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Abstract We investigate quantum teleportation of a single-qubit state for the situ-
ation in which both qubits of the entangled channel are subjected to local structured
reservoirs. We consider the effect of entanglement sudden death (ESD) of the channel
on the average fidelity of the teleportation. It is shown the appearance of ESD leads to
an abrupt variation of the fidelity of quantum teleportation. In addition, we show the
fidelity exhibits oscillations in the non-Markovian reservoir due to the memory effect
of the reservoir.
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1 Introduction

By using prior shared entanglement as a channel, quantum teleportation [1] can
transmit an unknown quantum state from the sender Alice to the receiver Bob with-
out transferring the physical carrier of the state [2–5]. The same as other entangle-
ment dependent quantum protocols, a perfect implementation of quantum teleportation
relies on the quality of the shared entanglement [6–9]. Since a real quantum system
unavoidably interacts with its surroundings undergoing consequent decoherence and
entanglement degradation, the study of quantum teleportation in the presence of var-
ious noisy environments proves to be significant and has attracted more and more
attentions [9–20].

Recently, an intriguing dynamical feature of entanglement has been experimentally
confirmed for the case of two qubits [21–23] that entanglement may disappear in a
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finite time, an interesting phenomenon termed as entanglement sudden death (ESD)
[24–27]. The phenomenon of ESD has been extensively studied, partially due to a
concern about its detrimental effect on the entanglement dependent quantum proto-
col. That is, an entangled resource undergoing ESD might put a limitation on its work
time in practice. However, it is not yet clear what the explicit effect of ESD on quantum
task besides the limited results [28–31]. In the area of quantum error correction, an
explicit study of the three-qubit phase flip code concludes that there is no fundamental
relationship between ESD and the failure of the code, i.e., this specific code is indiffer-
ent to ESD [28]. In Ref. [29], the authors have studied the entanglement evolution of a
four-qubit cluster state in a dephasing environment concentrating on the effect of ESD
on the utilization of this cluster state as a means of implementing a single-qubit rota-
tion in the measurement-based cluster state model of quantum computation. Through
comparing the evolution of the entanglement to the fidelity, the authors find that ESD
does not cause a change in behavior or discontinuity in the fidelity [29]. However, the
question of whether ESD affects quantum information processing requires a further
study and may be related to the role of entanglement in that processing [29]. To the
best of our knowledge, the specific effect of ESD on the implementation of quantum
teleportation is not clear so far. It is worth to know if ESD results in some abrupt
variation for the fidelity of quantum teleportation. In this work, focusing on a situation
in which both two qubits of the entangled channel are subjected to local structured
reservoirs, we show that when ESD occurs for the channel the average fidelity of
quantum teleportation abruptly drops to 2/3, i.e., the best possible value obtained only
by the classical communication [6]. By contrast, in the absence of ESD, the fidelity
only asymptotically decays to 2/3. The result demonstrates an obvious influence of
ESD on quantum teleportation.

Due to the advance of experimental technique, the non-Makovian features have
been observed in some physical systems. It has been shown that the entanglement of
two noninteracting qubits embedded in separated non-Markovian environments can
revive after a period of sudden death [32,33]. The similar result has been obtained
for two qubits interacting with a common non-Markovian environment [34]. In this
connection, it is interesting to know if the fidelity of quantum teleportation can revive
after it has dropped to 2/3 in the non-Markovian regime. We shall show in the fol-
lowing that the answer is positive, namely, the quantum advantage of teleportation
can recover after it has been lost thanks to the memory effect of the non-Markovian
reservoir.

2 The model and result

Consider each of the two qubits A and B of the entangled channel locally interacts
with its own multimode vacuum reservoir. The whole system can be described via the
sum of two independent qubit-reservoir Hamiltonian of the form (h̄ = 1)

Ĥ = ω0σ̂+σ̂− +
∑

j

ω j â
+
j â j +

∑

j

(g j σ̂+â j + g∗
j σ̂−â+

j ), (1)
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where σ̂+ = |1〉 〈0| and σ̂− = |0〉 〈1| are the raising and lowering operators of the
qubit S = A, B with the transition frequency ω0; â+

j (â j ) is the creation (annihilation)
operator of mode j of the reservoir with the frequency ω j ; g j measures the strength
of coupling between the qubit and the reservoir mode j . The overall dynamics can
simply be obtained from the evolution of the individual qubit-reservoir subsystem.
The dynamics of the single qubit S is known to be described by the reduced density
matrix [35,36]

ρS(t) =
(
ρS

11(0)|h(t)|2 ρS
10(0)h(t)

ρS
01(0)h

∗(t) 1 − ρS
11(0)|h(t)|2

)
, (2)

in the qubit basis {|1〉 , |0〉}. The function h(t) is defined as the solution of the inte-
grodifferential equation

d

dt
h(t) = −

t∫

0

dt1 f (t − t1)h(t), (3)

where f (t − t1) denotes the two-point reservoir correlation function which can be
written as the Fourier transform of the spectral density J (ω)

f (t − t1) =
∫

dωJ (ω) exp[i(ω0 − ω)(t − t1)]. (4)

The exact form of h(t) thus depends on the particular choice of the spectral density
of the reservoir. In the following we consider the structured reservoir as the electro-
magnetic field inside a lossy cavity. In this case, the fundamental mode ωc supported
by the cavity displays a Lorentzian broadening due to the non-perfect reflectivity
of the cavity mirrors. The effective spectral density of the intracavity field can be
modeled as

J (ω) = 1

2π

γ0λ
2

(ω0 − ω)2 + λ2 , (5)

in which γ0 is related to the decay of the excited state of the qubit in the Markov-
ian limit of a flat spectrum and λ is the half width at half-maximum of the intracavity
field spectrum profile. We may distinguish the Markovian and non-Markovian regimes
using γ0 and λ: γ0 < λ/2 means the Markovian regime and γ0 > λ/2 correspond to
the non-Markovian regime. The function h(t) can be obtained as

h(t) = e−λt/2
[

cosh

(
dt

2

)
+ λ

d
sinh

(
dt

2

)]
, (6)

where d = √
λ2 − 2λγ0. By means of the reduced density matrix elements of a single

qubit given in Eq. (2), we can construct the reduced matrix for the two-qubit system.
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For the quantum channel, we consider a general Bell-like state in the form

|Ψ (0)〉AB = α |00〉 +
√

1 − α2 |11〉 , (7)

in which the parameter α is assumed the real number for simplicity. Following the
procedure presented in Ref. [32], we can obtain in the standard product basis {|1〉 ≡
|11〉 , |2〉 ≡ |10〉 , |3〉 ≡ |01〉 , |4〉 ≡ |00〉}, the reduced matrix elements of qubits A
and B at any time t > 0 as

ρ11(t) = (1 − α2)|h(t)|4,
ρ22(t) = ρ33(t) = (1 − α2)|h(t)|2(1 − |h(t)|2),
ρ44(t) = α2 + (1 − α2)(1 − |h(t)|2)2,
ρ14(t) = ρ∗

41(t) = α
√

1 − α2h2(t). (8)

To examine quantitatively the environmental effects on fidelity of quantum tele-
portation, it is convenient to write the unknown state to be teleported of a qubit a
as |ψa〉 = c1 |0〉 + c2 |1〉 with c1 = cos(θ/2)eiφ/2 and c2 = sin(θ/2)e−iφ/2 (0 ≤
θ ≤ π, 0 ≤ φ ≤ 2π ). Suppose the teleportation is implemented perfectly, then after
a series of teleportation procedures, Bob gets the teleported state |ϕB〉 which can be
expressed in terms of density operator as

ρout = Tra,A{Utelρin ⊗ E(ρen)U†
tel}, (9)

where ρin = |ψa〉 〈ψa | , ρen = |Ψ (0)〉AB 〈Ψ (0)|, and Tra,A is a partial trace over
qubits a and A in Alice’s hand. E represents the actions of the reservoirs on the qubits
AB and E(ρen) thus means the evolved density operator of the quantum channel.
Utel = CZ

a BCX
ABHaCX

a A is a unitary operator with Ha stands for the Hadamard opera-
tion on qubit a, and CP

mn (P = X, Z ) denotes the controlled-P operation with m as
the control qubit and n the target qubit. The quality of a quantum teleportation process
is usually quantified by the teleportation fidelity, defined as the overlap between the
unknown input state and the teleported state

F(θ, φ) = 〈ψa | ρout |ψa〉 . (10)

Since in general a state to be teleported is unknown, it is more useful to calculate the
average fidelity given by

Fav = 1

4π

2π∫

0

dφ

π∫

0

sin θF(θ, φ)dθ, (11)

where 4π is the solid angle.
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By virtue of Eqs. (10) and (11), we obtain the time-dependent average fidelity of
quantum teleportation for the channel state (7) as

Fav(t) = 2

3
(ρ11(t)+ ρ44(t))+ 1

3
(ρ22(t)+ ρ33(t))+ 1

3
(ρ14(t)+ ρ41(t)), (12)

in which the matrix elements ρ11(t), . . . , ρ44(t) and ρ14(t), ρ41(t) are given in (8). To
make a comparison between the dynamics of average fidelity and that of the entan-
glement, we adopt Wootters’ concurrence [37] C as the entanglement measure. The
concurrence C for any (reduced) density matrix ρ of two qubits is defined as

C(ρ) = max{0,√λ1 − √
λ2 − √

λ3 − √
λ4}, (13)

where λi (λ1 ≥ λ2 ≥ λ3 ≥ λ4) are the eigenvalues of the matrix ζ = ρ(σy ⊗
σy)ρ

∗(σy ⊗ σy), with σy a Pauli matrix and ρ∗ the complex conjugation of ρ in the
standard basis. The time-dependent concurrence CAB(t) of the quantum channel AB
can be expressed as

CAB(t) = 2 max{0, |ρ14(t)| − √
ρ22(t)ρ33(t)}. (14)

In Fig. 1, we plot the average fidelity Fav(t) as functions of rescaled time γ0t and
initial preparation of the channel state (7) in terms of α2 for the Markovian regime.
For clarity, the range of the average fidelity is plotted from 2/3 to 1 since the telepor-
tation loses its quantum advantage when the fidelity is less than the critical value 2/3
[6]. The figure clearly shows that for α2 < 1/2, the average fidelity Fav(t) abruptly
drops to the value 2/3 in a finite time, implying the teleportation suddenly loses the
quantum advantage. By contrast, for α2 ≥ 1/2, the average fidelity Fav(t) asymptot-
ically approaches to the limiting value 2/3 when γ0t → ∞. Since the channel state
(7) suffers from ESD for α2 < 1/2 in the present model [24], it is reasonable for one
to attribute the abrupt variation of the fidelity to the occurrence of ESD of the used
channel. To verify this point and show the exact relation between them, we plot in
Fig. 2 the dynamics of the fidelity Fav(t) as well as the entanglement of the quantum
channel. It can be seen from Fig. 2 that the time at which the fidelity drops to 2/3
precisely corresponds to the moment of the appearance of ESD. By contrast, in the
absence of ESD, such as for α2 = 1/2, the fidelity only asymptotically reaches 2/3
without a sudden variation. Therefore, ESD of the quantum channel has a direct and
detrimental effect on quantum teleportation.

3 Non-Markovian effect on quantum teleportation

It is known that the memory effect of non-Markovian reservoir may give rise to a
revival of entanglement after it has been terminated in a finite time [32–34]. There-
fore, it is interesting to know if the average fidelity of quantum teleportation can revive
after it has dropped down the critical value in the non-Markovian reservoir. For this
purpose, in Fig. 3, we plot the average fidelity Fav(t) as functions of rescaled time γ0t
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Fig. 1 The average fidelity Fav(t) of teleportation as functions of rescaled time γ0t and initial entangle-
ment degree of the quantum channel in terms of α2 for the Markovian reservoirs with λ = 10γ0. The plot
range of Fav(t) is from 2/3 to 1

(a)

(b)

Fig. 2 The average fidelity Fav(t) of the teleportation (a) and concurrence of the quantum channel (b) as
a function of rescaled time γ0t for α2 = 1/2 (solid line), 1/3 (dashed line) and 1/10 (dotted line) for the
Markovian reservoirs with λ = 10γ0. The red line represents the classical fidelity 2/3

and the parameter α2 for the non-Markovian regime with λ = 0.01γ0. The range of the
average fidelity is still plotted from 2/3 to 1. From the figure, one can see the damped
oscillations of the fidelity in the whole range of α2, which implies the revivals of the
fidelity after dropping to the value 2/3. In particular, we note that when α2 < 1/2 the
fidelity can recover again even after disappearing for a finite interval of time. Here,
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Fig. 3 The average fidelity Fav(t) of the teleportation as functions of rescaled time γ0t and initial entan-
glement degree of the quantum channel in terms of α2 for the non-Markovian reservoirs with λ = 0.01γ0.
The plot range of Fav(t) is from 2/3 to 1

the revival of the average fidelity should also be attributed to the recovery of entangle-
ment of the quantum channel. To make a comparison, we plot in Fig. 4 the dynamics of
the average fidelity Fav(t) and the concurrence CAB(t) of the quantum channel for the
non-Markovian reservoirs with λ = 0.01γ0. From the figure, we can observe that the
time variations of the fidelity are in step with that of the concurrence of the quantum

(a)

(b)

Fig. 4 The average fidelity Fav(t) of the teleportation (a) and concurrence CAB (t) of the quantum channel
(b) as a function of rescaled time γ0t for α2 = 1/2 (dashed line), 1/3 (solid line) and 1/5 (dotted line) for
the non-Markovian reservoirs with λ = 0.01γ0. The red line represents the classical fidelity 2/3
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channel. The same as shown in Markovian regime, the moments at which the average
fidelity drops to 2/3 precisely correspond to the vanishing moments of the concurrence
of the quantum channel. Moreover, an exactly corresponding relation exists between
the revival of the average fidelity from 2/3 and the recovery of entanglement form
zero. In other words, during the intervals of null entanglement the average fidelity can
not exceed the classical value 2/3.

Since the sudden loss of quantum advantage of the teleportation is related to ESD
of the used channel, one should try to avoid the occurrence of ESD in practical imple-
mentation of quantum teleportation. Fortunately, a lot of efficient strategies [38–41]
that can protect entanglement from sudden death have been proposed. Besides, one can
also choose to utilize the channel state that does not suffer from ESD. In comparison
to the channel state (7) considered in this paper, the state in the form |�〉 ∼ |01〉+|10〉
does not experience ESD in the vacuum reservoir [42] and thus may be more applicable
in quantum teleportation.

4 Conclusion

In conclusion, we have studied quantum teleportation of a single-qubit state for the
situation in which both qubits of the entangled channel are subjected to local structured
reservoirs. It is shown the average fidelity of quantum teleportation can abruptly drop
to the classical value 2/3 implying the teleportation loses its quantum advantage in a
finite time. An explicit link is constructed between the sudden variation of the fidelity
and ESD of the used quantum channel. It is shown the time at which the fidelity drops
to 2/3 precisely corresponds to the moment of the occurrence of ESD of the quantum
channel. The fact shows a detrimental effect of ESD on quantum teleportation. We
have also demonstrated the memory effect of non-Markovian reservoir on the revival
of the fidelity after it has dropped to 2/3. Our study suggests that one should take into
account the influence of ESD of the quantum channel and try to avoid it in practical
implementation of quantum teleportation.
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