ± aβ|−〉8)

−|ψ3〉234567(bα|−〉8 ∓ aβ|+〉8)−|ψ4〉234567(bα|+〉8 ∓ aβ|−〉8),

(17)

where

|ψ1〉234567 = (| + + + + + +〉 + | + + + + − −〉 + | + + + − + −〉
+| + + + − − +〉 + | + − − + + +〉 + | + − − + − −〉
+| + − − − + −〉 + | + − − − − +〉 + | − + − + + +〉
+| − + − + − −〉 + | − + − − + −〉 + | − + − − − +〉
+| − − + + + +〉 + | − − + + − −〉 + | − − + − + −〉
+| − − + − − +〉)234567

|ψ2〉234567 = (| + + + + + −〉 + | + + + + − +〉 + | + + + − + +〉
+| + + + − − −〉 + | + − − + + −〉 + | + − − + − +〉
+| + − − − + +〉 + | + − − − − −〉 + | − + − + + −〉
+| − + − + − +〉 + | − + − − + +〉 + | − + − − − −〉
+| − − + + + −〉 + | − − + + − +〉 + | − − + − + +〉
+| − − + − − −〉)234567

|ψ3〉234567 = (| + + − + + +〉 + | + + − + − −〉 + | + + − − + −〉
+| + + − − − +〉 + | + − + + + +〉 + | + − + + − −〉
+| + − + − + −〉 + | + − + − − +〉 + | − + + + + +〉
+| − + + + − −〉 + | − + + − + −〉 + | − + + − − +〉
+| − − − + + +〉 + | − − − + − −〉 + | − − − − + −〉
+| − − − − − +〉)234567
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|ψ4〉234567 = (| + + − + + −〉 + | + + − + − +〉 + | + + − − + +〉
+| + + − − − −〉 + | + − + + + −〉 + | + − + + − +〉
+| + − + − + +〉 + | + − + − − −〉 + | − + + + + −〉
+| − + + + − +〉 + | − + + − + +〉 + | − + + − − −〉
+| − − − + + −〉 + | − − − + − +〉 + | − − − − + +〉
+| − − − − − −〉)234567

From the Eq. (17), it is clear that Bob7 can reconstruct the state |ϕ〉 if and only if all
the other six Bobs measure their particles in the basis {|+〉, |−〉} and broadcast their
outcomes. That is to say, if Bob7 wants to recover the original state |ϕ〉, he must need
the aidance of all the other six agents (Bobi , i = 1, 2, 3, 4, 5, 6). Once the measure-
ment basses of Alice and Bob1,. . ., Bob6 are chosen, the state of whole system will
be collapsed into one of the following eight states

aα|+〉8 ± bβ|−〉8, aα|−〉8 ± bβ|+〉8, bα|+〉8 ± aβ|−〉8, bα|−〉8 ± aβ|+〉8. (18)

When Bob7 receives the state with the form of Eq.(18), he performs a Hardam-
ard transformation and a certain Pauli operation on particle 8, then the state will be
transformed into

|ψ1〉8 = aα|0〉8 + bβ|1〉, |ψ2〉8 = bα|0〉8 + aβ|1〉, (19)

Bob7 should make corresponding operations which are listed in Table 1 to trans-
form Eqs. (18, 19) according to Alice’s Bell-state measurement outcomes and the other
Bobs’ single-qubit measurement outcomes, where H = |0〉〈0|+|0〉〈1|+|1〉〈0|−|1〉〈1|
is the Hardamard transformation. The Set Si (i = 1, 2, 3, 4) in Table 1 are

S1 ={| + + + + + +〉, | + + + + − −〉, | + + + − + −〉, | + + + − − +〉,
| + − − + + +〉, | + − − + − −〉, | + − − − + −〉, | + − − − − +〉,
| − + − + + +〉, | − + − + − −〉, | − + − − + −〉, | − + − − − +〉,
| − − + + + +〉, | − − + + − −〉, | − − + − + −〉, | − − + − − +〉}

(20)

S2 ={| + + + + + −〉, | + + + + − +〉, | + + + − + +〉, | + + + − − −〉,
| + − − + + −〉, | + − − + − +〉, | + − − − + +〉, | + − − − − −〉,
| − + − + + −〉, | − + − + − +〉, | − + − − + +〉, | − + − − − −〉,
| − − + + + −〉, | − − + + − +〉, | − − + − + +〉, | − − + − − −〉}

(21)

S3 ={| + + − + + +〉, | + + − + − −〉, | + + − − + −〉, | + + − − − +〉,
| + − + + + +〉, | + − + + − −〉, | + − + − + −〉, | + − + − − +〉,
| − + + + + +〉, | − + + + − −〉, | − + + − + −〉, | − + + − − +〉,
| − − − + + +〉, | − − − + − −〉, | − − − − + −〉, | − − − − − +〉}

(22)
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Table 1 The corresponding
operation that Bob7 should
perform for transforming the
state in Eq. (18) to the state in
Eq. (19), according to the
measurement outcomes of Alice
and the other six agents
(Bobi , i = 1, 2, 3, 4, 5, 6)

Alice’s
outcomes

The outcomes of
Bob1,2,3,4,5,6

Bob7’s operation The state of Bob7
after performing
transfer

|Ψ+〉 |φi 〉 ∈ S1 H
|Ψ−〉 |φi 〉 ∈ S1 σ z

8 H
|Ψ+〉 |φi 〉 ∈ S2 σ x

8 H
|Ψ−〉 |φi 〉 ∈ S2 σ x

8 σ
z
8 H |ψ1〉8

|Ψ+〉 |φi 〉 ∈ S3 σ z
8 H

|Ψ−〉 |φi 〉 ∈ S3 H
|Ψ+〉 |φi 〉 ∈ S4 σ z

8σ
x
8 H

|Ψ−〉 |φi 〉 ∈ S4 σ x
8 H

|Φ+〉 |φi 〉 ∈ S1 σ x
8 H

|Φ−〉 |φi 〉 ∈ S1 σ x
8 H

|Φ+〉 |φi 〉 ∈ S2 H
|Φ−〉 |φi 〉 ∈ S2 σ z

8 H |ψ2〉8

|Φ+〉 |φi 〉 ∈ S3 σ z
8σ

x
8 H

|Φ−〉 |φi 〉 ∈ S3 σ x
8 H

|Φ+〉 |φi 〉 ∈ S4 σ z
8 H

|Φ−〉 |φi 〉 ∈ S4 H

S4 ={| + + − + + −〉, | + + − + − +〉, | + + − − + +〉, | + + − − − −〉,
| + − + + + −〉, | + − + + − +〉, | + − + − + +〉, | + − + − − −〉,
| − + + + + −〉, | − + + + − +〉, | − + + − + +〉, | − + + − − −〉,
| − − − + + −〉, | − − − + − +〉, | − − − − + +〉, | − − − − − −〉}

(23)

Once the state in Bob7’s position is |ψ1〉8 or |ψ2〉8,Bob7 can apply POVM method
to recover the original state with a certain probability as before. From the above
scheme, if the agents want to reconstruct the secret state |ϕ〉,Bobi (i = 1, 2, 3) only
needs the assistance of two other Bob j , j = 1, 2, 3 and any one of the other four
Bobs (i.e., Bobi , i = 4, 5, 6, 7). But one of Bob j ( j = 4, 5, 6, 7) needs the help of
all of the other Bobs in order to achieve the same aim. That is to say, every agent has
different authority for getting the secret. Hence all the agents are divided into different
grade. Some agents in upper grade only need assistance of part of agents to achieve
the secret, but some other agents need all other agents’ aidance. It shows that some
agents (i.e., Bob1,Bob2,Bob3 ) are in a higher grade relative to the other agents (i.e.,
Bob4,Bob5,Bob6 and Bob7).

From the above scheme, we can know Alice’s secret is distributed to Bob1,2,3 and
Bob4,5,6,7 asymmetrically. Obviously the more information is known by some agent,
the less collaborations are needed. It is consistent with the actual physical fact.

In our scheme, since the parameters a and b in the non-maximally entangled
quantum channel |C〉8 are unknown, the agent Bobi must use the POVM method to
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Table 2 The corresponding operation that Bob1 should perform for recover the state |ϕ〉, according to the
measurement outcomes of Alice, Bob2,Bob3 and Bob∗, where a and b are known to Bob1

Alice’s outcomes Bob2’s outcomes Bob3’s outcomes Bob*’s outcomes Bob1’s operation

|ψ+〉2345678 |+〉 |+〉(|−〉) |0〉(|1〉) Ha−1,b−1

|ψ+〉2345678 |+〉 |+〉(|−〉) |1〉(|0〉) Ha−1,−b−1

|ψ+〉2345678 |−〉 |+〉(|−〉) |0〉(|1〉) Ha−1,−b−1

|ψ+〉2345678 |−〉 |+〉(|−〉) |1〉(|0〉) Ha−1,b−1

|ψ−〉2345678 |+〉 |+〉(|−〉) |0〉(|1〉) Ha−1,−b−1

|ψ−〉2345678 |+〉 |+〉(|−〉) |1〉(|0〉) Ha−1,b−1

|ψ−〉2345678 |−〉 |+〉(|−〉) |0〉(|1〉) Ha−1,b−1

|ψ−〉2345678 |−〉 |+〉(|−〉) |1〉(|0〉) Ha−1,−b−1

|φ+〉2345678 |+〉 |+〉(|−〉) |0〉(|1〉) σb−1,a−1

|φ+〉2345678 |+〉 |+〉(|−〉) |1〉(|0〉) σ−b−1,a−1

|φ+〉2345678 |−〉 |+〉(|−〉) |0〉(|1〉) σ−b−1,a−1

|φ+〉2345678 |−〉 |+〉(|−〉) |1〉(|0〉) σb−1,a−1

|φ−〉2345678 |+〉 |+〉(|−〉) |0〉(|1〉) σ−b−1,a−1

|φ−〉2345678 |+〉 |+〉(|−〉) |1〉(|0〉) σb−1,a−1

|φ−〉2345678 |−〉 |+〉(|−〉) |0〉(|1〉) σb−1,a−1

|φ−〉2345678 |−〉 |+〉(|−〉) |1〉(|0〉) σ−b−1,a−1

Table 3 The corresponding local operation that Bob7 should perform to recover the state |ϕ〉, according
to the measurement outcomes of Alice and the other six agents (Bobi , i = 1, 2, 3, 4, 5, 6), where a and b
are known to Bob7

Alice’s outcomes The outcomes of Bob1,2,3,4,5,6 The operations of Bob7

|Ψ+〉(|Ψ−〉) |φi 〉 ∈ S1 Ha−1,b−1H(Ha−1,−b−1H)
|Ψ+〉(|Ψ−〉) |φi 〉 ∈ S2 σa−1,b−1H(σa−1,−b−1H)
|Ψ+〉(|Ψ−〉) |φi 〉 ∈ S3 Ha−1,−b−1H(Ha−1,b−1H)
|Ψ+〉(|Ψ−〉) |φi 〉 ∈ S4 σa−1,−b−1H(σa−1,b−1H)
|Φ+〉(|Φ−〉) |φi 〉 ∈ S1 σb−1,a−1H(σb−1,−a−1H)
|Φ+〉(|Φ−〉) |φi 〉 ∈ S2 Hb−1,a−1H(Hb−1,−a−1H)
|Φ+〉(|Φ−〉) |φi 〉 ∈ S3 σb−1,−a−1H(σb−1,a−1H)
|Φ+〉(|Φ−〉) |φi 〉 ∈ S4 Hb−1,−a−1H(Hb−1,a−1H)

reconstruct the secret. If the parameters a and b in the quantum channel |C〉8 are deter-
ministic which are known to every agents, all the agents can recover the secret state
with the help of part or all of the other agents using the corresponding operations listed
in Tables 2 and 3. Table 2 shows that Bob1 preforms the corresponding operation with
the help of the other agents. And the corresponding operations that Bob7 should per-
form to recover the secret state are in Table 3 according to the measurement outcomes
of Alice and Bobi (i = 1, 2, ..., 6) in Table 3. Accroding to symmetry of quantum
channel, Bob2 and Bob3 can recover the secret state with the operation as same as
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Bob1’s operation on particles 3 and 4 respectively. Because Bobi (i = 3, 4, 5, 6) has
the same status with Bob7,Bobi (i = 3, 4, 5, 6) can performs the same operation in
Table 3 on particle i + 1(i = 4, 5, 6, 7). The local operations Ha,b, σa,b in Tables 2
and 3 are defined as Ha,b = a|0〉〈0| + b|1〉〈1|, σa,b = a|0〉〈1| + b|1〉〈0|.

3 Conclusions

In the paper, we propose a scheme for (3, 4)-hierarchy model of quantum information
splitting with an unknown eight-qubit cluster state. In the scheme, seven agents are
divided into two grades. Three of them are in upper grade and the other four agents
are in lower grade. The agents in the upper grade have the larger authority than in the
lower grade. To achieve the same aim, the agents in different grades have different
authorities. In the paper, we discuss the parameters a and b in quantum channel are
unknown and known. The scheme is different with the existed results in which the
quantum channel is arbitrary and symmetric. Especially, if the parameters of quantum
channel a and b satisfy a = b = 1

2 , the QIS scheme becomes the symmetric case,
which all the agents have the authority to recover the secret with the help of all the
other agents. In this paper our scheme is easy to help the agent to recover the secret
state. And it gives us new motivity to investigate hierarchical QIS protocol which has
more than two grades for different agents.
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