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Abstract Based on the assumption that the receiver Bob can apply any unitary trans-
formation, Horodecki et al. (Phys Lett A 222:21–25, 1996) proved that any mixed two
spin-1/2 state which violates the Bell-CHSH inequality is useful for teleportation.
Here, we further show that any X state which violates the Bell-CHSH inequality can
also be used for nonclassical teleportation even if Bob can only perform the identity
or the Pauli rotation operations. Moreover, we showed that the maximal difference
between the two average fidelities achievable via Bob’s arbitrary transformations and
via the sole identity or the Pauli rotation is 1/9.
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1 Introduction

Entanglement and Bell nonlocality are two aspects of quantum correlations that have
been the research interests since the early days of quantum mechanics and still have
not been completely understood until now [1–3]. A basic trait of the entangled state of
a composite system is that it cannot be written as products of states of each subsystem.
As a physical resource, entanglement is essential for various quantum information
processing (QIP) tasks [1]. One of them is quantum teleportation [4], by which an
unknown state can be replicated at a distant location with the help of local opera-
tions and classical communication. However, not all the states that are entangled can
be used for teleportation with average fidelity (see sections below) better than that
achievable via classical communication alone [5,6], and the average fidelity is even
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not a monotone function of the degree of entanglement of the channel state. This seem-
ingly counterintuitive phenomenon has been noticed by a number of authors [7–11].
Particularly, there are situations in which the channel states possess greater amount of
entanglement with however the average fidelity cannot exceed the classical limiting
value of 2/3 [11].

Bell nonlocality corresponds to another quantum correlation that cannot be repro-
duced by any classical local-hidden variable models, and this nonlocal behavior can
be detected by the violation of different Bell-type inequalities [1]. The investigation
of Bell-nonlocality violation is significant not only for the fundamental role it plays
in better understanding of the subtle aspects of quantum mechanics, but also because
these violations are crucial for some practical applications in quantum information
processing, such as to guarantee the safety of the device-independent key distribution
protocols in quantum cryptography [12,13].

Due to their close relations, distinction between entanglement and Bell-inequality
violation has been studied extensively. Particularly, it has been demonstrated that for
the two-level systems, the inseparability of a bipartite pure state corresponds to the
violation of the Bell-CHSH inequality, and vice versa [6,14]. However, this is not the
case for the mixed states. As pointed out initially by Werner [15], there are bipartite
mixed states who are entangled but do not violate any Bell-type inequalities, thus one
cannot distinguish whether these correlations are produced by a classical local-hidden
variable model or not.

Moreover, when considering the issue of quantum teleportation protocol,
Popescu [5] noticed that there are bipartite mixed states which do not violate any Bell-
type inequalities, but still can be used for teleportation with average fidelity larger
than the classical limiting value of 2/3. It is then natural to ask for the generic rela-
tions between entanglement, Bell-nonlocality violation and quantum teleportation. In
general, this problem is rather complicated and difficult to answer. But for the special
case of the bipartite two-level systems, Horodecki et al. [6] showed that the question
concerning the Bell-CHSH inequality violation and the inseparability of the mixed
states can be derived definitely. Based on the assumption that during the teleporta-
tion process, the sender Alice uses only the Bell basis in her measurement, while the
receiver Bob is allowed to apply any unitary transformation, Horodecki et al. dem-
onstrated that any two spin-1/2 state (pure or mixed) which violates the Bell-CHSH
inequality is useful for teleportation.

The statement of Horodecki et al. [6] relies crucially on Bob’s ability to perform
any unitary transformation to his qubit. But it is worthwhile to note that in real circum-
stances the performance of certain unitary transformations, particularly for solid-state
construction of qubit systems, may be very difficult [1], thus it is significant to con-
sider the situation in which Bob performs only some easy-realized transformations.
For instance, if Bob can only perform the identity (i.e., do nothing) or the Pauli rota-
tion operations, then what will happen to the teleportation process? Can it still enable
nonclassical fidelity when the channel state violates the Bell-CHSH inequality [3].
In fact, this is not the case as we’ll show in the following text after introducing the
definitions of the corresponding average fidelities.
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2 Bell-inequality violation and teleportation via the X states

In this paper, we will address the problem concerning possible relations between entan-
glement, Bell-nonlocality violation and quantum teleportation for the two-qubit X state
ρ [16], which has nonzero elements only along the main diagonal and anti-diagonal.
We assume that Alice uses the generalized Bell basis |�0,3〉 = (|00〉± e−iα|11〉)/√2
and |�1,2〉 = (|01〉±e−iβ |10〉)/√2 in her measurement, while Bob performs only the
identity or the Pauli rotation operation to his qubit according to the classical informa-
tion he received form Alice [4]. Here the exponential terms e−iα and e−iβ are related
to the matrix elements of the X state via w = |w|eiα and z = |z|eiβ . The X state can
be written in the following form

ρ =

⎛
⎜⎜⎝

a 0 0 w

0 b z 0
0 z∗ c 0
w∗ 0 0 d

⎞
⎟⎟⎠ . (1)

Such X states arise in a wide variety of physical situations and include pure Bell states
[1] as well as the well-known Werner-like mixed states [15]. The usual density matrix
conditions such as normalization, positive semi-definiteness and Hermiticity require
that the diagonal elements a, b, c, d are non-negative and the equality a+b+c+d = 1
holds. Moreover, the anti-diagonal elements w and z satisfy

|w|2 ≤ ad, |z|2 ≤ bc. (2)

If Bob is equipped to perform all kinds of unitary transformations to the qubit at his
possession, then the maximal average fidelity achievable can be expressed as [6]

F (1)
max = 1

2
+ 1

6
N (ρ), (3)

where N (ρ) = tr
√

T †T . Here T is a 3 × 3 positive matrix with elements tnm =
tr(ρσ n ⊗ σm), and σ 1,2,3 are the usual Pauli spin operators. N (ρ) can be written
explicitly as N (ρ) = �3

i=1
√

ui , where ui (i = 1, 2, 3) are eigenvalues of the matrix
T †T . Particularly, for the X state expressed in Eq. (1), the eigenvalues of T †T can be
obtained straightforwardly as u1,2 = 4(|w| ± |z|)2 and u3 = (a + d − b − c)2, thus
we get N (ρ) = 2[|w| + |z| + |(|w| − |z|)|] + |a + d − b − c|.

If Bob can only perform the identity or the Pauli rotation operations, then the max-
imal average fidelity for quantum teleportation can be obtained explicitly as [9,17]

F (2)
max = 2F(ρ) + 1

3
, (4)

where F(ρ) = max{χ0, χ1, χ2, χ3} is the fully entangled fraction [18,19], with the
notations χ0,3 = (a + d ± 2|w|)/2 and χ1,2 = (b + c ± 2|z|)/2. Clearly, F (2)

max
is in fact determined only by the quantity χ0 or χ1. One can show now that for
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some channel states that admit F (1)
max > 2/3, the average fidelity F (2)

max may be equal
to or smaller than 2/3. A representative example is the maximally entangled state
|ϕ〉 = (|00〉 + |01〉 + |10〉 − |11〉)/2 (this state can be generated by applying a
Hadamard operation [1] to the second qubit of the Bell state |
+〉 = (|00〉+|11〉)/√2)

which yields F (1)
max = 1 and F (2)

max = 2/3.

For 2 × 2 systems, the nonlocality of a quantum state can be detected by the viola-
tion of the Bell-CHSH inequality proposed by Clauser, Horne, Shimony and Holt [3],
which is given by

|〈BCHSH〉ρ | ≤ 2, (5)

where 〈BCHSH〉ρ = tr(ρBCHSH), and BCHSH is the Bell operator associated with
the quantum CHSH inequality. It has been demonstrated [20] that Bmax(ρ) =
max |〈BCHSH〉ρ | is related to a quantity M(ρ) via Bmax(ρ) = 2

√
M(ρ), where

M(ρ) = maxi< j (ui + u j ), with ui (i = 1, 2, 3) being the eigenvalues of the matrix
T †T . For the X state expressed in Eq. (1), we can obtain

M(ρ) = max{8(|w|2 + |z|2), 4(|w| + |z|)2 + (a + d − b − c)2}, (6)

Clearly, the inequality (5) is violated if and only if M(ρ) > 1, and the quantity M(ρ)

can also be used to measure the degree of violation of the Bell nonlocality for a bipartite
state.

We now begin our discussion about possible relations between Bell-nonlocality
violation and average fidelity F (2)

max for the situation in which Alice performs her
joint measurement using the generalized Bell operators while Bob is only allowed to
perform the identity or the Pauli rotation operation. We will show that if the Bell-
CHSH inequality in Eq. (5) is violated, i.e., Bmax(ρ) > 2 or M(ρ) > 1, then all
the X states will yield F (2)

max > 2/3. Since F (2)
max is determined only by χ0 or χ1,

and it is easy to prove that the two inequalities χ0 > 1/2 and χ1 > 1/2 cannot
be satisfied simultaneously. This is because if they are satisfied simultaneously, then
from the normalization of ρ one can obtain χ0 + χ1 = (1 + 2|w| + 2|z|)/2 > 1,
which gives rise to |w| + |z| > 1/2. Clearly, this is in contradiction with the fact that
|w| + |z| ≤ √

ad + √
bc ≤ (a + d + b + c)/2 = 1/2, which can be derived directly

from Eq. (2). Thus in the following we only need to prove that the two inequalities
χ0 < 1/2 and χ1 < 1/2 cannot be satisfied simultaneously if M(ρ) > 1.

The relative magnitude of M(ρ) is determined by the maximum of M1(ρ) =
8(|w|2 + |z|2) and M2(ρ) = 4(|w| + |z|)2 + (a + d − b − c)2. First, for the case of
M1(ρ) ≥ M2(ρ), we have M(ρ) = 8(|w|2 + |z|2). If χ0 < 1/2 and χ1 < 1/2 are
satisfied simultaneously, then we get

2|w| < b + c, 2|z| < a + d, (7)

where we have used the normalization condition a + b + c + d = 1 in deriving the
above equations. Moreover, from Eq. (2) and the positive semi-definiteness of the
density matrix it is direct to show that the following inequalities hold
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a + d ≥ 2
√

ad ≥ 2|w|, b + c ≥ 2
√

bc ≥ 2|z|. (8)

By combination of Eqs. (7) and (8) one can obtain

|w| <
1

4
, |z| <

1

4
, (9)

which yields M(ρ) = 8(|w|2 + |z|2) < 1. Thus one see that for the case of M1(ρ) ≥
M2(ρ), the Bell-CHSH inequality (5) cannot be violated if χ0 < 1/2 and χ1 < 1/2.

Second, for the case of M1(ρ) < M2(ρ) we have M(ρ) = 4(|w| + |z|)2 + (a
+ d − b − c)2. Still one can prove that the relations χ0 < 1/2 and χ1 < 1/2 cannot
be satisfied simultaneously. This is because we always have

|w| + |z| < b + c, |w| + |z| < a + d, (10)

if χ0 < 1/2 and χ1 < 1/2, where the first inequality in Eq. (10) can be obtained
by combination of the first inequality in Eq. (7) and the second inequality in Eq. (8),
while the second inequality in Eq. (10) can be obtained by combination of the sec-
ond inequality in Eq. (7) and the first inequality in Eq. (8). Because the parameters
appeared both in the left-hand side and the right-hand side of the inequalities of Eq. (10)
is non-negative, we get

(|w| + |z|)2 < (a + d)(b + c). (11)

On the other hand, violation of the Bell-CHSH inequality |〈BCHSH〉ρ | ≤ 2 for the X
state ρ requires M(ρ) = 4(|w|+|z|)2+(a+d−b−c)2 > 1. It is easy to check that this
inequality can also be expressed equivalently as (|w| + |z|)2 > (a + d)(b + c), which
is obviously contradicts the result of Eq. (11). Thus by using apagogic reasoning we
demonstrated again that for the case of M1(ρ) < M2(ρ), the Bell-CHSH inequality
still cannot be violated if χ0 < 1/2 and χ1 < 1/2.

Based on the above discussions, we came to the following proposition about pos-
sible relations between Bell-nonlocality violation and quantum teleportation.

Proposition 1 All X states that violate the Bell-CHSH inequality can be used for
teleportation with average fidelity F (2)

max greater than the classical limiting value of
2/3.

However, one should note that the inequality Bmax(ρ) > 2 or M(ρ) > 1 is only
a sufficient condition for nonclassical teleportation fidelity, because there are states
which do not violate the Bell-CHSH inequality, but still give rise to F (2)

max > 2/3.
One such example is the Werner mixed state [15] described by the density matrix
ρW = p|�−〉〈�−| + (1 − p)I4/4, where p is a real parameter ranges from 0 to 1,
|�−〉 = (|01〉 − |10〉)/√2 is the Bell singlet state, and I4 denotes the 4 × 4 iden-
tity operator. For ρW, from the above formulae one can obtain M(ρ) = 2p2 and
F (1)

max = F (2)
max = (1 + p)/2. Clearly, The Werner mixed state yields F (2)

max > 2/3 for
p > 1/3, while it violates the CHSH inequality only when p > 1/

√
2. Thus in the
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region of p ∈ (1/3, 1/
√

2] we have the state ρW which are suitable for nonclassical
quantum teleportation but do not violate the Bell-CHSH inequality. Moreover, it is
straightforward to check that entanglement of the Werner state ρW measured by the
concurrence [21] is given by C = max{0, (3p − 1)/2}. This indicates that all the
entangled Werner states are useful for teleportation. But it should be note that this is
not the case for general forms of entangled X states [10,11].

When considering relations between entanglement and Bell-nonlocality violation,
it has been shown by Verstraete and Wolf [22] that for states with a given concur-
rence C , there exists an exact bound for Bmax(ρ) : 2

√
2C ≤ Bmax(ρ) ≤ 2

√
1 + C2,

which shows clearly that the violation of the Bell-CHSH inequality is guaranteed when
C > 1/

√
2. This relation also applies to the X states considered here, namely, both the

lower bound 2
√

2C and the upper bound 2
√

1 + C2 for Bmax(ρ) remain unchanged
for the X state. Thus we immediately came to the conclusion that any X state with
concurrence larger than 1/

√
2 is always useful for nonclassical teleportation, even if

Bob can only perform the identity (i.e., do nothing) or the Pauli rotation operation.
But it should be note that for the case of C < 1/

√
2, it is also possible to achieve

nonclassical teleportation fidelity (see, for example, the case of the Werner state ρW).
Now we turn to discuss possible relations between the average fidelities F (1)

max and
F (2)

max. Since the former represents the situation in which Bob is equipped to apply any
unitary transformation, while the latter corresponds to the situation in which Bob can
only perform the identity or the Pauli rotation operation, we have F (1)

max ≥ F (2)
max in gen-

eral. What we concern in the following is the extent to which F (2)
max can be improved via

Bob’s arbitrary transformations. For this purpose, we consider the difference between
F (1)

max and F (2)
max, i.e., δFmax = F (1)

max − F (2)
max, which can be derived straightforwardly as

δFmax = N (ρ) − 4F(ρ) + 1

6
. (12)

Since both the anti-diagonal elements w and z of ρ contribute to F (1)
max and F (2)

max only
in the form of |w| and |z| (see section above), it suffice to consider the special case of
{w, z} ∈ R, w ≥ 0 and z ≥ 0, and the conclusion obtained can be generalized directly
to the cases for general X states with negative or complex anti-diagonal elements.

For w ≥ z and χ0 ≥ χ1, one can obtain N (ρ) − 4F(ρ) + 1 = |2(a + d) − 1
| − 2(a + d) + 1, the relative magnitude of which depends on the parameters a and d
involved. If a + d ≥ 1/2, then we have N (ρ) − 4F(ρ) + 1 = 0 and δFmax = 0, i.e.,
during this parameter region both F (1)

max and F (2)
max yield completely the same value.

If a + d < 1/2, however, N (ρ) − 4F(ρ) + 1 = 2 − 4(a + d), which increases
with decreasing value of a + d. Because the assumed condition χ0 ≥ χ1 requires
1 + 2z ≤ 2(a + d) + 2w, and from Eq. (2) one can obtain that 2w ≤ 2

√
ad ≤ a + d,

thus we get a + d ≥ (1 + 2z)/3 ≥ 1/3. This, together with the assumed condition
a + d < 1/2 gives rise to N (ρ) − 4F(ρ) + 1 ∈ (0, 2/3] and δFmax ∈ (0, 1/9].

For w ≥ z and χ0 < χ1, it is straightforward to check that 2(b + c) > 1
+ 2(w − z) ≥ 1, which gives rise to N (ρ) − 4F(ρ) + 1 = 4(w − z) ≤ 4w. On
the other hand, from χ0 < χ1 and Eq. (2) one can derive 1 + 2z > 2(a + d) + 2w

and a + d ≥ 2
√

ad ≥ 2w, thus we get w < (1 + 2z)/6 ≤ 1/6, which gives rise
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to the upper bound of N (ρ) − 4F(ρ) + 1 as 2/3. Moreover, the lower bound of
N (ρ) − 4F(ρ) + 1 is 0 because we have assumed w ≥ z. Thus by combining these
results we get N (ρ) − 4F(ρ) + 1 ∈ [0, 2/3) and δFmax ∈ [0, 1/9).

From the above analysis one can see that during the parameter region w ≥ z, the
difference between F (1)

max and F (2)
max ranges from 0 to 1/9, i.e., δFmax ∈ [0, 1/9]. The

maximal difference δFmax = 1/9 occurs only when the involved matrix elements
satisfying a + d = 1/3, b + c = 2/3, w = 1/6 and z = 0, which corresponds to
F (1)

max = 2/3 and F (2)
max = 5/9. Since F (2)

max > 2/3 
= 5/9 is guaranteed if Bmax(ρ) > 2,
we can also conclude that for X states which violate the Bell-CHSH inequality, the
difference between F (1)

max and F (2)
max must be smaller than 1/9.

Moreover, for the case of w < z, one can still obtain δFmax ∈ [0, 1/9] after a
similar analysis as performed for that of w ≥ z, with however the maximal difference
δFmax = 1/9 occurs when a + d = 2/3, b + c = 1/3, w = 0 and z = 1/6. Thus in
light of the above results, we can draw the following proposition.

Proposition 2 For all the X states, the maximal difference between F (1)
max and F (2)

max is
1/9.

This proposition represents the extent to which the average fidelity can be improved
by Bob’s arbitrary transformations. Particularly, for the case of F (2)

max ∈ (5/9, 2/3], if
Bob is equipped to perform some unitary transformations other than that of the identity
or the Pauli rotation operation, then the average fidelity can be enhanced to over its
classical limiting value of 2/3.

Before ending this paper, we would also like to see fractions of different types of
X states over the ensemble of the X states. Since all the X states which violate the
Bell-CHSH inequality are entangled and useful for teleportation, while there also exist
X states which satisfy the Bell-CHSH inequality but still can be used for teleporta-
tion, we can draw the conclusion that pE > pT > pB, where pE, pT and pB denote,
respectively, fraction of the entangled X states, fraction of the X states that are useful
for nonclassical teleportation and fraction of the X states that violate the Bell-CHSH
inequality.

3 Summary

In summary, we have studied possible relations between entanglement, Bell-CHSH
inequality violation and quantum teleportation for the X states. As a generalization of
the work [6] in which the authors proved that any two spin-1/2 state which violates
the Bell-CHSH inequality is useful for teleportation if Bob is equipped to perform all
types of unitary transformations, here we further demonstrated that for the X states,
nonclassical teleportation is also guaranteed by violation of the Bell-CHSH inequality
even if Bob can only perform the identity or the Pauli rotation operations. Since the X
states occur in many contexts [1,15] and experimental realization of the Pauli rotation
is comparatively simple (see Ref. [1] and references therein), we hope our results will
be relevant to the practical teleportation process. Moreover, we also compared the
maximal average fidelities F (1)

max and F (2)
max, which associate to the situations in which
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Bob is allowed to perform any unitary transformation and Bob can only perform the
identity or the Pauli rotation operations to his qubit, respectively. Our results revealed
that the difference between them ranges from 0 to 1/9, where the upper bound 1/9
represents the greatest extent to which the average fidelity can be improved via Bob’s
arbitrary transformations.

Acknowledgments This work was supported by the NSF of Shaanxi Province under grant Nos.
2010JM1011 and 2009JQ8006, the Specialized Research Program of Education Department of Shaanxi
Provincial Government under grant Nos. 2010JK843 and 2010JK828, and the Youth Foundation of XUPT
under Grant No. ZL2010-32.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University
Press, Cambridge (2000)

2. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)
3. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable

theories. Phys. Rev. Lett. 23, 880–884 (1969)
4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown

quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–
1899 (1993)

5. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality?. Phys. Rev. Lett. 72, 797–
799 (1994)

6. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys.
Lett. A 222, 21–25 (1996)

7. Yeo, Y.: Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain. Phys. Lett.
A 309, 215–217 (2003)

8. Yeo, Y.: Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum
teleportation. Phys. Rev. A 68, 022316 (2003)

9. Yeo, Y., Liu, T.Q., Lu, Y.N., Yang, Q.Z.: Quantum teleportation via a two-qubit Heisenberg XY chain-
effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38, 3235–3243 (2005)

10. Hu, M.L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external
environments. Phys. Lett. A 375, 922–966 (2011)

11. Hu, M.L.: Teleportation of the one-qubit state in decoherence environments. J. Phys. B At. Mol. Opt.
Phys. 44, 025502 (2011)

12. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev.
Lett. 97, 120405 (2006)

13. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)
14. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)
15. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable

model. Phys. Rev. A 40, 4277–4281 (1989)
16. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence. Quantum Inf. Comput. 7, 459–

468 (2007)
17. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and qua-

sidistillation. Phys. Rev. A 60, 1888–1898 (1999)
18. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical

capacity. Phys. Rev. Lett. 87, 267901 (2001)
19. Albeveio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurements. Phys. Rev.

A 66, 012301 (2002)
20. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-1/2 states: nec-

essary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)
21. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev.

Lett. 80, 2245–2248 (1998)
22. Verstraete, F., Wolf, M.M.: Entanglement versus Bell violations and their behavior under local filtering

operations. Phys. Rev. Lett. 89, 170401 (2002)

123


	Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states
	Abstract
	1 Introduction
	2 Bell-inequality violation and teleportation via the X states
	3 Summary
	Acknowledgments
	References


