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Abstract I present a new scheme for probabilistic remote preparation of a general
two-qubit state by using two W-type states as the shared quantum channel and a proper
POVM instead of the usual positive measurement. Also I explore the scheme’s appli-
cations to five special ensembles of two-qubit states. The success probability and the
classical communication cost in different cases are calculated minutely, respectively,
which show that the remote two-qubit preparation can be realized with higher prob-
ability after consuming some more classical bits provided that the two-qubit state to
be prepared is chosen from the special ensembles.

Keywords Remote state preparation · W-type state · Positive operator-valued
measure · Unitary operation · Success probability · Classical communication cost

1 Introduction

Entanglement is one of the most counterintuitive features in quantum mechanics:
assisted with entangled state one can complete many impossible tasks within the clas-
sical world. One of the most striking applications of entanglement is quantum tele-
portation (QT) which was first proposed by Bennett et al. [1] in 1993. It is a method
for interchanging quantum resources between different places. Later, Lo [2], Pati [3],
Bennett et al. [4] presented another interesting novel method to transmit pure quantum
state also using a prior shared entanglement and some classical communication when
the sender actually knows the transmitted state. This communication protocol is called
remote state preparation (RSP) and viewed as “teleportation of a known state”. In RSP,
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the state to be prepared is assumed to be completely known by the sender. In contrast,
the teleported state is not required to be known by the sender in QT. Moreover, due
to the prior knowledge about the original state, to some extent, the classical com-
munication and entanglement cost can be reduced in RSP process. For an example,
Pati [3] has shown that for a qubit chosen from equatorial or polar great circles on
a Bloch sphere, RSP requires only 1 forward classical bit, exactly half that of QT.
However, for general states, RSP procedure requires as much communication cost as
QT. The detailed trade-off between the classical communication cost and the required
entanglement in RSP procedure can be studied distinctly in the protocol proposed by
Bennett et al. [4].

Up to now, RSP has already attracted many attentions [5–20], e.g., low-
entanglement RSP [5], higher-dimensional RSP [6], optimal RSP [7], oblivious RSP
[8], RSP without oblivious conditions [9], generalized RSP [10], faithful RSP [11],
RSP for multi-parties [12,13], and continuous variable RSP in phase space [14,15], etc.
Some RSP schemes have already been experimentally implemented, e.g., Peng et al.
presented an RSP scheme with the technique of NMR (nuclear magnetic resonance)
[21], Xiang et al. [22] and Peters et al. [23] proposed two other RSP schemes using
spontaneous parametric down-conversion. Also some RSP schemes are investigated
using different entangled states as quantum channel [24–54]. In terms of entanglements
in quantum channels, these RSP schemes can be classified into two types. One uses
maximally entangled states [24,25,30,38,40,42,49,50,52–54] while another utilizes
non-maximally entangled states [26–29,31,34–36,41,48]. In the latter case, usually
one or more auxiliary qubits need to be incorporated and entangled with the original
qubits. After this, a proper measurement on qubits including the ancillas should be
executed such that the original-qubit state is collapsed to one of the eligible states.
Subsequently, the prepared state is retrieved from the eligible state by performing
appropriate unitary operations that correspond to the measurement outcomes. Note
that the so-called proper measurement is usually projective measurement (PM) [55]
in the latter type of existing RSP schemes [27,28,34,35]. As a matter of fact, there
lies another type of measurement named positive operator-valued measure (POVM)
[56,57], which has already attracted many attentions and been employed in various
quantum information processing [26,29,41,44–46,57–59].

Besides, it is well known that multipartite qubits can be entangled in different
inequivalent ways. For tripartite entangled quantum system, it falls into two classes of
irreducible entanglements [60–62], that is, Greenberger–Horne–Zeilinger (GHZ) state
and W state or their modified version. The motivation of classifying entangled state
is that if the entanglement of two states is equivalent, then both of the two states can
be used to perform the same task, although the probability of successful performance
of the task may depend on the amount of entanglement of the state. However, to my
best knowledge in RSP, most of the previous schemes utilize the GHZ class of entan-
gled state [31,36,48,49,53,54] and there has been few proposals for investigating the
application of W state. As a matter of fact, W state is also a promising candidate in
implementing quantum communication and other tasks in the realm of quantum infor-
mation processing. For example, Joo et al. [63] presented a novel scheme for secure
quantum communication via W state: quantum key distribution, probabilistic QSS of
classical information and their synthesis, and so on [28,29,50].
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However, to my best knowledge, there have been no proposals for how to generate
RSP of a general two-qubit state with both the method of POVM and W states or their
modified version so far. In view of that, in this paper, using two non-maximally entan-
gled W states (referred to as W-type states hereafter) as the quantum channel, I attempt
to propose a scheme to address the question raised above, in which a proper POVM
is employed instead of the usual PM, and the corresponding success probabilities in
different cases as well as the total classical communication cost are also calculated in
detail.

This paper is organized as follows, in Sect. 2, a probabilistic RSP scheme is amply
presented with two W-type states and the method of POVM. Also its applications
to some special ensembles of two-qubit states are investigated in this section. Then
some discussions regarding the comparisons between this scheme and the previous
two-qubit RSP protocols as well as the implement feasibility of the scheme are given
in Sect. 3, together with the summary.

2 Probabilistic RSP scheme and the exploration of its applications

Suppose Alice is the state preparer, Bob and Charlie are her two remote ministrants.
The quantum channel linking Alice, Bob and Charlie is composed of two W-type
states

|ψ1〉123 = a1|001〉123 + b1|010〉123 + c1|100〉123 (|a1|2 + |b1|2 + |c1|2 = 1),

|ψ2〉456 = a2|001〉456 + b2|010〉456 + c2|100〉456 (|a2|2 + |b2|2 + |c2|2 = 1).

(1)

where a j , b j and c j are nonzero real numbers and satisfy |a j | ≥ |b j | ≥ |c j |( j =
1, 2). Qubit pair (1, 4) belongs to Alice while qubit pairs (2, 5) and (3, 6) to Bob
and Charlie, respectively (shown in Fig. 1a). Alice wants to prepare remotely a state
in either Bob or Charlie’s place via their collaboration. The state to be prepared is
|V 〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉, where α, β, γ, δ are arbitrary complex num-
bers and satisfy |α|2 + |β|2 + |γ |2 + |δ|2 = 1. Alice knows it exactly while Bob and
Charlie do not. Owing to the channel symmetry for Bob and Charlie, each of them
has the chance to construct the state |V 〉 with another one’s assistance. Specifically,
Charlie can construct it with Bob’s help and vice versa. Without loss of generality,
suppose Charlie is assigned by Alice to retrieve |V 〉 hereafter. Then the RSP protocol
can be realized as follows:

(i) To fulfill the state preparation, Alice carries out a two-qubit projective measure-
ment on her qubit pair (1, 4) in a set of mutually orthonormal basis vectors
{|λ1〉, |λ2〉, |λ3〉, |λ4〉} (shown in Fig. 1b), which are given as

⎛
⎜⎜⎝

|λ1〉
|λ2〉
|λ3〉
|λ4〉

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

α β γ δ

ηα ηβ −η−1γ −η−1δ

β∗ −α∗ δ∗ −γ ∗
ηβ∗ −ηα∗ −η−1δ∗ η−1γ ∗

⎞
⎟⎟⎠

⎛
⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎠ , (2)
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(a) (b)

(c) (d)

Fig. 1 Classical communication cost and remote preparation of a two-qubit state (QI) via POVM and two
W-type states. a Alice, Bob and Charlie share the two W-type states. b Alice makes a two-qubit projective
measurement (PM) on her qubit pair (1,4) and informs Charlie of her measurement result. c Bob performs a
single-qubit measurement (SM) on his qubits 2 and 5, respectively, and then tells Charlie his measurement
results via a classical channel. d Charlie constructs the prepared state by incorporating two auxiliary qubits
(m, n) and executing some appropriate unitary operations (U, CNOT, U′) including a proper POVM. See
text for more details

where η = √
(|γ |2 + |δ|2)/(|α|2 + |β|2). These four non-maximally entangled

basis states are related to the computation basis vectors {|00〉, |01〉, |10〉, |11〉}
and form a complete orthonormal basis set in a four-dimensional Hilbert space,
i.e., 〈λi |λ j 〉 = δi j .
Thus, the state of the whole system in the basis {|λ1〉, |λ2〉, |λ3〉, |λ4〉} can be
written as

|ψ1〉123|ψ2〉456 = |λ1〉14|	1〉2356 + |λ2〉14|	2〉2356 + |λ3〉14|	3〉2356

+|λ4〉14|	4〉2356, (3)

where

|	1〉2356 = α∗a1a2|0101〉2356 + α∗a1b2|0110〉2356 + α∗b1a2|1001〉2356

+α∗b1b2|1010〉2356 + β∗a1c2|0100〉2356 + β∗b1c2|1000〉2356

+γ ∗c1a2|0001〉2356 + γ ∗c1b2|0010〉2356 + δ∗c1c2|0000〉2356;
|	2〉2356 = ηα∗a1a2|0101〉2356 + ηα∗a1b2|0110〉2356 + ηα∗b1a2|1001〉2356
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+ηα∗b1b2|1010〉2356 + ηβ∗a1c2|0100〉2356 + ηβ∗b1c2|1000〉2356

−η−1γ ∗c1a2|0001〉2356 − η−1γ ∗c1b2|0010〉2356 − η−1δ∗c1c2|0000〉2356;
|	3〉2356 = βa1a2|0101〉2356 + βa1b2|0110〉2356 + βb1a2|1001〉2356

+βb1b2|1010〉2356 − αa1c2|0100〉2356 − αb1c2|1000〉2356

+δc1a2|0001〉2356 + δc1b2|0010〉2356 − γ c1c2|0000〉2356;
|	4〉2356 = ηβa1a2|0101〉2356 + ηβa1b2|0110〉2356 + ηβb1a2|1001〉2356

+ηβb1b2|1010〉2356 − ηαa1c2|0100〉2356 − ηαb1c2|1000〉2356

−η−1δc1a2|0001〉2356 − η−1δc1b2|0010〉2356 + η−1γ c1c2|0000〉2356.

After Alice’s measurement, she broadcasts the measurement result via a classical
channel. According to the Eq. 3, one can see that Alice’s measurement result
should be one of the four states defined in the Eq. 2. Without loss of generality,
suppose Alice measures |λ3〉14, then the collapsed state of qubit pairs (2, 3) and
(5, 6) will be |	3〉2356.

(ii) As proposed before, Charlie is assigned to construct the state |V 〉. Then to real-
ize the two-qubit preparation in his place, Charlie cooperates with Bob to get
his help. Provided Bob agrees to help Charlie, he then performs a single-qubit
measurement on his qubits 2 and 5 in the basis {|0〉, |1〉}, respectively (shown
in Fig. 1c). In this way, it can be noted

|	3〉2356 = |00〉25|
3〉36 + |01〉25(βa1b2|10〉36 + δc1b2|00〉36)

+|10〉25(βb1a2|01〉36−αb1c2|00〉36)+|11〉25βb1b2|00〉36, (4)

where

|
3〉36 = βa1a2|11〉36 − αa1c2|10〉36 + δc1a2|01〉36 − γ c1c2|00〉36.

After Bob’s single-qubit measurements, he informs his measurement results to
Charlie via a classical channel. According to the above equation, one can see it
may be possible for the RSP process to be successful only when Bob measures
|00〉25, otherwise the RSP scheme fails.

(iiii) After having received Bob’s classical message of the measurement result |00〉25
in a certain interval, Charlie knows that his qubit pair (3, 6) is left in |
3〉36.
Then to construct the state |V 〉, Charlie performs σ x

3 ⊗ σ z
6 on qubits 3 and 6,

which transforms |
3〉36 into

|T 〉36 = αa1c2|00〉36 + βa1a2|01〉36 + γ c1c2|10〉36 + δc1a2|11〉36. (5)

Next, Charlie introduces two auxiliary qubits m and n in the initial state |00〉mn and
performs two controlled-not (CNOT) operations with qubits 3 and 6 as the controlled
qubits while the auxiliary qubits m and n as the target ones, respectively. These two
CNOT operations transform the joint state |T 〉36|00〉mn into the following form
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|K 〉36mn = αa1c2|0000〉36mn + βa1a2|0101〉36mn + γ c1c2|1010〉36mn

+δc1a2|1111〉36mn

= 1

4
(|R1〉36|H1〉mn +|R2〉36|H2〉mn +|R3〉36|H3〉mn +|R4〉36|H4〉mn), (6)

where

|R1〉36 = α|00〉36 + β|01〉36 + γ |10〉36 + δ|11〉36 ≡ |V 〉,
|H1〉mn = a1c2|00〉mn + a1a2|01〉mn + c1c2|10〉mn + c1a2|11〉mn,

|R2〉36 = α|00〉36 + β|01〉36 − γ |10〉36 − δ|11〉36,

|H2〉mn = a1c2|00〉mn + a1a2|01〉mn − c1c2|10〉mn − c1a2|11〉mn,

|R3〉36 = α|00〉36 − β|01〉36 + γ |10〉36 − δ|11〉36,

|H3〉mn = a1c2|00〉mn − a1a2|01〉mn + c1c2|10〉mn − c1a2|11〉mn,

|R4〉36 = α|00〉36 − β|01〉36 − γ |10〉36 + δ|11〉36,

|H4〉mn = a1c2|00〉mn − a1a2|01〉mn − c1c2|10〉mn + c1a2|11〉mn .

From the Eq. 6, one can see that‘ Charlie can get the states |Ri 〉36(i = 1, 2, 3, 4)
provided that the states |Hi 〉mn(i = 1, 2, 3, 4) are distinguished via an appropri-
ate measurement. Note that |R1〉 is exactly the prepared state. Readily, the prepared
state can be further retrieved from |R2〉, |R3〉 and |R4〉. Unfortunately, the four states
|Hi 〉mn(i = 1, 2, 3, 4) are not orthonormal in general. As a consequence, they cannot
be differentiated deterministically by using a usual PM. Nevertheless, the discrimi-
nation can be achieved in a probabilistic manner by making an optimal POVM mea-
surement [56,57]. Forasmuch, Charlie then performs an optimal POVM measurement
[46,56–58] on the auxiliary qubits m and n as follows,

Q1 = 1

x
|M1〉〈M1|, Q2 = 1

x
|M2〉〈M2|,

Q3 = 1

x
|M3〉〈M3|, Q4 = 1

x
|M4〉〈M4|,

Q5 = I − 1

x

4∑
i=1

|Mi 〉〈Mi |, (7)

where

|M1〉 = 1√
ξ

(
1

a1c2
|00〉 + 1

a1a2
|01〉 + 1

c1c2
|10〉 + 1

c1a2
|11〉

)

mn
,

|M2〉 = 1√
ξ

(
1

a1c2
|00〉 + 1

a1a2
|01〉 − 1

c1c2
|10〉 − 1

c1a2
|11〉

)

mn
,

|M3〉 = 1√
ξ

(
1

a1c2
|00〉 − 1

a1a2
|01〉 + 1

c1c2
|10〉 − 1

c1a2
|11〉

)

mn
,
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|M4〉 = 1√
ξ

(
1

a1c2
|00〉 − 1

a1a2
|01〉 − 1

c1c2
|10〉 + 1

c1a2
|11〉

)

mn
,

ξ = 1

(a1c2)2
+ 1

(a1a2)2
+ 1

(c1c2)2
+ 1

(c1a2)2
,

I is an identity operator, x is a coefficient relating to a j and c j ( j = 1, 2) and should
be able to assure Q5 to be a positive operator. To exactly determine x , I would like to
rewrite the five elements Q1, Q2, Q3, Q4 and Q5 in the matrix form

Q1 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1c2)2

1
a1a2a1c2

1
a1c2c1c2

1
a1a2c1c2

1
a1a2a1c2

1
(a1a2)2

1
a1c2c1a2

1
a1a2c1a2

1
a1c2c1c2

1
a1c2c1a2

1
(c1c2)2

1
c1a2c1c2

1
a1a2c1c2

1
a1a2c1a2

1
c1c2c1a2

1
(c1a2)2

⎞
⎟⎟⎟⎟⎠
,

Q2 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1c2)2

1
a1a2a1c2

−1
a1c2c1c2

−1
a1a2c1c2

1
a1a2a1c2

1
(a1a2)2

−1
a1c2c1a2

−1
a1a2c1a2−1

a1c2c1c2

−1
a1c2c1a2

1
(c1c2)2

1
c1a2c1c2−1

a1a2c1c2

−1
a1a2c1a2

1
c1c2c1a2

1
(c1a2)2

⎞
⎟⎟⎟⎟⎠
,

Q3 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1c2)2

−1
a1a2a1c2

1
a1c2c1c2

−1
a1a2c1c2−1

a1a2a1c2

1
(a1a2)2

−1
a1c2c1a2

1
a1a2c1a2

1
a1c2c1c2

−1
a1c2c1a2

1
(c1c2)2

−1
c1a2c1c2−1

a1a2c1c2

1
a1a2c1a2

−1
c1c2c1a2

1
(c1a2)2

⎞
⎟⎟⎟⎟⎠
,

Q4 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1c2)2

−1
a1a2a1c2

−1
a1c2c1c2

1
a1a2c1c2−1

a1a2a1c2

1
(a1a2)2

1
a1c2c1a2

−1
a1a2c1a2

1
a1c2c1c2

−1
a1c2c1a2

−1
(c1c2)2

1
c1a2c1c2−1

a1a2c1c2

1
a1a2c1a2

1
c1c2c1a2

−1
(c1a2)2

⎞
⎟⎟⎟⎟⎠
,

Q5 =

⎛
⎜⎜⎝

A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

⎞
⎟⎟⎠ , where

{
A = 1 − 4

xξ(a1c2)2
, B = 1 − 4

xξ(a1a2)2
,

C = 1 − 4
xξ(c1c2)2

, D = 1 − 4
xξ(c1a2)2

.
(8)

Evidently, to let Q5 be a positive operator, the coefficient x should be chosen such that
all the diagonal elements A, B,C and D are nonnegative. So it should be an appropriate
value within the scope 1 ≤ x ≤ 4, as is strongly relative to a j and c j ( j = 1, 2).

After this POVM operation, Charlie can positively conclude the states |Hi 〉mn(i =1,
2, 3, 4) of qubits m and n in terms of the POVM’s values. The probability in each case is

p = 36mn〈K |Qi |K 〉36mn = mn〈Hi |Qi |Hi 〉mn/16 = 1

xξ
, (i = 1, 2, 3, 4). (9)

However, if Charlie gets the value of the POVM’s element Q5 (such probability
is 1 − 4 × p = 1 − 4

xξ ), he cannot infer which state the qubits m and n are in.
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In this case, it means the scheme fails. As proposed before, only if Charlie determines
the states |Hi 〉mn(i = 1, 2, 3, 4), he can construct the prepared state |V 〉 on his
qubit pair (3, 6) by performing an appropriate unitary operation. To be specifical,
if |H1〉mn, |H2〉mn, |H3〉mn or |H4〉mn is determined, it means the state of qubit pair
(3, 6) is |R1〉36, |R2〉36, |R3〉36, or |R4〉36), then Charlie needs only to perform the
corresponding unitary operation I3 ⊗ I6, σ

3
z ⊗ I6, I3 ⊗ σ 6

z , or σ 3
z ⊗ σ 6

z on his qubit
pair (3, 6), respectively. In this way, the total success probability of the RSP scheme is

4 × p = 4

xξ
= 4

x
×

[
1

(a1c2)2
+ 1

(a1a2)2
+ 1

(c1c2)2
+ 1

(c1a2)2

]−1

= 4

x
× a2

1a2
2c2

1c2
2

(a2
1 + c2

1)(a
2
2 + c2

2)
. (10)

As depicted previously, Alice may measure |λ1〉14, |λ2〉14 or |λ4〉14 with a certain
probability. In these cases, the collapsed state of the qubit pairs (2, 5) and (3, 6), accord-
ing to the Eq. 3, will be |	1〉2356, |	2〉2356 and |	4〉2356, respectively. Then after step
(ii), the state of qubit pair (3, 6) in Charlie’s place will collapse to the following forms

|
1〉36 = α∗a1a2|11〉36 + β∗a1c2|10〉36 + γ ∗c1a2|01〉36 + δ∗c1c2|00〉36,

|
2〉36 = ηα∗a1a2|11〉36 + ηβ∗a1c2|10〉36 − η−1γ ∗c1a2|01〉36 − η−1δ∗c1c2|00〉36,

|
4〉36 = ηβa1a2|11〉36 − ηαa1c2|10〉36 − η−1δc1a2|01〉36 + η−1γ c1c2|00〉36),

respectively. Since Charlie has no knowledge of the four coefficients α, β, γ and δ, he
cannot convert anyone of the above three states into the state |V 〉 due to the involve-
ment of an antiunitary operation [3,10,21]. Apparently, the RSP scheme fails in the
latter three cases. Nonetheless, it should be noted that the coefficients α, β, γ and δ are
assumed to be complex in the beginning. Then it is intriguing to ask whether the con-
version can be unitarily realized provided that α, β, γ and δ are some special values.
After my extensive investigations, I get the positive answer and find out some special
ensembles, which are given as: Ensemble I:α, β, γ and δ are real; Ensemble II:α, β, γ
and δ satisfy η = 1; Ensemble III: α, β, γ, δ are real and satisfy η = 1; Ensemble IV:
|α| = |β| = |γ | = |δ| = 1

2 andαγ = βδ; and Ensemble V: |α| = |β| = |γ | = |δ| = 1
2

and αβ = δγ . For each case, the treatment is similar in this paper. As enumerations, I
will take Ensemble I and Ensemble IV to show the whole process of preparation, respec-
tively. Incidentally, it is notable that in the whole RSP process, step (ii) would hold
the line even if the state to be prepared is chosen from the special ensembles. In other
words, some changes occur only in step (i) or step (iii), which are depicted as follows,

Ensemble I: α, β, γ and δ are real In this case, if Alice’s measurement result is
|λ1〉14, then according to the Eq. 3, the joint state of qubits 2, 3, 5 and 6 will be

|	′
1〉2356 = αa1a2|0101〉2356 + αa1b2|0110〉2356 + αb1a2|1001〉2356

+αb1b2|1010〉2356 + βa1c2|0100〉2356 + βb1c2|1000〉2356

+γ c1a2|0001〉2356 + γ c1b2|0010〉2356 + δc1c2|0000〉2356. (11)

123



Classical communication cost 1593

After Bob getting the measurement results |00〉25 in step (ii), the two qubits 3 and 6
in Charlie’s place will be left in

|
′
1〉36 = αa1a2|11〉36 + βa1c2|10〉36 + γ c1a2|01〉36 + δc1c2|00〉36. (12)

In step (iii), to fulfill the preparation, Charlie first performs σ x
3 ⊗ σ x

6 on his qubit
pair (3, 6), which transforms |
′

1〉36 into

|T ′〉36 = αa1a2|00〉36 + βa1c2|01〉36 + γ c1a2|10〉36 + δc1c2|11〉36. (13)

Then Charlie introduces two auxiliary qubits m and n in the initial state |00〉mn , and
performs two CNOT operations CNOT3m and CNOT6n , respectively. After this the
joint state, |T ′〉36|00〉mn will be transformed into

|K ′〉36mn = αa1a2|0000〉36mn + βa1c2|0101〉36mn + γ c1a2|1010〉36mn

+δc1c2|1111〉36mn)

= 1

4
(|R1〉36|H ′

1〉mn +|R2〉36|H ′
2〉mn +|R3〉36|H ′

3〉mn +|R4〉36|H ′
4〉mn),

(14)

where

|H ′
1〉mn = a1a2|00〉mn + a1c2|01〉mn + c1a2|10〉mn + c1c2|11〉mn,

|H ′
2〉mn = a1a2|00〉mn + a1c2|01〉mn − c1a2|10〉mn − c1c2|11〉mn,

|H ′
3〉mn = a1a2|00〉mn − a1c2|01〉mn + c1a2|10〉mn − c1c2|11〉mn,

|H ′
4〉mn = a1a2|00〉mn − a1c2|01〉mn − c1a2|10〉mn + c1c2|11〉mn .

Very similar to that proposed above, if |H ′
i 〉mn(i = 1, 2, 3, 4) are distinguished, the

state |V 〉 can be constructed via an appropriate unitary operation. According to the
above equation, although the discrimination of the four states |H ′

i 〉mn(i = 1, 2, 3, 4)
cannot be completed by performing the usual PM, it can be achieved in a probabilistic
manner by making an optimal POVM measurement [46,56–58]. So Charlie then per-
forms an optimal POVM measurement on the auxiliary qubits m and n, which takes
the following matrix forms

W1 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1a2)2

1
a1c2a1a2

1
a1a2c1a2

1
a1c2c1a2

1
a1c2a1a2

1
(a1c2)2

1
a1a2c1c2

1
a1c2c1c2

1
a1a2c1a2

1
a1a2c1c2

1
(c1a2)2

1
c1c2c1a2

1
a1c2c1a2

1
a1c2c1c2

1
c1a2c1c2

1
(c1c2)2

⎞
⎟⎟⎟⎟⎠
,

W2 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1a2)2

1
a1c2a1a2

−1
a1a2c1a2

−1
a1c2c1a2

1
a1c2a1a2

1
(a1c2)2

−1
a1a2c1c2

−1
a1c2c1c2−1

a1a2c1a2

−1
a1a2c1c2

1
(c1a2)2

1
c1c2c1a2−1

a1c2c1a2

−1
a1c2c1c2

1
c1a2c1c2

1
(c1c2)2

⎞
⎟⎟⎟⎟⎠
,
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W3 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1a2)2

−1
a1c2a1a2

1
a1a2c1a2

−1
a1c2c1a2−1

a1c2a1a2

1
(a1c2)2

−1
a1a2c1c2

1
a1c2c1c2

1
a1a2c1a2

−1
a1a2c1c2

1
(c1a2)2

−1
c1c2c1a2−1

a1c2c1a2

1
a1c2c1c2

−1
c1a2c1c2

1
(c1c2)2

⎞
⎟⎟⎟⎟⎠
,

W4 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(a1a2)2

−1
a1c2a1a2

−1
a1a2c1a2

1
a1c2c1a2−1

a1c2a1a2

1
(a1c2)2

1
a1a2c1c2

−1
a1c2c1c2

1
a1a2c1a2

−1
a1a2c1c2

−1
(c1a2)2

1
c1c2c1a2−1

a1c2c1a2

1
a1c2c1c2

1
c1a2c1c2

−1
(c1c2)2

⎞
⎟⎟⎟⎟⎠

and W5 = diag(B, A, D,C), respectively. After the manipulation, according to the
POVM result, Charlie can conclude the corresponding state |H ′

i 〉mn(i = 1, 2, 3, 4),
respectively, which happens with the probability

p= 36mn〈K ′|Wi |K ′〉36mn = mn〈H ′
i |Wi |H ′

i 〉mn/16= 1

xξ
, (i = 1, 2, 3, 4). (15)

Once Charlie determines |H ′
i 〉mn(i = 1, 2, 3, 4), it also means that the states

|Ri 〉36(i = 1, 2, 3, 4) are obtained, which can be readily seen from Eq. (14). Further,
Charlie then constructs the prepared state by performing the corresponding unitary
operation proposed above. Nevertheless, Charlie may get W5’s value with probability
1 − 4

xξ . In this situation, he cannot infer which state the qubits m and n are in. Con-
sequently, the remote preparation fails. Thus, the total success probability of the RSP
scheme, in this case, is also 4p.

If Alice’s measurement result is |λ2〉14 or |λ4〉14 , then after the step (ii), the joint
state of qubits 3 and 6 will be

|
′
2〉36 = ηαa1a2|11〉36 + ηβa1c2|10〉36 − η−1γ c1a2|01〉36 − η−1δc1c2|00〉36

and |
4〉36, respectively. Due to Charlie’s unawareness of the four coefficients α, β, γ
and δ, these two states still cannot be unitarily converted into the state |V 〉. So the
total success probability of the RSP in Ensemble I is 8p.

Ensemble IV: |α| = |β| = |γ | = |δ| = 1
2 and αγ = βδ In terms of |α| =

|β| = |γ | = |δ| = 1
2 and αγ = βδ, it can be easily obtained η = 1, (α∗)−1 =

4α, (β∗)−1 = 4β, (γ ∗)−1 = 4γ, (δ∗)−1 = 4δ and α∗γ ∗ = β∗δ∗. Then if Alice gets
|λ1〉14, as proposed above, the state of qubit pair (3, 6), after step (ii), will be

|
′′
1〉36 = 4β∗δ∗(γ a1a2|11〉36 + δa1c2|10〉36 + αc1a2|01〉36 + βc1c2|00〉36). (16)

Then in step (iii), to construct the original state |V 〉, the local unitary operation I3 ⊗σ x
6

is performed on qubit pair (3, 6), which transforms the joint state |
′′
1〉36 into

|T ′′〉36 = 4β∗δ∗(αc1a2|00〉36 + βc1c2|01〉36 + γ a1a2|10〉36 + δa1c2|11〉36). (17)
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Charlie then introduces two auxiliary qubits m and n in the initial state |00〉mn and
performs the two CNOT operations CNOT3m and CNOT6n , respectively. After this
the joint state of qubits 3, 6, m and n will be transformed into

|K ′′〉36mn = 4β∗δ∗(αc1a2|0000〉36mn + βc1c2|0101〉36mn + γ a1a2|1010〉36mn

+δa1c2|1111〉36mn)

= β∗δ∗(|R1〉36|H ′′
1 〉mn + |R2〉36|H ′′

2 〉mn + |R3〉36|H ′′
3 〉mn

+|R4〉36|H ′′
4 〉mn), (18)

where

|H ′′
1 〉mn = c1a2|00〉mn + c1c2|01〉mn + a1a2|10〉mn + a1c2|11〉mn,

|H ′′
2 〉mn = c1a2|00〉mn + c1c2|01〉mn − a1a2|10〉mn − a1c2|11〉mn,

|H ′′
3 〉mn = c1a2|00〉mn − c1c2|01〉mn + a1a2|10〉mn − a1c2|11〉mn,

|H ′′
4 〉mn = c1a2|00〉mn − c1c2|01〉mn − a1a2|10〉mn + a1c2|11〉mn .

Likewise, the state |V 〉 can be constructed via an appropriate unitary operation pro-
vided that |H ′′

i 〉mn(i = 1, 2, 3, 4) are distinguished. To discriminate the four states
|H ′′

i 〉mn(i = 1, 2, 3, 4), an optimal POVM measurement [46,56–58] is performed by
Charlie on the auxiliary qubits m and n, which takes the following matrix forms

S1 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(c1a2)2

1
c1c2c1a2

1
c1a2a1a2

1
c1c2a1a2

1
c1c2c1a2

1
(c1c2)2

1
c1a2a1c2

1
c1c2a1c2

1
c1a2a1a2

1
c1a2a1c2

1
(a1a2)2

1
a1c2a1a2

1
c1c2a1a2

1
c1c2a1c2

1
a1a2a1c2

1
(a1c2)2

⎞
⎟⎟⎟⎟⎠
,

S2 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(c1a2)2

1
c1c2c1a2

−1
c1a2a1a2

−1
c1c2a1a2

1
c1c2c1a2

1
(c1c2)2

−1
c1a2a1c2

−1
c1c2a1c2−1

c1a2a1a2

−1
c1a2a1c2

1
(a1a2)2

1
a1c2a1a2−1

c1c2a1a2

−1
c1c2a1c2

1
a1a2a1c2

1
(a1c2)2

⎞
⎟⎟⎟⎟⎠
,

S3 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(c1a2)2

−1
c1c2c1a2

1
c1a2a1a2

−1
c1c2a1a2−1

c1c2c1a2

1
(c1c2)2

−1
c1a2a1c2

1
c1c2a1c2

1
c1a2a1a2

−1
c1a2a1c2

1
(a1a2)2

−1
a1c2a1a2−1

c1c2a1a2

1
c1c2a1c2

−1
a1a2a1c2

1
(a1c2)2

⎞
⎟⎟⎟⎟⎠
,

S4 = 1

xξ

⎛
⎜⎜⎜⎜⎝

1
(c1a2)2

−1
c1c2c1a2

−1
c1a2a1a2

1
c1c2a1a2−1

c1c2c1a2

1
(c1c2)2

1
c1a2a1c2

−1
c1c2a1c2

1
c1a2a1a2

−1
c1a2a1c2

−1
(a1a2)2

1
a1c2a1a2−1

c1c2a1a2

1
c1c2a1c2

1
a1a2a1c2

−1
(a1c2)2

⎞
⎟⎟⎟⎟⎠

and S5 = diag(D,C, B, A), respectively. Then according to the different POVM
result, Charlie can conclude the corresponding state |H ′′

i 〉mn(i = 1, 2, 3, 4), respec-
tively. The probability in each case is
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p= 36mn〈K ′′|Si |K ′′〉36mn = mn〈H ′′
i |Si |H ′′

i 〉mn/16 = 1

xξ
, (i = 1, 2, 3, 4). (19)

After |H ′′
i 〉mn(i = 1, 2, 3, 4) being determined, it means that the state |Ri 〉36(i =

1, 2, 3, 4) is obtained. Then with the same analysis method proposed above, Charlie
constructs the state to be prepared in his place. It is also possible for Charlie to get
S5’s value, which happens with the probability 1 − 4

xξ . In this case, Charlie cannot
infer which state the qubits m and n are in. Consequently, the state of qubit pair (3, 6)
cannot be determined, too, and it will end up with the RSP scheme’s failure. So the
total success probability, in this case, is also 4 × p.

If Alice’s measurement result is |λ2〉14, then the joint state of the four qubits 2, 3,
5 and 6 will be

|	′′
2 〉2356 = α∗a1a2|0101〉2356 + α∗a1b2|0110〉2356 + α∗b1a2|1001〉2356

+α∗b1b2|1010〉2356 + β∗a1c2|0100〉2356 + β∗b1c2|1000〉2356

−γ ∗c1a2|0001〉2356 − γ ∗c1b2|0010〉2356 − δ∗c1c2|0000〉2356. (20)

Under Bob’s help proposed in step (ii), the qubit pair (3, 6) will be converted into

|
′′
2〉36 = 4β∗δ∗(γ a1a2|11〉36 + δa1c2|10〉36 − αc1a2|01〉36 − βc1c2|00〉36)

= 4β∗δ∗σ z
3 ⊗ σ x

6 |T ′′〉36. (21)

Compared with the Eqs. 16 and 17, it is direct to know that applying the similar analysis
method proposed just above, the state |V 〉 can be retrieved with the same probability
4 × p in Charlie’s place except for replacing I3 ⊗ σ x

6 by σ z
3 ⊗ σ x

6 before introducing
the two auxiliary qubits in step (iii).

If Alice measures |λ4〉14, then the four qubits 2, 3, 5 and 6 are left in

|	′′
4 〉2356 = βa1a2|0101〉2356 + βa1b2|0110〉2356 + βb1a2|1001〉2356

+βb1b2|1010〉2356 − αa1c2|0100〉2356 − αb1c2|1000〉2356

−δc1a2|0001〉2356 − δc1b2|0010〉2356 + γ c1c2|0000〉2356. (22)

After the step (ii), the joint state of Charlie’s qubits 3 and 6 collapses to

|
′′
4〉36 = βa1a2|11〉36 − αa1c2|10〉36 − δc1a2|01〉36 + γ c1c2|00〉36

= σ x
3 σ

z
3 ⊗ σ z

6 |T 〉36. (23)

Similarly, it can also be direct to see that with the similar analysis method proposed
before, the preparation can be realized with the probability 4 × p in Charlie’s place.
Therefore, the success probability of the RSP protocol in Ensemble IV is 16 × p.

So far I have depicted the cases that the state to be prepared belongs to Ensemble
I and Ensemble IV, respectively. While the prepared state belongs to other ensembles
of states, applying the similar analysis method, the remote preparation can also be
realized in a probabilistic manner in the latter three cases. All possible cases are sum-
marized in Table 1 and here I do not depict them anymore. In short, in general, the
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Table 1 ES shows which ensemble the state to be prepared belongs to, AS denotes the state to be prepared
is a general two-qubit state, AMR stands for Alice’s measurement result, U denotes the unitary operation
performed on qubit pair (3, 6) after step (ii), Pi (i = 1, 2, 3, 4, 5) → U ′ signifies the elements of POVM
and the other corresponding local unitary operation Charlie needs to perform after his POVM operation in
step (iii)

ES AMR U Pi (i = 1, 2, 3, 4, 5) → U ′

AS |λ3〉14 σ x
3 ⊗ σ z

6 Q1 → I3 ⊗ I6, Q2 → σ z
3 ⊗ I6, Q3 → I3 ⊗ σ z

6 , Q4 → σ z
3 ⊗ σ z

6
I(�AS) |λ1〉14 σ x

3 ⊗ σ x
6 W1 → I3 ⊗ I6,W2 → σ z

3 ⊗ I6,W3 → I3 ⊗ σ z
6 ,W4 → σ z

3 ⊗ σ z
6

II(�AS) |λ4〉14 −iσ y
3 ⊗ σ z

6 Q1 → I3 ⊗ I6, Q2 → σ z
3 ⊗ I6, Q3 → I3 ⊗ σ z

6 , Q4 → σ z
3 ⊗ σ z

6

III(�AS, I, II) |λ2〉14 iσ y
3 ⊗ σ x

6 W1 → I3 ⊗ I6,W2 → σ z
3 ⊗ I6,W3 → I3 ⊗ σ z

6 ,W4 → σ z
3 ⊗ σ z

6
IV(�AS, II) |λ1〉14 I3 ⊗ σ x

6 S1 → I3 ⊗ I6, S2 → σ z
3 ⊗ I6, S3 → I3 ⊗ σ z

6 , S4 → σ z
3 ⊗ σ z

6
|λ2〉14 σ z

3 ⊗ σ x
6 S1 → I3 ⊗ I6, S2 → σ z

3 ⊗ I6, S3 → I3 ⊗ σ z
6 , S4 → σ z

3 ⊗ σ z
6

V(�AS, II) |λ1〉14 σ x
3 ⊗ I6 Q1 → I3 ⊗ I6, Q2 → σ z

3 ⊗ I6, Q3 → I3 ⊗ σ z
6 , Q4 → σ z

3 ⊗ σ z
6

|λ2〉14 σ x
3 ⊗ σ z

6 Q1 → I3 ⊗ I6, Q2 → σ z
3 ⊗ I6, Q3 → I3 ⊗ σ z

6 , Q4 → σ z
3 ⊗ σ z

6

See text for more details
Q5 = diag(A, B,C, D); W5 = diag(B, A, D,C); S5 = diag(D,C, B, A)

probabilistic RSP can be fulfilled via the two ministrants’ collaboration. The success

probability in the RSP scheme is 4×p = 4
x × a2

1a2
2 c2

1c2
2

(a2
1+c2

1)(a
2
2+c2

2)
. If the state to be prepared

is chosen from some special ensembles, the success probability can be enhanced to
8 × p (Ensemble I–II) or even to 16 × p (Ensemble III–V) after consuming some extra
classical bits, respectively. Under the condition of |ai | = |bi | = |ci | = 1√

3
(i = 1, 2, 3)

and x = 1, i.e., the quantum channel consists of two W states and the so-called POVM
becomes the usual PM, the total success probability will be 1

9 . For the special ensem-
bles of two-qubit states, it can come up to 2

9 (Ensemble I–II) or 4
9 (Ensemble III–V),

respectively.
On the other hand, as we known, the classical message plays an important role in

RSP processes [2–4]. In this scheme, two kinds of classical information transmitted
processes are involved. One is to transmit the two-qubit joint measurement result per-
formed by the sender Alice, another is to transfer the results of the two single-qubit
measurements. In this section, it is interested to know the amount of the classical
communication required in the whole RSP process, and my discussion is taken in the
case that the original state is restored at Charlie’s side.

As to the first classical communication process in this protocol, based on the Eq. 3, it
can be noticed that after Alice’s two-qubit projective measurement, she can obtain the
result |λ3〉2356 with the measurement probabilities p2 = |β|2(1 − |c1|2)(1 − |c2|2)+
|α|2|c2|2(1 − |c1|2) + |δ|2|c1|2(1 − |c2|2) + |γ |2|c1|2|c2|2. If Alice’s measurement
result is |λ1〉14, |λ2〉14 or |λ4〉14, the RSP scheme fails due to Charlie’s unawareness
of the four coefficients α, β, γ and δ. In this way, Alice needs not to send any classical
bits to Charlie in the above three cases. So the amount of the classical information
needed in this transmitted process is S1 = −p2 log2[p2] bits.

With regard to the second classical communication process, it has already been
proposed that when Alice’s measurement result is |λ1〉2356, |λ2〉2356 or |λ4〉2356, the
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Table 2 The relationship among the state to be prepared, the probabilities of Alice and Bob’s measurement
results and the amount of required classical bits

ES AMR P P′ S

AS |λ3〉14 p2 p′
2 −p2 log2[p2] − p2 p′

2 log2[p′
2]

I(�AS) |λ1〉14, |λ3〉14 p1 + p2 p′
1 + p′

2 1 − ∑2
k=1(pk log2[pk ] +

pk p′
k log2[p′

k ])
II(�AS) |λ4〉14, |λ3〉14 2p2 2p′

2 1−2×(p2 log2[p2]+p2 p′
2 log2[p′

2])
III(�AS, I, II) |λi 〉14(i = 1, 2, 3, 4) 1 2p′

1 + 2p′
2 2 − 2 × ∑2

k=1(pk log2[pk ] +
pk p′

k log2[p′
k ])

IV(�AS, II) |λi 〉14(i = 1, 2, 3, 4) 1 4ν 4-ν log2[ν]
V(�AS, II) |λi 〉14(i = 1, 2, 3, 4) 1 4ν 4-ν log2[ν]
P and P′ indicate the respective probability of Alice and Bob’s measurement results corresponding to the
successful RSP case. S denotes the total amount of classical bits required in the whole RSP process including
ones used to show which ensemble the state to be prepared belongs to. See text for more details
p1 = |α|2(1 − |c1|2)(1 − |c2|2)+ |β|2|c2|2(1 − |c1|2)+ |γ |2|c1|2(1 − |c2|2)+ |δ|2|c1|2|c2|2
p′

1 = (|α|2|a1a2|2 + |β|2|a1c2|2 + |γ |2|c1a2|2 + |δ|2|c1c2|2)/p1; ν = 1
4 × (1 − |b1|2)(1 − |b2|2)

scheme fails. So in these cases, Bob needs not to implement the two single-qubit
measurements. Further, after Bob’s single-qubit measurements, there are four pos-
sible measurement results, the states |00〉25, |01〉25, |10〉25 and |11〉25. As depicted
above, if Bob gets |01〉25, |10〉25 or |11〉25, the RSP scheme fails, too. So it is also
unnecessary for Bob to send any classical bits to Charlie in these three cases. Only
when Bob measures |00〉25, the RSP scheme may be realized in a probabilistic manner.
The probability for Bob’s measurement result |00〉25 varies with Alice’s bipartite joint
measurement results |λ3〉2356 as

p′
2 = (|β|2|a1a2|2 + |α|2|a1c2|2 + |δ|2|c1a2|2 + |γ |2|c1c2|2)/p2. (24)

So the amount of the classical information required in the second transmitted process
is S2 = −p2 × p′

2 log2[p′
2] bits.

Therefore, the total classical communication cost required in this RSP scheme is

S = S1 + S2 = −p2 log2[p2] − p2 × p′
2 log2[p′

2] bits. (25)

As proposed above, if the coefficients of the state to be prepared are some special
values, the RSP protocol can be realized with higher probability. However,in the cases,
it will consume some more classical bits. For the sake of clarity during applications, the
relationships among the state to be prepared and the probabilities of Alice and Bob’s
measurement results as well as the amount of required classical bits are concisely
summarized in Table 2.

Obviously, the classical communication cost is not only dependent on the parame-
ters of the state taken as the quantum channel, but also related to the original state |V 〉.
For the special states chosen from Ensemble IV–V, if |ai | = |bi | = 1√

2
, |ci | = 1

2 , then

the success probability (SP) can be enhanced to 4
9 , and the total amount of classical

communication cost (CCC) will equal 4.25 bits.
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3 Discussion and summary

This scheme is along the line of An’s idea [50] by virtue of controlled RSP (CRSP)
instead of JRSP, and a proper POVM instead of the usual PM, too. Moreover, this
scheme not only considered the general case, but also other five special ensembles
of two-qubit state. Comparing with the previous RSP schemes [27,35,41,43,49,50,
53,54], the present one has the following features. First, this protocol has not only
investigated the probabilistic RSP of an arbitrary two-qubit state, but also explored
its applications to five special ensembles of states, together with the SP and the total
CCC in all these cases, while the previous RSP schemes considered only one case,
and no SP or CCC have been evaluated [27,35,41,43,50]. Second, the quantum chan-
nels are different in forms. In this scheme, I exploit two W-type states as the shared
quantum channel, which are robust against decoherence, and so their use is a good
choice for quantum information processing, whereas the quantum channels in the pre-
vious schemes were composed of Einstein–Podolsky–Rosen (EPR) pairs, GHZ states,
or their modified versions [27,35,41,43,49,53,54]. Third, to realize the probabilistic
RSP of a general two-qubit state in this protocol, I employ the method of POVM,
instead of the usual PM used in the previous RSP schemes [27,35,43,49,50,53,54],
to finally restore the state to be prepared.

As for feasibility, it is known for remote preparing a quantum state, the quantum
source has to be an entangled quantum system so that the transmission of quantum
information can be completed based on entanglement swapping. In this protocol, to
realize the remote two-qubit preparation, two W-type states are taken as the quantum
channel. To my best knowledge, nowadays there are various theoretical and exper-
imental schemes for generating the W state [64–68]. Therefore, I believe that this
RSP protocol with three-qubit entanglements may be realized in the realm of current
experimental technology, and it may be helpful to better understanding the possible
potential application of W and W-type states.

To summarize, utilizing a proper POVM instead of the usual PM, I have explicitly
presented a new scheme for probabilistic remote preparation of an arbitrary two-qubit
state in either distant ministrant’s place. The quantum channel employed in this scheme
is composed of two W-type states. By the two ministrants’ collaboration, it is shown
that the RSP protocol can be realized in a probabilistic manner via incorporating two
auxiliary qubits and executing appropriate unitary operations. Furthermore, I have also
explored its applications to five special ensembles of two-qubit states while only one
ensemble of two-qubit states with W-type pairs has been discussed in [50]. It means
that the result in [50] is only a special case of this scheme. Besides, the CCC calcu-
lated in this scheme not only involves the transmitted communication from a sender
to the receiver, but also contains one between two ministrants. Thus, from the point
of view of communication cost, this scheme may be useful not only in understanding
the essence of the classical communication in RSP process, but also expanding the
applied field of classical information science.
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