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Abstract Quantum entanglement plays an essential role in the field of quantum
information and quantum computation. In quantum network, a general assumption
for many quantum tasks is that the quantum entanglement has been prior shared
among participants. Actually, the distribution of entanglement becomes complex in
the network environment. We present a theoretical quantum network model with good
scalability. Then, three efficient and perfect schemes for the entanglement channel
construction are proposed. Some general results for d-level system are also given.
Any two communication sites can construct an entanglement channel via Bell states
with the assistance of the intermediate sites on their quantum chain. By using the
established entanglement channel, n sites can efficiently and perfectly construct an
entanglement channel via an n-qudit cat state. More importantly, an entanglement
channel via an arbitrary n-qudit state can also be constructed among any n sites, or
even among any t sites where 1 ≤ t ≤ n. The constructed multiparticle entanglement
channels have many useful applications in quantum network environment.
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1 Introduction

Based on the basic principles of quantum mechanics, great progresses have been made
in information science in the past few decades. For example, the quantum key dis-
tribution (QKD) protocols [1–3] can establish an unconditionally secure shared key
between two parties; quantum algorithms can solve certain problems much faster
than any best-known classical algorithms, such as Shor’s algorithm for factoring large
integers [4] and Grover’s algorithm for accelerating data searches [5].

For large scale quantum information processing and quantum computation, it is
necessary to consider the network environment. Generally, a quantum network con-
tains quantum nodes and quantum channels. A node represents a quantum system
that can store or process quantum information in the network and spatially separated
nodes are connected by quantum channels which can transmit quantum states. A typi-
cal implementation of quantum channel is fiber optic. For long distance quantum states
transmission, quantum repeaters [6–8] are proposed to resolve the problem of fiber
attenuation. There are also entanglement channel used for quantum tasks in quantum
network. Entanglement channel is entangled states that each node holds part of the
particles in order to complete the tasks and it is also our subject in this paper. Quan-
tum network has attracted wide attention in recent years and many quantum network
models have been proposed [9–13].

Quantum network is originated from the QKD network which deals with distribution
of the secret keys in network environment. The DARPA quantum network [14,15] is the
world’s first quantum encrypted functional network that has been running since 2004.
In Europe, the SECOQC QKD network [16,17] has been put into operation in 2008,
which aims at developing a global network for unconditionally secure key distribution.
In 2010, the Tokyo QKD Network was reported [18]. Some researchers are concen-
trating on interconnection of quantum computers and come to the concept of quantum
internet. A complete architecture of quantum internet was reported in Ref. [19]. Lloyd
et al. [20] proposed a robust scheme for constructing a quantum internet which allowed
the reliable transmission of quantum information between spatially separated quan-
tum computers. Kimble [21] pointed out that the quantum network could be fulfilled
by optical interactions of single photons and atoms, thereby achieved entanglement
distribution and quantum teleportation between nodes. Metwally [13] proposed a the-
oretical scheme to generate entanglement network via Dzyaloshinskii-Moriya (DM)
interaction. The entanglements between qubits dynamically change via DM interac-
tion and it is possible to generate entangled channel between two different nodes.

Entanglement is a central notion in quantum information science [22]. However, in
the previous proposals [23–33] using the entanglement channel, it is assumed that the
entanglement has been prior shared among the participants. The problem of how the
entanglement is distributed has been neglected. An intuitional solution to this problem
is that one party prepares the entanglement states and then sends them to the others.
However, it should be noticed that a series of relay transmission is needed in network
environment; thus, the distribution of the entangled particles among the participants
becomes inefficient and unreliable. In quantum network, it is necessary to consider the
transmission of quantum states in an efficient and reliable way. In this paper, we present
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Efficient entanglement channel construction schemes 1717

a theoretical quantum network model in d-level system using quantum entanglement.
Accordingly, three entanglement channels are constructed.

By utilizing the rules of entanglement swapping (ES) of generalized Bell states,
we first show a scheme of how to construct a generalized entanglement channel via
Bell states between any two sites. The established Bell state can also be used for two
party quantum communication schemes like quantum cryptography [23], quantum
dense coding [24] or quantum teleportation [25,26], etc. Cat states are commonly
used as multiparticle entanglements in multiparty quantum information processing
and quantum computation [27–30,32]. The construction of an entanglement chan-
nel via an n-qudit cat state among any n spatially separated sites is proposed. And
the scheme is further extended to construct an entanglement channel via an arbitrary
n-qudit state. Unlike the relay transmission of particles from the start site to the end
site where a series of sending and receiving processes are involved, the scheme pro-
vides an efficient and perfect way of entanglement channel construction. Based on the
established multiparticle entanglement, multiparty quantum information processing
and multiparty quantum computation, such as quantum secret sharing [27], reduction
of classical communication complexity [28], secure multiparty quantum computation
[29], controlled teleportation [30,31] and joint remote state preparation [32,33], etc.,
can be implemented in our network model.

The rest of this paper is outlined as follows. In Sect. 2, some basic concepts for
d-level system are given. In Sect. 3, we present the quantum network model. Then
the entanglement channel constructing scheme between any two sites is introduced in
Sect. 4. An efficient construction scheme of entanglement channel via an n-qudit cat
state among any n sites is shown in Sect. 5. In Sect. 6, we first show some basic rules
of distribute an arbitrary qudit state by Bell state entanglement channel. Then a more
general construction scheme of entanglement channel via an arbitrary n-qudit state
among any n sites is proposed. We discuss and conclude the paper in Sect. 7.

2 Preliminaries

2.1 Generalized d-level states

The generalized two-qudit Bell state in d-level system is

|φ (u1, u2)〉 = 1√
d

d−1∑

j=0

ω ju1 | j, j + u2〉, (1)

where ω = e2π i/d and u1, u2 ∈ {0, 1, . . . , d −1}. For simplicity, we use the notation
(u1, u2) in Zd to represent |φ(u1, u2)〉 in the following context. The computational
basis can also be expanded in terms of Bell states

|u1, u2〉 = 1√
d

d−1∑

j=0

ω− ju1 |φ( j, u2 − u1)〉. (2)
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The symbol “+” and “−” mean the adder and the subtractor modulo d, respectively.
For an n-qudit cat state in d-level system, the cat state and its inverse form can be

written as

|φ(u1, u2, . . . , ut , . . . , un)〉 = 1√
d

d−1∑

j=0

ω ju1 | j, j + u2, . . . , j + ut , . . . , j + un〉,

(3)

|u1, u2, . . . , ut , . . ., un〉= 1√
d

d−1∑

j=0

ω− ju1 |φ( j, u2−u1, . . ., ut − u1, . . ., un − u1)〉,

(4)

where ut ∈ {0, 1, . . . , d − 1} with t ∈ {1, 2, . . . , n}. There are a set of dn maximally
entangled cat states in Hilbert space H

dn
which form a complete orthonormal basis.

In the d-level system, the generalized Pauli operators Xd and Zd are defined as [34]

(Zd)b(Xd)a; a, b ∈ {0, 1, . . . , d − 1}, (5)

where Xd | j〉 = | j + 1〉 and Zd | j〉 = ω j | j〉.
A well-known set of quantum states are the four two-qubit Bell states in the two-

level system which can be written as

|φ (u1, u2)〉 = 1√
2

(|0, u2〉 + (−1)u1 |1, u2 ⊕ 1〉) ; u1, u2 ∈ {0, 1}, (6a)

with ⊕ means module 2 adder. Accordingly, the three-qubit GHZ states are

|φ(u1, u2, u3)〉 = 1√
2

(|0, u2, u3〉 + (−1)u1 |1, u2 ⊕ 1, u3 ⊕ 1〉) ;
u1, u2, u3 ∈ {0, 1}. (6b)

2.2 Rules of entanglement swapping

Entanglement swapping deals with the basis transformation of two cat states between
the cat states basis and the computational basis, where the states are expanded in the
computational basis, then a subset of particles are swapped and the resulting states are
reexpanded in the cat states. Here, we revise the equation of ES of two generalized
Bell states in Ref. [35] to

∣∣φ(v, v′)
〉
12

∣∣φ(u, u′)
〉
34 = 1

d

d−1∑

k,l

ωkl
∣∣φ(v + k, u′ + l)

〉
14

∣∣φ(u − k, v′ − l)
〉
32, (7)

where the initial state of particles (1, 2) and (3, 4) are (v, v′) and (u, u′). For the ES
of a generalized Bell state and a generalized cat state, there is
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|φ (v1, v2, . . . , vt , . . . , vn)〉12...t ...n

∣∣φ(u, u′)
〉
ss′

= 1

d

d−1∑

k,l

ωkl
∣∣φ

(
v1 + k, v2, . . . , u′ + l, . . . , vn

)〉
12...s′...n |φ(u − k, vt − l)〉st ,

(8)

where 1 < t ≤ n. The detailed deducing can be found in “Appendix 1”. It is clearly
that Eq. (7) can be viewed as a specific case of Eq. (8). Notice that the ES is achieved
by using only the Bell basis measurement.

3 Quantum network model

In our quantum network model, each node is a part of the quantum system and rep-
resents a communication site in the network. Every two adjacent sites in the quantum
network share a set of Bell states as the entanglement channel connecting them. The
Bell state can be either in a maximally entangled or in a partially entangled state,
which will be discussed later. The network model can be viewed as an undirected
graph, and there exists at least one path between any two vertices, that is to say, the
graph is connected according to graph theory. We call a path between two sites as a
quantum chain with the chain length L .

A specific case of the network model is shown in Fig. 1, where the quantum network
contains two subnets, i.e., subnet-1 and subnet-2. Node A in subnet-1 and node B in
Subnet-2 act as gateways that interconnect the two subnets. Apparently, the quantum
network is connected. One path from site 1 to site 3 is (1 → 2 → A → B → 3)

which is represented by the bold line.
The presented quantum network model has good scalability since new node or new

subnet can be added to the network easily by connecting it to a node of an existed
network. The network model can be used to build up a large scale quantum network
since it can be extended to any scale or any structure theoretically.

In order to communicate with each other in the model, entanglement channel should
be constructed among communication sites. The constructions of three types of entan-
glement channel are presented in our model: the two-qudit Bell state, the n-qudit cat

1

32 A B

Subnet-1 Subnet-2

Fig. 1 A quantum network model with two subsystems. Site is represented by a circle. Adjacent sites in
network are linked by a set of Bell states which is represented by lines
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state and an arbitrary n-qudit state. The entanglement channel between any two sites
in the network model can be constructed with the Bell states. Two new schemes of
constructing a multiparticle entanglement channel among multiparty sites are intro-
duced.

4 Entanglement channel construction between two sites via Bell states

An entanglement channel between any two sites can be constructed by using ES
successively in quantum chain with the assistance of the intermediate sites if they
do not have direct connection beforehand. Here, we will give some general results
of constructing an entanglement channel in d-level system via generalized Bell
states.

4.1 Ideal situation

For each two adjacent sites in the network, suppose they share a series of maxi-
mally entangled Bell states. Figure 2 shows that the chain length between two sites is
L = 2. Each site is represented by a big circle. The qudit is represented by a dot and
entanglement qudits are connected by solid lines. The first qudit of a cat state is repre-
sented by black solid dot while the others by hollow dot. The rectangle represents the
Bell basis measurements. The initial states of particles are (u1, u′

1)12 and (u2, u′
2)34,

respectively.
According to the rules of ES of d-level Bell states, the entangled states shared

among those three sites can be written as
∣∣φ

(
u1, u′

1

)〉
12

∣∣φ
(
u2, u′

2

)〉
34

= 1

d

d−1∑

k1,l1

ωk1l1
∣∣φ

(
u1 + k1, u′

2 + l1
)〉

14

∣∣φ
(
u2 − k1, u′

1 − l1
)〉

32 . (9)

If the intermediate site performs a projective measurement on his/her two particles
in Bell basis, the state of particles (1, 4) will collapse into one of the d2 Bell states
with equal probability. We denote the measurement result of particles (i, j) by Mi j ,
the remaining state of particles (i, j) by Si j , where Mi j , Si j ∈ {0, 1, . . . , d − 1}2.
Let the measurement outcomes on the qudits (3, 2) be represented by M32 =(u2−k1,

u′
1 − l1) = (m1, m′

1), then the remaining state of particles (1, 4) will collapse into
S14 = (u1 + k1, u′

2 + l1) = (u1 + u2 − m1, u′
2 + u′

1 − m′
1). Thus, if one gets

M32 on qudits (3, 2) labeled by (m1, m′
1), one also gets the initial states of (1, 2) and

(3, 4), then S14 will be deduced simply.

Fig. 2 Quantum chain with
length L = 2 1 2 3 4(u1, u 1) (u2, u 2)
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1 2 3 4 5 6(u1, u 1) (u3, u 3)(u2, u 2)

Fig. 3 Quantum chain with length L = 3 where four sites are involved

Suppose L = 3 shown in Fig. 3. If every intermediate site of the chain mea-
sures two particles in his/her possession in Bell basis orderly, the state of particles
(1, 6) will still be one of the d2 Bell states. By reusing the result of case L = 2,
one can get

∣∣φ(u1 + u2 − m1, u′
2 + u′

1 − m′
1)

〉
14

∣∣φ(u3, u′
3)

〉
56

= 1

d

d−1∑

k2,l2

ωk2l2
∣∣φ(u1 + u2 − m1 + k2, u′

3 + l2)
〉
16

⊗ ∣∣φ
(
u3 − k2, u′

2 + u′
1 − m′

1 − l2
)〉

54 . (10)

If M54 is set as M54 = (
u3 − k2, u′

2 + u′
1 − m1 − l2

) = (
m2, m′

2

)
, then S16 will be

S16 = (
u1 + u2 − m1 + k2, u′

3 + l2
)

= (
u1 + u2 + u3 − m1 − m2, u′

3 + u′
2 + u′

1 − m′
1 − m′

2

)
.

There will be d2 × d2 different measurement results in the intermediate sites.
An entanglement channel between two remote sites will be established by perform-

ing the above ES operations successively. For n Bell states (n + 1 sites, 2n particles)
that form a quantum chain with length n, if each n − 1 intermediate site measures two
particles in his/her possession in Bell basis, there will be d2(n−1) different measure-
ment results. And the state of particles (1, 2n) will collapse into one of the d2 Bell
states and satisfy

S1,2n =
(

n∑

t=1

ut −
n−1∑

t=1

mt ,

n∑

t=1

u′
t −

n−1∑

t=1

m′
t

)
, (11)

where (ut , u′
t ) is the initial state of qudits (2t − 1, 2t) in the chain and (mt , m′

t ) is the
measurement results of (2t + 1, 2t) in the intermediate site. Here, we give a simple
proof of Eq. (11) by induction.

Proof Initial step: Equation (11) is correct for n = 2 and L = 2 because of S14 =(
u1 + u2 − m1, u′

2 + u′
1 − m′

1

)
.

Inductive step: Assume that Eq. (11) is true for n = x (x Bell states among x + 1
sites form a quantum chain with length L = x); that is, if we measure particles (3, 2),
(5, 4), …, (2x − 1, 2x − 2) in Bell basis with results M32, M54 . . . M2x−1,2x−2, then
S1,2x will be one of the Bell states and matches:
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2x+12x

(u1, u 1) (ux+1, u x+1)1 2 3 2x+22x+12x
…

(y, y )1 2x+2(ux+1, u x+1)

Fig. 4 Quantum chain with length L = x + 1 where x + 2 sites are involved

S1,2x =
(

x∑

t=1

ut −
x−1∑

t=1

mt ,

x∑

t=1

u′
t −

x−1∑

t=1

m′
t

)
.

The quantum chain with n = x + 1 is shown in Fig. 4.
If one performs ES orderly in first x − 1 intermediate site, particles (1, 2x) will

collapse into an entangled Bell state. Let S1,2x = (y, y′), then the state of quantum
chain can be written as

∣∣φ(y, y′)
〉
1,2x

∣∣φ
(
ux+1, u′

x+1

)〉
2x+1,2x+2

= 1

d

d−1∑

kx ,lx

ωkx lx
∣∣φ

(
y + kx , u′

x+1 + lx
)〉

1,2x+2

∣∣φ
(
ux+1 − kx , y′ − lx

)〉
2x+1,2x

(12)

Again, if one performs a Bell basis measurement on (2x + 1, 2x) and get outcomes
M2x+1,2x = (ux+1 − kx , y′ − lx ) = (mx , m′

x ), then the state of (1, 2x + 2) will be

S1,2x+2 = (
y + kx , u′

x+1 + lx
) = (

y + ux+1 − mx , u′
x+1 + y′ − m′

x

)

=
(

x∑

t=1

ut −
x−1∑

t=1

mt + ux+1 − mx ,

x∑

t=1

u′
t −

x−1∑

t=1

m′
t + u′

x+1 − m′
x

)
,

=
(

x+1∑

t=1

ut −
x∑

t=1

mt ,

x+1∑

t=1

u′
t −

x∑

t=1

m′
t

)
(13)

which means the Eq. (11) is true for n = x + 1. This completes the inductive step. 
�
For the two-level system, Eq. (11) can be rewritten as

S1,2n =
((

n⊕
t=1

ut

)
⊕

(
n−1⊕
t=1

mt

)
,

(
n⊕

t=1
u′

t

)
⊕

(
n−1⊕
t=1

m′
t

))
. (14)

An entanglement channel via Bell states between two communication sites is estab-
lished with the above process and each site will hold half of the entangled particles.
For the chain with length L and each pair of adjacent sites share q Bell states, the
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resources needed to construct q entanglement channels between two remote sites are
qL pairs of Bell states, 2q(L −1) labels information in Zd (one label means one cbit in
the two-level system) for measurement outcomes and 2qL labels for quantum chain’s
initial state which is unnecessary if the initial states are all in (0, 0).

This scheme is also the basis for achieving the other two schemes. To check the
perfect connection of the established entanglement channel, the two sites can verify
the validity of the Bell state by performing measurement with random Z basis and X
basis.

4.2 Practical situation

In a practical situation, the imperfect Bell state entanglement, the error introduced
by local unitary operation and measurement will necessarily affect the fidelity of the
constructed entanglement. Due to decoherence or noise, the bipartite entanglement
ρi j shared between neighboring sites becomes a noisy mixed state

ρi j = λ |φ(i, j)〉 〈φ(i, j)| + 1 − λ

d2 I. (15)

where 0 ≤ λ ≤ 1 is the reliability of entanglement between adjacent nodes. The
fidelity of the bipartite entanglement is

F0 = 〈φ(i, j)| ρi j |φ(i, j)〉 = λ + 1 − λ

d2 ≤ 1. (16)

Here, error model of one and two qubit operations are described by [6]

UρU † = p1UρU † + 1 − p1

2
tr1(ρ) ⊗ I1, (17a)

UρU † = p2UρU † + 1 − p2

4
tr12(ρ) ⊗ I12. (17b)

And single qubit measurement are represented as

P0 = δ |0〉 〈0| + (1 − δ) |1〉 〈1| , (18a)

P1 = (1 − δ) |0〉 〈0| + δ |1〉 〈1| , (18b)

where p1, p2 and δ are the reliabilities of the local operations and measurements. It is
well-known that the Bell basis measurement can be represented by a CNOT operation
and two single qubit measurements. In a quantum chain with length L , the fidelity of
the entanglement generated between the start site and the end one after performing
the ES in intermediate sites becomes

F1 = 1

4
+ 3λL

4

(
p2

1 p2(4δ2 − 1)

3

)L−1

. (19)
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Entanglement purification [36] should be performed to increase the fidelity of the
entanglement. The fidelity of bipartite entanglement at the end of the purification
procedure can be written as

F2 = f (m, L , λ, p1, p2, δ), (20)

where m is the number of purification steps.
In this case, the resources needed to construct a reliable Bell state entanglement

channel between two remote sites are m times as much as the ideal situation. If the
chain length L is too long to cause F1 less than the minimum value required for
purification, we can divide the quantum chain into several segments and perform ES
and purification in each segment respectively. After that, the same procedures can be
performed among those segments to construct the entanglement between two sites.

5 Entanglement channel construction among n sites via an n-qudit cat state

Multiparticle entanglements, for example, n-qudit cat states, are crucial quantum
resources for quantum network communications. A basic issue in network model
is how to construct a multiparticle entanglement channel among n spatially separated
sites. An intuitional solution is that one of the sites, i.e., the primary site, prepares
the n-qudit state initially; then he/she keeps one qudit in his/her possession and sends
the others qudits to each other site, namely the secondary site. Each site will hold
one qudit in the end of the process. However, it should be noticed that if the primary
site and the secondary one don’t have direct connection beforehand, a series of qudit
transmission in the intermediate sites is needed.

5.1 Entanglement channel construction among n sites via an n-qudit cat state

Cat states are important kind of multiparticle entanglements with wide applications
[27–30,32]. Suppose the primary site A wants to construct an n-qudit cat state entan-
glement channel with other n − 1 secondary sites Bt where t ∈ {1, 2, . . . , n − 1}.
Initially, the primary site prepares a cat state labeled by (v1, v2, . . ., vn)12...n ; while
the primary site also constructs a Bell state entanglement channel (ut , u′

t )st s′
t

with each
secondary site Bt by using the scheme shown in Sect. 4. Here, st is A’s qudit and s′

t
is Bt ’s qudit, while (ut , u′

t ) are two labels in Zd (see Fig. 5). Each site will hold one
particle of the cat state after the construction.

If the primary site performs Bell basis measurement sequentially, the cat state will
be distributed among other n − 1 sites. The following are details of the process.

Step 1: The primary site performs a Bell basis measurement on (s1, 2) which satisfy

|φ(v1, v2, v3, . . . , vn)〉12...n

∣∣φ(u1, u′
1)

〉
s1s′

1

= 1

d

d−1∑

k1,l1

ωk1l1
∣∣φ(v1 + k1, u′

1 + l1, v3, . . . , vn)
〉
1s′

13...n |φ(u1 − k1, v2 − l1)〉s12.

(21)
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(u 1,
u 1)

s1

n-1

3
(u2, u 2)

s 1

sn-2

s n-2

(un-1, u n-1)

sn-1s n-1

(u
t , u

t )

s t

s 2s2

st

(v1, v2,…,vt+1 ,…, vn)

21

n

Bn-1

Bn-2 Bt

B2

B1

A

t+1

(un-2
, u n-2

)

Fig. 5 Entanglement channel construction via an n-qudit cat state among n sites in the network. The cat
state (1, 2, 3, . . ., n) is prepared by the primary site and marked by labels (v1, v2, . . ., vn). Between the
primary site A and the t-th secondary site Bt , they have established a entanglement channel (st , s′

t ) whose
initial state is marked by (ut , u′

t ) with t from 1 to n − 1

Let Ms12 = (u1 − k1, v2 − l1) = (m1, m′
1), then the state of (1, s′

1, 3, . . . , n)
becomes

S1s′
13...n = (v1 + k1, u′

1 + l1, v3, . . ., vn)

= (v1 + u1 − m1, u′
1 + v2 − m′

1, v3, . . ., vn)

= (x (1)
1 , x2, v3, . . ., vn).

Step 2: The primary site performs a Bell basis measurement on (s2, 3) where

∣∣∣φ(x (1)
1 , x2, v3, . . . , vn)

〉

1s′
13...n

∣∣φ(u2, u′
2)

〉
s2s′

2

= 1

d

d−1∑

k2,l2

ωk2l2
∣∣∣φ(x (1)

1 + k2, x2, u′
2 + l2, . . . , vn)

〉

1s′
1s′

2...n
|φ(u2 − k2, v3 − l2)〉s23

(22)

Let Ms23 = (u2 − k2, v3 − l2) = (m2, m′
2), then the state of (1, s′

1, s′
2, . . . , n)

becomes

S1s′
1s′

2...n
= (x (1)

1 + k2, x2, u′
2 + l2, . . . , vn)

= (x (1)
1 + u2 − m2, x2, u′

2 + v3 − m′
2, . . . , vn)

= (x (2)
1 , x2, x3, . . . , vn).
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Step t: The primary site performs a Bell basis measurement on (st , t + 1), then

∣∣∣φ(x (t−1)
1 , x2, . . . , xt , vt+1 , . . . , vn)

〉

1s′
1...s

′
t−1,t+1...n

∣∣φ(ut , u′
t )

〉
st s′

t

= 1

d

d−1∑

kt ,lt

ωkt lt
∣∣∣φ(x (t−1)

1 + kt , x2, . . . , xt , u′
t + lt , . . . , vn)

〉

1s′
1...s

′
t−1s′

t ...n

⊗ |φ(ut − kt , vt+1 − lt )〉st ,t+1. (23)

Let Mst ,t+1 = (ut −kt , vt+1 −lt ) = (mt , m′
t ), then the state of (1, s′

1, . . . , s′
t−1, s′

t ,

. . . , n) becomes

S1s′
1...s

′
t−1s′

t ...n
= (x (t−1)

1 + kt , x2, . . ., xt , u′
t + lt , . . . , vn)

= (x (t−1)
1 + ut − mt , x2, . . ., xt , u′

t + vt+1 − m′
t , . . . , vn)

= (x (t)
1 , x2, . . . , xt , xt+1, . . . , vn).

Step n−1(the last step): The primary site performs a Bell basis measurement on
(sn−1, n) and gets
∣∣∣φ(x (n−2)

1 , x2, . . . , xn−1, vn)
〉

1s′
1...s

′
n−2n

∣∣φ(un−1, u′
n−1)

〉
sn−1s′

n−1

= 1

d

d−1∑

kn−1,ln−1

ωkn−1ln−1

∣∣∣φ(x (n−2)
1 + kn−1, x2,…, xn−1, u′

n−1 + ln−1)
〉

1s′
1...s

′
n−2s′

n−1

⊗ |φ(un−1 − kn−1, vn − ln−1)〉sn−1n . (24)

Let Msn−1,n = (un−1 − kn−1, vn − ln−1) = (mn−1, m′
n−1), then the state of

(1, s′
1, . . . , s′

n−2, s′
n−1) becomes

S1s′
1...s

′
n−2s′

n−1
= (x (n−2)

1 + kn−1, x2, . . . , xn−1, u′
n−1 + ln−1)

= (x (n−2)
1 + un−1 − mn−1, x2, . . . , xn−1, u′

n−1 + vn − m′
n−1)

= (x (n−1)
1 , x2, . . . , xn−1, xn).

Here, we conclude that the state of the distributed cat state becomes

S1s′
1s′

2...s
′
n−1

=
(

v1 +
n−1∑

t=1

ut −
n−1∑

t=1

mt , v2 + u′
1 − m′

1, v3

+ u′
2 − m′

2, . . . , vn + u′
n−1 − m′

n−1

)
, (25)

where (v1, v2, . . . , vn)12...n is the initial state of the cat state, (ut , u′
t )si s′

i
is the ini-

tial states of the entanglement channel, (mt , m′
t )st ,t+1 is the measurement outcome of
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Fig. 6 The established n-qudit
entanglement channel among n
sites where each site holds one
qudit. The entangled cat state is
labeled by S1s′

1s′
2...s′

n−1

s 1

s n-1

s t

s 2

Bn-1

Bn-2 Bt

B2

B1A 1

s n-2

1 2 11 ' ' ... 'ns s sS

qudits with t from 1 to n −1. And the recursion equation of intermediate variable after
step t satisfies

x (t)
1 = x (t−1)

1 + ut − mt = v1 +
t∑

i=1

ui −
t∑

i=1

mi ,

xi+1 = vi+1 + u′
i − m′

i , i ∈ {1, 2, . . . , t}. (26)

After the above n − 1 steps, an entanglement channel via an n-qudit cat state is
established among n spatially separated sites where each site holds one particle and
the cat state is labeled by S1s′

1s′
2...s

′
n−1

(Fig. 6). The primary site can calculate the col-
lapsed state according to Eq. (25). The cat state entanglement channel can also be
transformed into other maximally entangled cat states by performing local operators.

5.2 Example of entanglement channel construction via a three-qubit GHZ state

The three-qubit GHZ state can be used for quantum secret sharing (QSS) [27].
To construct this kind of channel, Alice (in subnet A) prepares the GHZ state and
intends to send the two qubits 2, 3 to remote sites Bob (in subnet B) and Charlie (in
subnet C). Alice, Bob and Charlie will hold one qubit of the triplet for the QSS task
finally. In two-level system and for n = 3, Eq. (25) can be reduced to

S1s′
1s′

2
=

(
v1 ⊕

(
2⊕

t=1
ut

)
⊕

(
2⊕

t=1
mt

)
, v2 ⊕ u′

1 ⊕ m′
1, v3 ⊕ u′

2 ⊕ m′
2

)
. (27)

Alice needs to perform the Bell state construction scheme presented in Sect. 4 to
establish entanglement channels with two remote sites Bob and Charlie. Let the Bell
state established between Alice and Bob be (u1, u′

1)s1s′
1

= (1, 1), and between Alice
and Charlie be (u2, u′

2)s2s′
2

= (0, 1). Here, assume the GHZ state Alice prepared be
(v1, v2, v3)123 = (1, 0, 0). Then Eq. (27) can be rewritten as

S1s′
1s′

2
=

(
2⊕

t=1
mt , 1 ⊕ m′

1, 1 ⊕ m′
2

)
. (28a)
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In the following, Alice performs two Bell basis measurements to distribute the GHZ
state. The measurement results are Ms12 = (m1, m′

1) and Ms23 = (m2, m′
2). It

can be seen from Eq. (28a) that the remaining state will be S1s′
1s′

2
= (0, 0, 0) if

m1 = m2, m′
2 = 1 and m′

1 = 1; which means the desired entanglement channel
has been constructed among three participants for QSS task. For others measure-
ments, the local Pauli operator should be performed to convert the remaining state to
|φ(0, 0, 0)〉. The QSS task can be performed among subnets A, B and C by using the
constructed channel. These results can also be concluded if we rewrite the quantum
system as

|φ(1, 0, 0)〉123 |φ(1, 1)〉s1s′
1
|φ(0, 1)〉s2s′

2

= 1

4
(|φ(0, 0)〉 |φ(0, 0)〉 |φ(0, 1, 1)〉 + |φ(0, 0)〉 |φ(1, 0)〉 |φ(1, 1, 1)〉

+ |φ(1, 0)〉 |φ(0, 0)〉 |φ(1, 1, 1)〉 + |φ(1, 0)〉 |φ(1, 0)〉 |φ(0, 1, 1)〉
+ |φ(0, 0)〉 |φ(0, 1)〉 |φ(0, 1, 0)〉 − |φ(0, 0)〉 |φ(1, 1)〉 |φ(1, 1, 0)〉
+ |φ(1, 0)〉 |φ(0, 1)〉 |φ(1, 1, 0)〉 − |φ(1, 0)〉 |φ(1, 1)〉 |φ(0, 1, 0)〉
− |φ(0, 1)〉 |φ(0, 0)〉 |φ(0, 0, 1)〉 − |φ(0, 1)〉 |φ(1, 0)〉 |φ(1, 0, 1)〉
+ |φ(1, 1)〉 |φ(0, 0)〉 |φ(1, 0, 1)〉 + |φ(1, 1)〉 |φ(1, 0)〉 |φ(0, 0, 1)〉
− |φ(0, 1)〉 |φ(0, 1)〉 |φ(0, 0, 0)〉 + |φ(0, 1)〉 |φ(1, 1)〉 |φ(1, 0, 0)〉
+ |φ(1, 1)〉 |φ(0, 1)〉 |φ(1, 0, 0)〉 − |φ(1, 1)〉 |φ(1, 1)〉 |φ(0, 0, 0)〉)s12s2231s′

1s′
2
.

(28b)

It can be viewed that Eq. (28a) is equivalent to Eq. (28b) in a more concise and
compact form.

6 Entanglement channel construction among n sites via an arbitrary
n-qudit state

Besides the cat states, other types of useful entanglement resources, like the W states
[37,38], the cluster states [39,40] and the χ -type states [41,42], have been widely used
in multiparty quantum information processing and multiparty quantum computation.

Suppose a primary site wants to construct an arbitrary n-qudit state entanglement
among n sites in the network model where each site will hold one particle of the state
after the construction. Using the established Bell state between the primary site and
the secondary site, an arbitrary n-qudit state entanglement channel can be constructed
among n sites. The arbitrary n-qudit state has the following form

|γn〉12...n =
d−1∑

k1,k2,...,kn=0

αk1,k2,...,kn |k1, k2, . . . , kn〉12...n, (29)
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where αk1,k2,...,kn are complex coefficients and satisfy the normalized condition∑d−1
k1,k2,...,kn=0 |αk1,k2,...,kn |2 = 1, and the subscribes 1, 2, . . ., n denote the qudit of

the state.
Before discussing the details of the scheme, we give some basic rules of distribution

one qudit of the n-qudit state by a Bell state entanglement channel. For an arbitrary
n-qudit state and a Bell state, the following equation works (see “Appendix 2”)

|γn〉12...t ...n

∣∣φ(u, u′)
〉
ss′ = 1

d

d−1∑

k1,k2,...,kn , j, j ′
αk1,k2,...,kn ω

j (u− j ′) ∣∣φ( j ′, kt − j)
〉
st

⊗ ∣∣k1, k2, . . . , j + u′, . . . , kn
〉
12...s′...n . (30)

It is clearly that if we measure the qudits (s, t) in Bell basis and get the result (m, m′)st

which will happen with equal probability 1/d2 for each labelsm, m′ ∈ Zd , then the
remaining state will collapse into

st
〈
φ(m, m′)

∣∣
d−1∑

k1,k2,...,kn , j, j ′
αk1,k2,...,kn ω

j (u− j ′) ∣∣φ( j ′, kt − j)
〉
st

⊗ ∣∣k1, k2, . . . , j + u′, . . . , kn
〉
12...s′...n

=
d−1∑

k1,k2,...,kn , j, j ′
αk1,k2,...,kn ω

j (u− j ′)δ(m, j ′)δ(m′, kt − j)

· ∣∣k1, k2, . . . , j + u′, . . . , kn
〉
12...s′...n

=
d−1∑

k1,k2,...,kn

αk1,k2,...,kn ω
(kt −m′)(u−m)

∣∣k1, k2, . . . , kt − m′ + u′, . . . , kn
〉
12...s′...n

(31)

The qudit state can be recovered by performing an appropriate operator based on the
measurement outcome. It means one of the qudit in the n-qudit state is distributed
faithfully from the primary site in position t to the remote site in position s′.

6.1 Entanglement channel construction among n sites via an arbitrary
n-qudit state

Initially, the primary site prepares the arbitrary n-qudit state |γn〉12...n and also con-
structs a channel with each secondary site via Bell states. The established Bell state
entanglement channel between the primary site and the t-th secondary site is marked
by (ut , u′

t )st ,s′
t

with 1 ≤ t ≤ n − 1 (see Fig. 5). Based on Eq. (31), the primary site
needs to perform one-qudit state distribution successively to construct the entangle-
ment channel via an n-qudit state.
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Step 1: Distribute the second qudit of the n-qudit state to the first secondary site.

|γn〉123...n
∣∣φ(u1, u′

1)
〉
s1,s′

1
= 1

d

d−1∑

k1,k2,...,kn , j1, j ′1

αk1,k2,...,kn ω j1(u1− j ′1)
∣∣φ( j ′1, k2 − j1)

〉
s12

⊗ ∣∣k1, j1 + u′
1, k3, . . . , kn

〉
1s′

13...n . (32)

Let the measurement outcomes be Ms12 = ( j ′1, k2 − j1) = (m1, m′
1), then the state

of (1, s′
1, 3, . . . , n) will collapse into

S1s′
13...n =

d−1∑

k1,k2,...,kn

α
(2)
k1,k2,...,kn

|k1, x1, k3, . . . , kn〉1s′
13...n =

∣∣∣γ (2)
n

〉

1s′
13...n

,

where α
(2)
k1,k2,...,kn

= αk1,k2,...,kn ω
(k2−m′

1)(u1−m1) and x1 = k2 − m′
1 + u′

1.

Step 2: Distribute the third qudit of the n-qudit state to the second secondary site.

∣∣∣γ (2)
n

〉

1s′
13...n

∣∣φ(u2, u′
2)

〉
s2,s′

2
= 1

d

d−1∑

k1,k2,...,kn , j2, j ′2

α
(2)
k1,k2,...,kn

ω j2(u2− j ′2)
∣∣φ( j ′2, k3− j2)

〉
s23

⊗ ∣∣k1, x1, j2 + u′
2, . . . , kn

〉
1s′

1s′
2...n

. (33)

Let Ms23 = ( j ′2, k3 − j2) = (m2, m′
2), then state of (1, s′

1, s′
2, . . . , n) will be

S1s′
1s′

2...n
=

d−1∑

k1,k2,...,kn

α
(3)
k1,k2,...,kn

|k1, x1, x2, . . . , kn〉1s′
1s′

2...n
=

∣∣∣γ (3)
n

〉

1s′
1s′

2...n
,

where α
(3)
k1,k2,...,kn

= αk1,k2,...,kn ω
∑2

i=1 (ki+1−m′
i )(ui −mi ) and x2 = k3 − m′

2 + u′
2.

Step t: Distribute the (t + 1)-th qudit of the n-qudit state to the t-th secondary site
where 1 ≤ t ≤ n − 1. After the priori t − 1 step, the n-qudit will become

∣∣∣γ (t)
n

〉

1s′
1...s

′
t−1,t+1,t+2...n

=
d−1∑

k1,k2,...,kn

α
(t)
k1,k2,...,kn

· |k1, x1, . . . , xt−1, kt+1, kt+2, . . . , kn〉1s′
1...s

′
t−1,t+1,t+2...n . (34)
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So one obtains

∣∣∣γ (t)
n

〉

1s′
1...s

′
t−1,t+1,t+2...n

∣∣φ(ut , u′
t )

〉
st ,s′

t
= 1

d

d−1∑

k1,k2,...,kn , jt , j ′t

α
(t)
k1,k2,...,kn

ω jt (ut − j ′t )

· ∣∣φ( j ′t , kt+1 − jt )
〉
st ,t+1

⊗ ∣∣k1, x1, . . . , xt−1, jt + u′
t , kt+2, . . . , kn

〉
1s′

1...s
′
t−1,s

′
t ,t+2...n . (35)

Let Mst t+1 = ( j ′t , kt+1 − jt ) = (mt , m′
t ), then the state of (1, s′

1 . . . s′
t−1, s′

t , t +
2 . . . n) will be

S1s′
1...s

′
t−1,s

′
t ,t+2...n =

d−1∑

k1,k2,...,kn

α
(t+1)
k1,k2,...,kn

· |k1, x1, . . . , xt−1, xt , kt+2, . . . , kn〉1s′
1...s

′
t−1,s

′
t ,t+2...n =

∣∣∣γ (t+1)
n

〉
,

where α
(t+1)
k1,k2,...,kn

= αk1,k2,...,kn ω
∑t

i=1 (ki+1−m′
i )(ui −mi )and xt = kt+1 − m′

t + u′
t .

Step n−1(the last step): Distribute the last qudit of the n-qudit state to the last
secondary site. The n-qudit after the priori n − 2 step is

∣∣∣γ (n−1)
n

〉

1s′
1s′

2...s
′
n−2n

=
d−1∑

k1,k2,...,kn

α
(n−1)
k1,k2,...,kn

|k1, x1, x2, . . . , xn−2, kn〉1s′
1s′

2...s
′
n−2n . (36)

So one gets

∣∣∣γ (n−1)
n

〉

1s′
1s′

2...s
′
n−2n

∣∣φ(un−1, u′
n−1)

〉
sn−1,s′

n−1

= 1

d

d−1∑

k1,k2,...,kn , jn−1, j ′n−1

α
(n−1)
k1,k2,...,kn

ω jn−1(un−1− j ′n−1)
∣∣φ( j ′n−1, kn − jn−1)

〉
sn−1n

⊗ ∣∣k1, x1, x2, . . . , xn−2, jn−1 + u′
n−1

〉
1s′

1s′
2...s

′
n−2s′

n−1
(37)

Let Msn−1n = ( j ′n−1, kn − jn−1) = (mn−1, m′
n−1). Here we get the conclusion that

the n-qudit state will collapse into

S1s′
1s′

2...s
′
n−2s′

n−1

=
d−1∑

k1,k2,...,kn

α
(n)
k1,k2,...,kn

|k1, x1, x2, . . . , xn−2, xn−1〉1s′
1s′

2...s
′
n−2s′

n−1
=

∣∣∣γ (n)
n

〉
, (38)
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where α
(n)
k1,k2,...,kn

= αk1,k2,...,kn ω
∑n−1

t=1 (kt+1−m′
t )(ut −mt ) and xt = kt+1 − m′

t + u′
t with

1 ≤ t ≤ n − 1. And the intermediate state after step t is

∣∣∣γ (t+1)
n

〉

1s′
1...s

′
t−1,s

′
t ,t+2...n

=
d−1∑

k1,k2,...,kn

α
(t+1)
k1,k2,...,kn

|k1, x1, . . . , xt−1, xt , kt+2, . . . , kn〉1s′
1...s

′
t−1,s

′
t ,t+2...n, (39)

where α
(t+1)
k1,k2,...,kn

= α
(t)
k1,k2,...,kn

ω(kt+1−m′
t )(ut −mt ) = αk1,k2,...,kn ω

∑t
i=1 (ki+1−m′

i )(ui −mi )

and xt = kt+1 − m′
t + u′

t with α
(1)
k1,k2,...,kn

= αk1,k2,...,kn and
∣∣∣γ (1)

n

〉
= |γn〉.

6.2 Recovery operators

The n-qudit state can also be recovered to its initial state if necessary. In this case,
the above scheme can be viewed as a distributed teleportation scheme for d-level
system. Each secondary site performs the recovery operator in reverse order, that is,
the last secondary site performs the recovery operator firstly, and so on. Then after
the last (n − t − 1) secondary sites perform their operator, the n-qudit state becomes∣∣∣γ (t+1)

n

〉

1s′
1...s

′
t ...s

′
n−1

. It is clearly seen that the t-th secondary site can recover the state

from
∣∣∣γ (t+1)

n

〉
to

∣∣∣γ (t)
n

〉
by performing an appropriate operator, in other words, it makes

the changes |xt 〉 → |kt+1〉 and α(t+1) → α(t) in position s′
t .

Recovery operator X
If the t-th secondary site performs Xm′

i −u′
i on his/her qudit, it will make the reverse

change |xt 〉 → |kt+1〉 since

Xm′
t −u′

t |xt 〉 = ∣∣xt + m′
t − u′

t

〉 = |kt+1〉 . (40)

Recovery operator Z
After performing the above X recovery operator, the t-th secondary site performs

ωpt Zrt to achieve the effect α(t+1) → α(t) on his/her qudit, then we have

ωpt Zrt
(
α

(t+1)
k1,k2,...,kn

|kt+1〉
)

= α
(t+1)
k1,k2,...,kn

ωpt
(
Zrt |kt+1〉

)

= α
(t)
k1,k2,...,kn

ω(kt+1−m′
t )(ut −mt )ωpt ωrt kt+1 |kt+1〉

= α
(t)
k1,k2,...,kn

(ωm′
t mt −m′

t ut ωpt )(ωkt+1(ut −mt )ωrt kt+1) |kt+1〉
= α

(t)
k1,k2,...,kn

|kt+1〉 , (41)

which means ωpt Zrt = ωm′
t ut −m′

t mt Zmt −ut .
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So, in the t-th secondary site, the recovery operator to be performed on qudits′
t

should be

Rt = ωm′
t ut −m′

t mt Zmt −ut Xm′
t −u′

t . (42)

The recovery process can be explained as follows,

I ⊗ · · · ⊗ Rt ⊗ · · · ⊗ I
(
|γ (t+1)

n 〉1s′
1...s

′
t−1,s

′
t ,s

′
t+1...s

′
n−1

)

=
d−1∑

k1,k1,...,kn

α
(t+1)
k1,k2,...,kn

|k1, x1, . . . , xt−1〉1s′
1...s

′
t−1

⊗ ωpt Zrt Xm′
t −u′

t |xt 〉s′
t
⊗ |kt+2, . . . , kn〉s′

t+1...s
′
n−1

=
d−1∑

k1,k1,...,kn

α
(t+1)
k1,k2,...,kn

|k1, x1, . . . , xt−1〉1s′
1...s

′
t−1

⊗ωpt Zrt |kt+1〉s′
t
⊗ |kt+2, . . . , kn〉s′

t+1...s
′
n−1

=
d−1∑

k1,k1,...,kn

α
(t)
k1,k2,...,kn

|k1, x1, . . . , xt−1, kt+1, kt+2, . . . , kn〉1s′
1...s

′
t−1,s

′
t ,s

′
t+1...s

′
n−1

=
∣∣∣γ (t)

n

〉

1s′
1...s

′
t−1,s

′
t ,s

′
t+1...s

′
n−1

.

From a global point of view, the entire recovery process can be written as

I ⊗ R1 ⊗ R2 ⊗ · · · ⊗ Rt ⊗ · · · ⊗ Rn−1

(∣∣∣γ (n)
n

〉

1s′
1s′

2...s
′
t ...s

′
n−1

)
= |γn〉1s′

1s′
2...s

′
t ...s

′
n−1

,

(43)

where Rt is the recovery operator of the t-th secondary site to be performed on qudit
s′

t with 1 ≤ t ≤ n − 1. It can be seen that the reverse order is unnecessary and the
recovery operator in each secondary site can be performed in other orders. When all
the recovery operations are done, the entire n-qudit has been distributed faithfully
among n sites where each site holds one qudit.

The arbitrary n-qudit state can also be distributed to a set of secondary sites less
than n − 1 where some secondary sites or the primary site holds more than one qudit.
In this case, an entanglement channel with n-qudit states can be constructed among t
sites with 1 ≤ t ≤ n.

6.3 Example of entanglement channel construction via a three-qubit W state

For the two-level system, after performing the distribution process the state among n
site becomes
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Fig. 7 An example of
entanglement channel
construction via a three-qubit W
state

21

3
(u2, u

2)
s 2

s2

(u1, u 1)
s 1

s1

3W

∣∣∣γ (n)
n

〉
=

1∑

k1,k1,...,kn=0

α
(n)
k1,k2,...,kn

|k1, x1, x2, . . . , xn−2, xn−1〉1s′
1s′

2...s
′
n−2s′

n−1
, (44)

where α(n)
k1,k2,...,kn = αk1,k2,...,kn (−1)⊕

n−1
t=1 (kt+1⊕m′

t )(ut ⊕mt ) and xt = kt+1 ⊕ m′
t ⊕ u′

t
with 1 ≤ t ≤ n − 1. And the related recovery operator is

Rt = (−1)m′
t (ut ⊕mt )Zmt ⊕ut Xm′

t ⊕u′
t . (45)

Here, an example of entanglement channel construction via a three-qubit W state
between the primary site and two secondary sites is shown in Fig. 7. The three-qubit
W state is

|W3〉 = α001 |001〉 + α010 |010〉 + α110 |100〉, (46)

with complex coefficients subject to |α001|2 + |α010|2+|α100|2 = 1. The entangle-
ment channel shared between the primary site and the secondary one is a Bell state
established by using the scheme related to Section 4.

The primary site measures particles (s1, 2) and (s2, 3) in Bell basis and gets result
(m1, m′

1) and (m2, m′
2), respectively. The remaining state can be written as

∣∣∣W (3)
3

〉

1s′
1s′

2

=
1∑

k1,k2,k3

α
(3)
k1,k2,k3

|k1, x1, x2〉

=
1∑

k1,k2,k3

αk1,k2,k3(−1)⊕2
t=1(kt+1⊕m′

t )(ut ⊕mt )

· ∣∣k1, k2 ⊕ m′
1 ⊕ u′

1, k3 ⊕ m′
2 ⊕ u′

2

〉

= α001(−1)((m
′
1)(u1⊕m1))⊕((1⊕m′

2)(u2⊕m2))
∣∣0, m′

1 ⊕ u′
1, 1 ⊕ m′

2 ⊕ u′
2

〉

+α010(−1)((1⊕m′
1)(u1⊕m1))⊕((m′

2)(u2⊕m2))
∣∣0, 1 ⊕ m′

1 ⊕ u′
1, m′

2 ⊕ u′
2

〉

+α100(−1)((m
′
1)(u1⊕m1))⊕((m′

2)(u2⊕m2))
∣∣1, m′

1 ⊕ u′
1, m′

2 ⊕ u′
2

〉
. (47)
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Let the states be (u1, u′
1)s1s′

1
= (1, 1) and (u2, u′

2)s2s′
2

= (0, 0), then

∣∣∣W (3)
3

〉

1s′
1s′

2

= α001(−1)((m
′
1)(1⊕m1))⊕((1⊕m′

2)(m2))
∣∣0, m′

1 ⊕ 1, 1 ⊕ m′
2

〉

+α010(−1)((1⊕m′
1)(1⊕m1))⊕(m′

2m2)
∣∣0, m′

1, m′
2

〉

+α100(−1)((m
′
1)(1⊕m1))⊕(m′

2m2)
∣∣1, m′

1 ⊕ 1, m′
2

〉
(48a)

Here, a new W state entanglement channel is generated among three parties for
quantum information tasks, such as joint remote preparation proposed in Ref. [33]. If
the task requires the W state to be exact the same state as Alice prepared, a specific
recovery operator I ⊗ R1 ⊗ R2 can be performed on secondary sites where

I ⊗ R1 ⊗ R2 = I ⊗ (−1)m′
1(1⊕m1)Zm1⊕1 Xm′

1⊕1 ⊗ (−1)m′
2m2 Zm2 Xm′

2 . (48b)

Now we consider two cases of the measurement outcomes:

1. Suppose the measurement results are (m1, m′
1) = (0, 0) and (m2, m′

2) = (0, 0),
the resulting state becomes

∣∣∣W (3)
3

〉

1s′
1s′

2

= α001 |011〉 − α010 |000〉 + α100 |110〉 .

The corresponding recovery operator is I ⊗ Z X ⊗ I .
2. Suppose the measurement results are (m1, m′

1) = (1, 0) and (m2, m′
2) = (0, 1),

then
∣∣∣W (3)

3

〉

1s′
1s′

2

= α001 |010〉 + α010 |001〉 + α100 |111〉 .

The recovery operator is I ⊗ X ⊗ X .

7 Discussions and conclusions

Our major concern is the perfect distribution of the entanglement among spatially
separated sites in network environment. A theoretical network model with perfect
connection and good scalability is presented. In the network model, each node can
store and locally manipulate qudits. Each pair of adjacent node is connected by a set
of Bell states. No direct qudit transmissions are involved in our model except for the
priori shared Bell states between two adjacent sites. The entanglements dynamically
change in Metwally’s scheme, while our scheme utilizes ES to generate not only the
bipartite entanglements, but also the multipartite ones.

Three efficient and perfect entanglement channel construction schemes are pro-
posed. Any two sites can construct an entanglement channel via Bell states with the
help of the intermediate sites in quantum chain. The two sites can also verify the per-
fection of the Bell state to prevent outside attacks. This scheme is expressly different
from the way of quantum repeaters. The quantum repeater was designed to resolve the
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problem of fiber attenuation over long distances, while our scheme is for node address
and perfect connection in the network model. Furthermore, the general d-level system
is considered and some general results about constructing entanglement channel are
given in details.

Any n sites in the network model can construct an entanglement channel via an
n-qudit cat state. The n-qudit entanglement channel could be constructed in an efficient
and perfect manner with the established entanglement channel between the primary
site and the secondary one. Compared with relay transmission of the qudit from the
primary site to the secondary one in quantum chain, this scheme only involves Bell
states and Bell basis measurements and it provides a secure transmission of the qudit
states since the qudits are impossible to be intercepted.

More importantly, we extend the scheme to a more general form where an entan-
glement channel via an arbitrary n-qudit state can be constructed among n sites. This
can also be viewed as a scheme of secret sharing of quantum information among
n sites. The state can be recovered to its initial state or transformed to other state
by performing appropriate generalized Pauli operators if necessary. The number of
the secondary sites can also be less than n − 1, in other words, an arbitrary n-qudit
state entanglement channel, like W states, cluster states, and χ -type states, can be
constructed among any t sites where 1 ≤ t ≤ n.

The network topology determines how the communication sites are connected and
communicated. Our first scheme using generalized Bell state entanglement channel
between two sites could be viewed as a point to point network. If the scheme is per-
formed successively, any type of network topologies can be constructed. In the others
two proposed schemes, the primary site builds a star topology network where the
primary site locates in the center of the model, shares Bell states with each secondary
site and distributes the n-qudit states among n sites which will form a mesh topology
network depending on the entanglement of the n-qudit states.
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Appendix 1: Detailed deduction of Eq. (8)

|φ(v1, v2, . . . , vt , . . . , vn)〉12...t ...n

∣∣φ(u, u′)
〉
ss′

=
⎛

⎝ 1√
d

d−1∑

j=0

ω jv1 | j, j + v2, . . . , j + vt , . . . , j + vn)〉12...t ...n

⎞

⎠

⊗
⎛

⎝ 1√
d

d−1∑

j ′=0

ω j ′u ∣∣ j ′, j ′ + u′〉
ss′

⎞

⎠

123



Efficient entanglement channel construction schemes 1737

= 1

d

d−1∑

j, j ′
ω jv1ω j ′u | j, j + v2, . . . , j + vt , . . ., j + vn)〉12...t ...n

∣∣ j ′, j ′ + u′〉
ss′

= 1

d

d−1∑

j, j ′
ω jv1+ j ′u ∣∣ j, j + v2, . . . , j ′ + u′, . . . , j + vn)

〉
12...s′...n

∣∣ j ′, j + vt
〉
st

= 1

d2

d−1∑

j, j ′,w,w′
ω jv1+ j ′uω−w j−w′ j ′ ∣∣φ(w, v2, . . . , j ′ + u′ − j, . . . , vn)

〉
12...s′...n

⊗ ∣∣φ(w′, j + vt − j ′)
〉
st

j ′− j=l
———–>

= 1

d2

d−1∑

j,l,w,w′
ω jv1+( j+l)uω−w j−w′( j+l)

∣∣φ(w, v2, . . ., u′ + l, . . ., vn)
〉
12...s′...n

⊗ ∣∣φ(w′, vt − l)
〉
st

= 1

d2

d−1∑

j,l,w,w′
ω j (v1+u−w−w′)ωlu−lw′ ∣∣φ(w, v2, . . ., u′ + l, . . ., vn)

〉
12...s′...n

⊗ ∣∣φ(w′, vt − l)
〉
st

= 1

d

d−1∑

l,w,w′
(

1

d

d−1∑

j

ω j (v1+u−w−w′))ωlu−lw′ ∣∣φ(w, v2, . . ., u′ + l, . . ., vn)
〉
12...s′...n

⊗ ∣∣φ(w′, vt − l)
〉
st

= 1

d

d−1∑

l,w,w′
δ(v1 + u − w − w′, 0)ωlu−lw′ ∣∣φ(w, v2, . . ., u′ + l, . . ., vn)

〉
12...s′...n

⊗ ∣∣φ(w′, vt − l)
〉
st �

u−w′=k
———–>

= 1

d

d−1∑

l,k

ωlk
∣∣φ(v1 + k, v2, . . ., u′ + l, . . ., vn)

〉
12...s′...n |φ(u − k, vt − l)〉st

� Here we use the identity 1
d

∑d−1
j=0 ω jn = δ(n, 0).
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Appendix 2: Detailed deduction of Eq. (30)

|γn〉12...t ...n

∣∣φ(u, u′)
〉
ss′

=
d−1∑

k1,k2,...,kn

αk1,k2,...,kn |k1, k2, . . . , kt , . . . , kn〉12...t ...n
1√
d

d−1∑

j=0

ω ju
∣∣ j, j + u′〉

ss′

= 1√
d

d−1∑

k1,k2,...,kn , j

αk1,k2,...,kn ω
ju |k1, k2, . . . , kt , . . . , kn〉12...t ...n

∣∣ j, j + u′〉
ss′

= 1√
d

d−1∑

k1,k2,...,kn , j

αk1,k2,...,kn ω
ju | j, kt 〉st

∣∣k1, k2, . . . , j + u′, . . . , kn
〉
12...s′...n

= 1√
d

d−1∑

k1,k2,...,kn , j

αk1,k2,...,kn ω
ju

⎛

⎝ 1√
d

d−1∑

j ′=0

ω− j ′ j
∣∣φ( j ′, kt − j)

〉
st

⎞

⎠

⊗ ∣∣k1, k2, . . . , j + u′, . . . , kn
〉
12...s′...n

= 1

d

d−1∑

k1,k2,...,kn , j, j ′
αk1,k2,...,kn ω

j (u− j ′) ∣∣φ( j ′, kt − j)
〉
st

⊗ ∣∣k1, k2, . . . , j + u′, . . . , kn
〉
12...s′...n
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