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Abstract Quantum computation, in particular Grover’s algorithm, has aroused a
great deal of interest since it allows for a quadratic speed-up to be obtained in search
procedures. Classical search procedures for an N element database require at most
O(N ) time complexity. Grover’s algorithm is able to find a solution with high prob-
ability in O(

√
N ) time through an amplitude amplification scheme. In this work we

draw elements from both classical and quantum computation to develop an alterna-
tive search proposal based on quantum entanglement detection schemes. In 2002,
Horodecki and Ekert proposed an efficient method for direct detection of quantum
entanglement. Our proposition to quantum search combines quantum entanglement
detection alongside entanglement inducing operators. The quantum search algorithm
relies on measuring a quantum superposition after having applied a unitary evolution.
We deviate from the standard method by focusing on fine-tuning a unitary operator
in order to infer the solution with certainty. Our proposal sacrifices space for speed
and depends on the mathematical properties of linear positive maps�which have not
been operationally characterized. Whether such a� can be easily determined remains
an open question.
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56 L. Tarrataca, A. Wichert

1 Introduction

Computer scientists are often faced with the task of constructing algorithms capable of
delivering a solution for a given problem. For some problems it is possible to engineer
algorithms capable of producing a solution with a number of computational steps that
is bounded by a polynomial nk where n is the length of the input and k some constant.
The class of problems for which a polynomial-time algorithm exists is known as P.
Problems belonging to P are usually seen as being efficiently solvable, i.e. tractable.
Class EQP represents the quantum equivalent of P.

For other problems it is possible to verify in polynomial-time if a given configura-
tion is a solution, although there are no known methods for efficiently calculating a
solution. For these type of problems, there is no alternative but to perform an exhaus-
tive search of all possible configurations. The class NP consists of those problems
whose possible configurations can be verified in polynomial-time. Clearly, P ⊆ NP
since the possibility of constructing a solution in polynomial time also implies that
a solution can be verified efficiently. One of the outstanding questions in computer
science consists in determining if the class NP is equivalent to the class P, i.e. P = NP?
Traditionally, approaches to answering this question have focused at a subclass of
NP, namely NP-complete problems. This subclass contains those problems which are
both NP and NP-hard. A problem is said to be NP-hard if an algorithm capable of
solving it can be translated into an adequate algorithm for any NP problem. By its own
definition, an efficient solution for a problem in NP-complete implies that an efficient
solution exists for all problems in NP.

The first clues that some problems which are classically hard may have an efficient
quantum solution were provided in [6]. Shor’s algorithm for efficient factorization
[27] reinforced this idea. Later, Grover’s search algorithm [9] provided an asymp-
totical quadratic speed-up over classical strategies. The quantum search algorithm
systematically increases the probability of obtaining a solution with each iteration.
After the algorithm has concluded, a measurement is performed in a quantum super-
position, in order to obtain a solution with high probability. The superposition state
represents the set of all possible results. Grover’s approach sparked interest by the sci-
entific community on whether it would be possible to devise a faster search algorithm.
Unfortunately, it was proved that the search problem cannot be solved underΩ(

√
N )

time [3] using standard quantum computation approaches.
In this work we present an alternative search method based on the principles of

tree search decomposition and quantum entanglement detection. Unlike traditional
approaches, we opt not to concentrate our efforts on measuring a quantum super-
position of possible values. Rather, we are more interested in exploiting the unitary
operator that is applied to a quantum superposition in order to infer possible solutions
with certainty. However, an implicit caveat exists associated to our quantum search
proposal. Namely, our system implies a trade-off between speed and space that will
become apparent in the following sections.

The next sections are organized as follows: Sect. 2 focuses on presenting the details
of an NP-complete problem, namely the Boolean satisfiability problem, alongside
classical tree search techniques of examining the problem space. Sect. 3 presents
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our hybrid approach, combining tree search decomposition alongside with quantum
entanglement detection schemes. Sect. 4 presents the conclusions of this work.

2 Traditional approaches to tackling NP-Complete problems

The satisfiability (SAT) problem was the first problem ever shown to be NP-complete
[4]. SAT asks whether a given boolean formula is satisfiable. Any polynomial-time
algorithm capable of solving SAT automatically enables an efficient solution for all of
NP. In complexity theory, the satisfiability problem is a boolean formula φ composed
of [5]

– n boolean variables: x1, x2, . . . , xn ;
– m boolean connectives: any boolean function with one or two inputs and one

output, such as ∧ (AND), ∨ (OR), ¬ (NOT), → (implication) and ↔(if and only
if);

– parentheses.

We are interested in determining a set of values for the variables of φ, i.e. variable
configuration, which cause the overall expression to be satisfiable, i.e. evaluate to true.
At any given point in time we need to consider the n variables alongside m gates, i.e.
we can verify any configuration in n + m time. However, the number of possible con-
figurations to consider grows exponentially with the cardinality of the variable set. As
an example lets consider the simple formula presented in Expression 1.

φ = (x1 ∧ x2) ∨ x3 (1)

The standard approach to solve such a problem would be to enumerate all possible
configurations of the m variables. This procedure can be better understood with the
help of a simple tree diagram such as the one illustrated in Fig. 1. At each depth level
a specific the possible values for a specific binary variable are considered, e.g. depth 0
considers the possible values for x1, depth 1 considers variable x2 and so on. With each
depth level an additional binary variable is taken into account. Considering n binary

Fig. 1 The possible paths for a binary search tree of depth 3
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variables requires examination of 2n possible leaf states, i.e. Ω(2n). In tree search
vocabulary these states are also known as paths. If the specific case of Expression 1
is mapped into the tree elements of Fig. 1 then paths 1,4,6,7 and 8 would evaluate to
true.

3 Approach

How can we proceed by developing an alternative approach to that of Grover’s? First
lets start by considering the following scenario: suppose we have a bipartite quantum
system respectively labeled as the query register, |q〉, and the answer register, |a〉,
acting on Hilbert space H = Hq ⊗ Hq . The query register is an n-qubit register
where possible values for the binary variables of the SAT problem will be setup, i.e.
|q〉 = |x1x2 · · · xn〉. Notice that in order to gain a quantum advantage over classical
computation we need to place |q〉 in a uniform superposition of the computation basis.
This can be done efficiently by applying the Hadamard transform H a total of n times
to the n-qubit state |0〉, i.e. H⊗n|0〉⊗n = 1√

2n

∑2n−1
x=0 |x〉. Such a procedure enables

the creation of a superposition containing an exponential number of states, each of
which representing a possible tree path, by only employing a polynomial number of
gates. The answer register contains a single qubit which is initialized to state |0〉. The
overall state of the system can thus be described as illustrated in Expression 2.

|q〉|a〉 = 1√
2n

2n−1∑

x=0

|x〉|0〉 (2)

Additionally, suppose that a quantum oracle with the form presented in Expression 3
is constructed. The auxiliary function φ : {0, 1}n → {0, 1} employed simply veri-
fies if an argument is a solution or not for a specific SAT instance, as illustrated by
Expression 4. We should be careful to point out that an efficient oracle responsible
for verifying the validity of a variable configuration for a specific φ can be easily
constructed by mapping the m boolean connectives of the network onto a reversible
circuit (see [2]) in order to ensure a unitary mapping.

O|q〉|a〉 = |q〉|a ⊕ φ(q)〉 (3)

φ(q) = φ(x1, x2, . . . , xn) =
{

1 if q evaluates to true
0 otherwise

(4)

If oracle O is applied to the combined state of Expression 2 a result like the one illus-
trated in Expression 5 may be obtained, where |ψ ′〉 denotes the overall superposition
evaluation. For simplification issues we assume that there exists at least a solution.
Naturally, some of the query values produce a solution, whilst others do not.
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|ψ ′〉 = 1√
2n

2n−1∑

x=0

O|x〉|0〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

| 00 · · · 0︸ ︷︷ ︸
nbits

〉|0〉

|00 · · · 1〉|0〉
...

|11 · · · 0〉|1〉
|11 · · · 1〉|0〉

(5)

From this point on the system’s state can no longer be expressed as a tensor product
between query and answer register, i.e. the system becomes entangled. Quantum entan-
glement is a key feature of quantum mechanics which details the connections between
subsystems of compound quantum systems. It was a key aspect of the quantum world
formalism proposed by von Neumann [24]. Although the intriguing impacts of quan-
tum inseparability were only later grasped by Einstein et al. [7] alongside Schrödinger
[26]. Quantum entanglement is also a key resource in quantum information.

Mathematically, we can describe the state of each register by tracing out the remain-
ing register, through the partial trace mechanism. In this case we are interested in the
overall state of the answer register. In order to calculate the partial trace of the answer
register we first need to calculate � the density operator of the quantum state presented
in Expression 5. The overall form for �a is illustrated in Expression 7

� = |ψ〉〈ψ |
= 1√

2n (|00 · · · 0〉|0〉 + · · · + |11 · · · 1〉|0〉)
1√
2n (〈00 · · · 0|〈0| + · · · + 〈11 · · · 1|〈0|)

= 1
2n |00 · · · 0〉|0〉(〈00 · · · 0|〈0| + · · · + 〈11 · · · 1|〈0|)
+ · · · +
1

2n |11 · · · 1〉|0〉(〈00 · · · 0|〈0| + · · · + 〈11 · · · 1|〈0|)

(6)

�a = Trq(�)

= 1
2n (〈00 · · · 0||00 · · · 0〉|0〉〈0| + 〈00 · · · 1||00 · · · 1〉|0〉〈0|
+ · · · +
〈11 · · · 0||11 · · · 0〉|1〉〈1| + 〈11 · · · 1||11 · · · 1〉|0〉〈0|)

= 1
2n

[
(2n − 1)|0〉〈0| + |1〉〈1|]

(7)

Generally, the result presented in Expression 6 can be improved if we take into account
the number of solutions. Accordingly, let k denote the overall number of solutions,
then �a takes the form shown in Expression 8. Notice that the overall state is separable
only when k = 0, i.e. no solution exists, or when k = 2n , each value belonging to
[0, 2n − 1] is a solution. Otherwise, the system is entangled.

�a = 1

2n

[
(2n − k)|0〉〈0| + k|1〉〈1|] (8)

Thus, the problem of determining whether or not a solution to a problem exists can be
reduced to the problem of determining whether the overall quantum state is separable
or entangled.
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3.1 Quantum entanglement detection

The quantum separability problem consists in determining if a given a density matrix
� representing a quantum state is entangled or separable [8]. Efficiently deciding on
the nature of such states has grabbed researchers attention and remains a problem of
crucial importance to the fields of quantum computation and information [18]. Gen-
erally speaking, quantum entanglement is studied in accordance with a varied mix
of properties (just to name a few of these: bipartite vs. multipartite systems, pure vs.
mixed states, bound entanglement; for exhaustive reviews please refer to [11,16,21]).
It is important to mention that the quantum separability question has been approached
from the classical and quantum perspectives. These approaches typically consider the
nature of the input (classical vs. quantum), and whether any required processing will
be performed on a classical or quantum computer [17]. This problem was shown to
be NP-hard classically [12]. However, as mentioned in [17] the processes involving
both quantum input and processing have not been thoroughly investigated.

In the case of our specific approach we would only need to consider bipartite quan-
tum systems with mixed states. As pointed out in [13] the mixed state requirement
stems from the fact that any potential laboratory demonstration of this approach would
have to deal with mixed states rather than pure ones, due to the uncontrolled inter-
actions with the environment. These requirements are present in one of the existing
quantum detection schemes, namely the one proposed in [15]. The method employed
by the authors is experimentally viable and provides for a direct detection mechanism
of quantum entanglement. Their approach is based on the theoretical foundations laid
down in [13]. The method determines whether a state � is separable or not, i.e. entan-
gled, based on the mathematical properties of linear positive maps acting on matrices.
More specifically [16], let Md → Md be the space of matrices of dimension d, a map
� : Md → Md is called positive if it is Hermitian and has non-negative spectrum.
Additionally, the map � is completely positive if and only if I ⊗ � is positive for
identity map I on any finite-dimensional system. A state � is separable if and only
if the result presented in Expression 9 is observed for all positive but not completely
positive maps � : Md → Md .

[I ⊗�](�) ≥ 0 (9)

Expression 9 cannot be directly used since it requires knowing state � beforehand.
Additionally, positive maps � cannot be directly implemented in laboratory. Fortu-
nately, it is possible to obtain a physically realizable map by mixing an appropriate
proportion of [I ⊗�] with a depolarizing map. This approach allows for a new map

[˜I ⊗�] to be obtained, which have been referred to as structural physical approxi-
mations. For more on this subject please refer to [28]. The separability criterion can
then be restated as follows [15]: � is separable if and only if for all positive maps �
the condition presented in Expression 10 is observed.

[˜I ⊗�](�) ≥ d2λ

d4λ+ 1
(10)
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Where λ corresponds to the most negative eigenvalue obtained when the induced map

[(I ⊗ I )⊗ (I ⊗�)] acts on the maximally entangled state of the form 1
d2

∑d2

i=1 |i〉|i〉.
Accordingly, Expression 10 states that the lowest eigenvalue of the transformed state

�′ = [˜I ⊗�](�) should be greater than d2λ
d4λ+1

for � to be separable.
The authors devised a method which allows for an estimate of the lowest eigen-

value to be obtained efficiently and directly. It requires that a joint measurement be
performed on N copies of state �′. The overall input density operator of the estimation
problem is �′⊗N , which exists on the N th tensor power H⊗N [20]. The error ε associ-
ated with the estimate of the lowest eigenvalue decreases exponentially with N . Such
a measurement can be represented as a quantum network implementing projections on
the symmetric and partially symmetric subspaces [15]. An efficient method addressing
these questions was proposed in [1] requiring a number of auxiliary gates that grows
quadratically with the dimension of the input, i.e. O(n2), where n is the number of bits.
If �′ represents the state of an n qubit register, then each additional tensor power will
mean that another n bits should be taken into account. Consequently, an �′⊗N system
will have a total of N × n bits. Which means that the quantum network responsible
for estimating the lowest eigenvalue will have O(N 2n2) complexity.

Clearly, this approach is dependent on map � which have not been operationally
characterized so far [14]. As pointed out in [16] in general the set of positive but not
completely positive maps is not characterized and it involves a hard problem in con-
temporary linear algebra. However, for low dimensional systems, namely those with
dimension 2 ⊗ 2 or 2 ⊗ 3, the positive partial transpose map proposed in [25] can be
employed as the �. In [14] the authors draw attention to the fact that ‘Recently, the
progress in this direction has been made [22,23] which suggests that tests of separa-
bility based on positive maps will soon acquire practical meaning beyond the scope
of two-qubit systems.” Whether such a map � acting on Hd ⊗ Hd quantum systems
can be determined remains an open question.

3.2 Subset entanglement inducing oracle

Grover’s algorithm provides anΩ(
√

N ) lower bound when employing oracles search-
ing on the full range of searchable items. It would be desirable to develop an alternative
search approach not solely based on amplitude amplification schemes. In classical tree
search it is a standard technique to start by analyzing subtrees and deciding whether
these may eventually lead to a solution. Based on problem requirements it is possible to
automatically exclude, i.e. prune, certain subtrees. The act of pruning may eventually
be responsible for large sections of the tree to be discarded, and therefore allow the
search to terminate faster. We will draw inspiration from these concepts of classical
search in order to develop our approach to quantum hierarchical search.

Quantum algorithms employing traditional oracles provide at most a polynomial
advantage over classical algorithms for total functions, i.e. functions defined for the
whole of {0, 1}n , where n is the number of bits. The oracle model contemplates sy-
perpolynomial advantage but only when partial functions are defined which operate
on a subset of {0, 1}n [19]. Notice that classical search can be viewed as a procedure
which evaluates subsets of an initial range. Since in quantum computation the oracle
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operator can be applied to a superposition of computational basis, evaluating subsets
is equivalent to only evaluating specific ranges of the superposition. Accordingly, it
is possible to develop an oracle responsible for evaluating only a certain subset of
the initial range [0, 2n − 1] allowed with n qubits. Although we are only interested
in evaluating a specific subset there are other alternatives for trying to decompose a
quantum search space. For instance, Grover concluded in [10] that determining the
first n bits of a solution by employing amplitude amplification schemes is only slightly
easier than determining the total bits.

This model for a range specific entanglement inducing oracle can be described
as presented in Expression 11 which employs an auxiliary function f[a,b](q) defined
in Expression 12. In the case of the SAT problem it would be convenient to define
f[a,b](q) as φ[a,b](q).

O[a,b]|q〉|a〉 = |q〉|a ⊕ f[a,b](q)〉 (11)

f[a,b](q) =
{

1 if f (q) is a solution and q ∈ [a, b]
0 otherwise

(12)

As was previously pointed out, the oracle evaluation process has the overall effect of
entangling the quantum registers. By testing whether the oracle has induced, or not,
quantum entanglement it is possible to check for the presence of a solution state in
a given range. This mechanism allows for ranges containing solutions to be further
decomposed. In contrast, the absence of a solution allows for a specific range to be
pruned from the overall search procedure.

Ideally, the entanglement detection scheme should present some type of polynomial
upper-bound behavior such as the one described in the previous section.1 If the state
� resulting from applying an oracle O with the form presented in Expression 12 is
separable then the range evaluated can automatically be discarded. Discarding a wide
range of potential candidates en masse can be understood as the classical tree search
operation of pruning certain subtrees. On the other hand, if � is entangled then it is
possible to further decompose the associated range. Eventually, this sort of recursive
branch and bound procedure, by constantly readjusting the range of oracle O , will
“zoom in” on a solution. Additionally, it would be a relatively easy task to search
problem spaces comprising of multiple solutions k. Namely, one would simply need
to systematically focus on previously non-expanded but solution-bearing ranges.

Notice that this approach requires a new oracle to be defined with each iteration in
terms of a specific subset that may be entangled. The set of oracles applied throughout
the search can be viewed as a single “dynamic” oracle, which differs substantially from
the standard “static” oracle applied in quantum search. Additionally, in contrast with
Grover’s algorithm, we are not interested in performing an amplitude amplification
process, but rather we are concerned with decomposing the quantum search space.

1 The entanglement detection approach described in [15] requires the overall bipartite system to be d ⊗ d.
Consequently, the answer register |a〉 should have the same dimension than |q〉, i.e. n bits. This requirement
has no direct consequences in the overall oracle since unitary evolution can still be assured.
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3.3 On the growth of the number of copies required

Clearly, one question still lingers: What can be said about the number of copies N
of the system that are required? According to [19] any procedure that on input |ψZ 〉
guesses whether Z = X or Z = Y will guess correctly with probbability at most
1 − ε = 1

2 + 1
2

√
1 − δ2 where δ = |〈ψx ||ψy〉|. For our particular case we are inter-

ested in distinguishing two specific cases, namely:

– |ψsolution〉 which results from applying U |ψ〉 when one solution exists;
– |ψno−solution〉 which results from applying U |ψ〉 when no solution exists;

For search spaces of dimension L the initial amplitudes αi associated with each com-
putational basis i of the superposition |ψ〉 is 1√

L
. After having applied oracle O the

two states remain exactly equal except for two computational basis where the ampli-
tudes permuted. This means that when calculating the inner product the permuted
computational basis will sum up to zero. Accordingly, the inner product will sum the

value 1√
L

2
a total of L − 1 times, i.e.

δ = 〈ψsolution||ψno−solution〉 = L − 1

L
(13)

Given a tensor product of N items, Expression 13 evolves into Expression 14. The
three-dimensional plot of δ⊗N as a function of L ∈ [21, 230] and N ∈ [21, 230] is
illustrated in Fig. 2.

δ⊗N = 〈ψsolution||ψno−solution〉⊗N = L − 1

L

N

(14)

In order for these states to be distinguished with significant probability the inner prod-
uct δ⊗N presented in Expression 14 must be made small. However, in order to achieve
this one needs to choose a number of copies N that grows in accordance with the
dimension of the search space L , i.e. N = O(L). Consequently, this approach would
not provide for any gains over classical search.
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1 109

N

0.0

0.5

1.0

1
1

L

N

Fig. 2 Three-dimensional plot of δ⊗N as a function of L ∈ [21, 230] and N ∈ [21, 230]
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3.4 Consequences for efficient entanglement detection schemes

What would be the consequences if the number of system copies N was not a function
of the search space? Suppose the proposed search procedure is executed on n-qubits
placed on a superposition. Initially, the algorithm has to decompose the [0, 2n −1] ini-
tial range. Lets assume that any specific range being considered is split in half. Accord-
ingly, the procedure needs to verify if evaluating the elements in [0, 2n−1−1] produces
an entangled quantum state �. If this is found to be true then subset [0, 2n−1 − 1] can
be also split in half and evaluated. Otherwise, subset [2n−1 − 1, 2n − 1] needs to be
decomposed. Independently of what subset induces entanglement, the algorithm is
able to prune half of the 2n initial states, i.e. 2n/2. Accordingly, for iteration i , the
oracle is able to focus on 2n/2i states. Clearly, when i = n a single state is being con-
sidered and consequently a solution can be determined with certainty by employing
O(n) oracle queries. Associated with each oracle query is the quantum entanglement
detection scheme bringing the overall complexity of our approach to O(N 2n3). In the
case of the SAT problem we have to consider the costs associated with each oracle
query, respectively n + m. Consequently, a solution for SAT would be calculated in
O(N 2n4 + N 2n3m) quantum polynomial time.

It is our believe that it is not possible to efficiently detect quantum entanglement. If
we take into account the simplicity of the search procedure designed in Sect. 3.2 then
if such a method existed we could efficiently search, i.e. in quantum polynomial time,
a problem space of dimension d. Accordingly, we can define the following conjecture.

Quantum entanglement detection conjecture—It is not possible to efficiently detect
quantum entanglement non-classically since this would automatically imply that a
simple algorithm exists proving that NP=EQP.

The above conjecture stresses the notion that there appears to be a relationship between
entanglement detection and search in terms of computational complexity, i.e. both
problems appear to be equally difficult. Indeed, since quantum entanglement detec-
tion via classical methods was shown to be NP-hard [12] any polynomial classical
algorithm capable of solving NP-hard problems would allow for efficient mappings
capable of tackling both quantum entanglement detection as well as exponential-
growth search problems. From a quantum computation perspective it appears that, by
employing such an entanglement detection scheme, there exists a direct relationship
where a trade-off between space and time occurs. Nonetheless, this approach can still
be perceived as a form of quantum computation, although one requiring a careful
examination of the total time and space resources employed.

4 Conclusions

Shor’s algorithm provided a superpolynomial speed-up by exploiting a hidden struc-
ture of the problem [27]. However, traditional tree search mechanisms are employed
when such an element of structure cannot be determined. Quantum computation
provides at best a polynomial speed-up when oracles mapping total functions are
employed. Superpolynomial speed-up is achievable but only if a subset of a functions
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domain is analyzed. In this work we focused on the dynamics of partial function uni-
tary evolution alongside quantum entanglement detection schemes. The general char-
acterization of positive but not completely positive linear maps� alongside quantum
entanglement detection schemes and partial range entanglement inducing operators
may eventually be responsible for producing efficient algorithmic solutions capable
of searching exponential-growth search spaces. Although some research has already
been carried out, further thorough analysis into the subject is still required. However,
given that N = O(L) current methods cannot be employed in order to speed up
quantum search.
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