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Abstract Recently, Long proposed a new type of quantum computers called duality
computers or duality quantum computers. The duality computers based on the general
quantum interference principle are much more powerful than an ordinary quantum
computer. A mathematical theory for the duality computers has been presented by
Gudder. However, he pointed out that a paradoxical situation of the mathematical the-
ory occurs between the mixed state formalism and the pure state formalism. This paper
argues for Gudder’s mathematical theory of the duality computers for the mixed state
formalism. First, we point out two problems existing in the pure state description of the
duality computers. Then, we present a new mathematical theory of the duality com-
puters for the pure state formalism according with Gudder’s mixed state description,
generalize the new mathematical theory of the duality computers in the density matrix
formalism, and discuss some basic properties of the divider operators and combiner
operators of the duality computers. The new mathematical theory can conquer the two
problems mentioned above. Finally, we find that the nonunitary operations can be per-
formed on every path of a quantum wave divider of the duality computers. Especially,
we discuss in detail that the subwaves interact with environment by a CNOT gate.
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38 X. Zou et al.

1 Introduction

Recently Long suggested a new type of quantum computers called duality computers
or duality quantum computers [1]. The latest development of the duality computer
theory can be found in Long’s review article [2]. The duality computers based on the
general quantum interference principle is much more powerful than an ordinary quan-
tum computer. Compared to an ordinary quantum computer, the duality computers are
a moving quantum computer passing through a multi-slit. In a duality computer, there
exist two new computing gates, the quantum wave divider (QWD) and the quantum
wave combiner (QWC), in addition to the usual universal gates for quantum comput-
ers. A quantum wave can be divided by QWD and recombined by QWC. The duality
computers offer the capability to perform separate operations on the subwaves coming
out of the different slits, in the so-called duality parallelism. This enables us to perform
computation using not only unitary operations, but also linear combinations of unitary
operations.

Because a duality computer is more powerful than an ordinary quantum computer,
it is interesting to many scholars. Many researchers have investigated its mathemati-
cal theory and discussed its application [2–11]. First, Gudder gave the mathematical
theory for the duality computers [3]. He provided two descriptions for the mathe-
matical theory of the duality computers. One is in the pure state formalism and the
other is in the mixed state formalism. Also, he pointed out that a paradoxical situa-
tion occurs between the mixed state formalism and the pure state formalism. Then,
to solve the paradox, Long gave the mathematical theory of the duality computers in the
density matrix formalism which is in accordance with Gudder’s pure state
description [4].

Though the advantage of the duality computers, such as “unsorted database search
problem may be solved by using only a single query” and “all NP-complete prob-
lems may have polynomial algorithms” in the duality computers, is lost in Gudder’s
mathematical theory for the mixed state formalism, there exits other merit in the
mathematical theory for mixed state formalism pointed out by Gudder [3]. The math-
ematical theory for the mixed state formalism has been studied by some researchers
[5–7].

In this paper, we argue for Gudder’s mathematical theory for the mixed state for-
malism. First, we point out some problems existing in Gudder’s pure state description
of the mathematical theory of the duality computers. Then, to solve the paradox in Ref.
[3], we construct a new mathematical theory of the duality computers in the pure state
formalism according with Gudder’s mixed state description. The new mathematical
theory can conquer the problems mentioned above. Finally, we point out that, based
on our mathematical theory, nonunitary operations can be performed in every path of
a QWD of the duality computers.

This paper is organized as follows. In Sect. 2, we point out some problems existing
in Gudder’s pure state description of the duality computers. In Sect. 3, we construct a
new mathematical theory of the duality computers in the pure state formalism accord-
ing with Gudder’s mixed state description. In Sect. 4, we discuss other operations
in addition to the unitary operations. The last section summarizes our work in this
paper.
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On mathematical theory of the duality computers 39

2 Some problems in the pure state description

Gudder pointed out that a paradoxical situation occurs between the mathematical the-
ories for the mixed state formalism and the pure state formalism [3]. Therefore, only
one of these two mathematical theories can be correct. We argue for Gudder’s math-
ematical theory for mixed state formalism by pointing out two problems in his pure
state description of the mathematical theory of the duality computers.

For convenience, we give the mathematical theory of the duality computers in the
pure state formalism in Refs. [3] and [4], first. Let H be a complex Hilbert space and
let p = (p1, . . . , pn) be a probability distribution, i.e., pi > 0, i = 1, . . . , n, and∑

pi = 1. Similarly to Ref. [3], we write H⊕n
for ⊕n

i=1 Hi where Hi = H, i =
1, . . . , n. The divider operator Dp : H → H⊕n

is defined as

Dp |ψ〉 = 1

‖p‖ ⊕n
i=1 (pi |ψ〉), (1)

where ‖p‖ =
√∑

p2
i .

The combiner operation C p : H⊕n → H is defined as

C p(|ψ1〉 ⊕ · · · ⊕ |ψn〉) = ‖p‖
n∑

i=1

|ψi 〉. (2)

From the definitions of the Dp and C p, we can find two problems existing in them.
First, the pure state formalism description of the duality computers cannot explain

well the results of Long’s duality quantum search algorithm [1] when there is not a
marked state in the database. When there is not a marked state in the database, the
duality quantum search algorithm [1] is described in the following.

(1) We prepare the initial state of the duality computers:

|ψ0〉 = 1√
N

N−1∑

i=0

|i〉 = 1√
N
(|0〉 + |1〉 + · · · + |N − 1〉). (3)

(2) Let the duality computers go through a QWD. Then it divides the wave into two
subwaves as follows:

|ψu〉 = 1

2
√

N

N−1∑

i=0

|i〉 = 1

2
√

N
(|0〉 + |1〉 + · · · + |N − 1〉), (4)

|ψd〉 = 1

2
√

N

N−1∑

i=0

|i〉 = 1

2
√

N
(|0〉 + |1〉 + · · · + |N − 1〉). (5)
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40 X. Zou et al.

(3) Apply the query to the lower-path subwave |ψd〉, and then |ψd〉 is changed to

|ψd〉′ = − 1

2
√

N

N−1∑

i=0

|i〉 = − 1

2
√

N
(|0〉 + |1〉 + · · · + |N − 1〉). (6)

(4) Combine the subwaves at the QWC, then the wave becomes

|ψ f 〉 = 1√
N

N−1∑

i=0

|i〉 − 1√
N

N−1∑

i=0

|i〉 = 0
N−1∑

i=0

|i〉 = 0. (7)

Similarly, when p = ( 1
2 ,

1
2

)
and U1 = −U2, Eq. 8 in Ref. [4] becomes

C p

(
1

2
U1ρU †

1 ⊕ 1

2
U2ρU †

2

)

C†
p = √

2

(
1

2
U1 + 1

2
U2

)

ρ

(
1

2
U1 + 1

2
U2

)†

= 0, (8)

where U † denotes the Hermitian conjugate of U .

Notice that the results |ψ f 〉 = 0 and C p

(
1
2U1ρU †

1 ⊕ 1
2U2ρU †

2

)
C†

p = 0 do not

correspond with the physical fact. As is well known, in quantum mechanics, the coef-
ficients of any quantum state should be normalized, and a quantum state should be
located at one of its potential energy level when it is measured.

Statement 1 Equation 7 in Ref. [4] should be DpρD†
p = 1

‖P‖2 ⊕ p2
i ρ.

Second, the pure state formalism description of the duality computers can not
explain well the difference between the results of reusing a QWD on one of pathes of
another QWD and using a single QWD. For example, let the probability distribution
p = ( 1

2 ,
1
4 ,

1
4 ) and |ψ〉 a pure state. After going through a QWD with the probability

distribution p, |ψ〉 is changed to

|ψ1〉 =
√

8

3

(
1

2
|ψ〉 ⊕ 1

4
|ψ〉 ⊕ 1

4
|ψ〉

)

=
√

2

3
|ψ〉 ⊕

√
1

6
|ψ〉 ⊕

√
1

6
|ψ〉. (9)

Intuitively, the result is equal to that the quantum state |ψ〉 goes through a QWD
with the probability distribution p′ = ( 1

2 ,
1
2 ) and then the lower subwave goes through

another QWD with the probability distribution p′. It can be described as follows.
After going through a QWD with the probability distribution p′, the quantum state

|ψ〉 is changed to

|ψ2〉 = √
2

(
1

2
|ψ〉 ⊕ 1

2
|ψ〉

)

. (10)

Then, the lower subwave going through a QWD with the probability distribution
p′, the quantum state |ψ2〉 is changed to

|ψ3〉=
√

2

(
1

2
|ψ〉 ⊕ 1

2

(√
2

(
1

2
|ψ〉 ⊕ 1

2
|ψ〉

)))

=
√

2

2
|ψ〉 ⊕ 1

2
|ψ〉 ⊕ 1

2
|ψ〉. (11)
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On mathematical theory of the duality computers 41

From the above discussion, these two results |ψ1〉 and |ψ3〉 are not equal. This
contradicts with our intuition.

Accordingly, according to the mathematical theory in the pure state description in
Refs. [3] and [4], the combiner operator C p cannot combine partial subwaves of a
QWD.

3 Mathematical theory of the duality computers

In this section, we give a new mathematical theory of the duality computers in the
pure state formalism according with Gudder’s mixed state description [3]. Then, we
generalize the mathematical theory of the duality computers in the density matrix
formalism, and discuss some basic properties of the divider operators and combiner
operators of the duality computers. By the properties of the divider operators and
combiner operators, we obtain that the new mathematical theory can conquer the two
problems mentioned in Sect. 2.

If the input state of the duality computers is a mixed state, according to Gudder’s
theory [3], the divider operator Dp is

DpρD†
p = ⊕piρ, (12)

where p = (p1, . . . , pn) is a probability distribution and ρ is the density matrix of
the input state. The combiner operator C p is

C p(⊕piρi )C
†
p =

∑
piρi , (13)

where ρi is a density matrix, i = 1, . . . , n. Clearly, when ρi = ρ,C p is the inverse of
the divider operator Dp.

Let H be a complex Hilbert space and let p = (p1, . . . , pn) be a probability
distribution. We redefine the divider operator, still denoted by Dp : H → H⊕n

as

Dp |ψ〉 = ⊕n
i=1

(√
pi |ψ〉) . (14)

It is easy to show that the divider operator Dp defined by us, in the pure state formalism
description, accords with Gudder’s mixed state description.

In accordance with the divider operator Dp defined by us in the pure state formal-
ism and the combiner operator C p defined by Gudder in the mixed state formalism,
the combiner operator C , in the pure state formalism, is defined as: ∀|ψ〉 ∈ H and
‖ψ‖ = 1,∀qi > 0, i = 1, . . . ,m, and

∑
q2

i ≤ 1,

C(⊕qi |ψ〉) =
√

∑
q2

i |ψ〉. (15)

Because the above definition only needs the condition
∑

q2
i ≤ 1, the combiner opera-

tor C can combine partial subwaves of a QWD. However, this definition requires that
subwaves in all pathes are attenuated copies of |ψ〉. In other words, the difference of
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subwaves in all pathes is only the coefficients and the coefficients must be positive.
The combiner operator C in density matrix formalism is

C(⊕qiρi )C
† =

∑
qiρi , (16)

where ρi is a density matrix and qi > 0, i = 1, . . . ,m, and
∑

q2
i ≤ 1.

Clearly, the combiner operator C defined by us in density matrix formalism is a gen-
eralization of C p for the mixed states in Ref. [3]. Also, we use C p to denote the inverse
of Dp, the special case of the combiner operator C when qi = √

pi , i = 1, . . . , n.
Now, we give some basic properties of the divider operator Dp and the combiner

operator C in the pure state formalism description.

Theorem 3.1 The divider operator Dp in the pure state formalism description is a
linear isometry. Therefore, Dp is a unitary operator from H onto its range R(Dp).

Proof It is clear that Dp is linear. Let (·, ·) denote the inner product on H . Similarly
to the proof of Lemma 2.1 in Ref. [3], ∀|ψ〉, |φ〉 ∈ H ,

(
Dp|ψ〉, Dp|φ〉) = (⊕ (√

pi |ψ〉) ,⊕ (√
pi |φ〉))

=
∑

pi (|ψ〉, |φ〉) = (|ψ〉, |φ〉) . (17)

Therefore, Dp is an isometry. Hence, Dp is a linear isometry. Furthermore, Dp is a
unitary operator from H onto its range R(Dp). 
�
Theorem 3.2 The combiner operator C in the pure state formalism description is a
linear isometry.

Proof It is clear that C is linear. Similarly to the proof of Lemma 2.2 in Ref. [3], we
have that, ∀|ψ〉, |φ〉 ∈ H ,

(q1|ψ〉 ⊕ · · · ⊕ qm |ψ〉, q1|φ〉 ⊕ · · · ⊕ qm |φ〉) =
∑

q2
i (|ψ〉, |φ〉), (18)

and

(C(q1|ψ〉 ⊕ · · · ⊕ qm |ψ〉),C(q1|φ〉 ⊕ · · · ⊕ qm |φ〉))

=
(√

∑
q2

i |ψ〉,
√

∑
q2

i |φ〉
)

=
∑

q2
i (|ψ〉, |φ〉). (19)

So, C is an isometry. 
�
Theorem 3.3 The combiner operator C p in the pure state formalism description is a

linear isometry, and C p = D†
p.

Proof From Theorem 3.2, we have that the combiner operator C p in the pure state
formalism description is a linear isometry.
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We can easily obtain

C p Dp |ψ〉 = C p
(⊕ (√

pi |ψ〉)) =
√

∑
pi |ψ〉 = |ψ〉. (20)

Therefore, C p Dp = IH where IH is the identity operator on H . In terms of Dp being
a unitary operator, we obtain that C p = D†

p. 
�
Statement 2 Theorem 2.3, Corollary 2.4, Theorem 2.5, and Corollary 2.6 in Ref.

[3] are also true.

Theorem 3.4 Let p = (p1, . . . , pn) be a probability distribution and ρi a density
matrix, i = 1, . . . , n. Then

∑
piρi is a density matrix.

Proof Straightforward. 
�
From Theorem 3.4, we know that a quantum state going through a QWD, doing

unitary operation on some subwaves, and going through a QWC (the inverse of the
QWD) in turn is also a quantum state. Consequently, the first problem mentioned in
Sect. 2 does not exist in the new mathematical theory of the duality computers. Notice
that a pure state going through a QWD, doing unitary operations on some subwaves,
and going through a QWC in turn may not be a pure state.

Theorem 3.5 According to the new mathematical theory of the duality computers,
the following two cases are equal.

Case 1: A quantum wave is divided by a QWD Dp with p = (p1, . . . , pn) and do
unitary operation Ui on the i th path of Dp. Then, the first subwave is divided
by another QWD Dq with q = (q1, . . . , qm) and does unitary operation Vj

on the j th sub-path of Dq ;
Case 2: A quantum wave is divided by a QWD Dr with r = (p1q1, . . . , p1qm,

p2, . . . , pn) and does unitary operation Wk on the kth path of Dr , where

Wk =
{

VkU1, k = 1, . . . ,m,
Uk−m+1, k = m + 1, . . . ,m + n − 1.

Proof Case 1. Let ρ be the density matrix of the input quantum wave. The operation
process of Case 1 is described in the following.

(1) Let the duality computers go through the first QWD Dp. Then it divides the
quantum wave ρ into n subwaves:

DpρD†
p = ⊕n

i=1 piρ. (21)

(2) After Ui being used to the i th subwave of Dp, i = 1, . . . , n, these subwaves is
changed to ⊕n

i=1 piUiρU †
i .

(3) After the first subwave going through the second QWD Dq , it is changed to

(
p1 DqU1ρU †

1 D†
q

)
=

(
p1q1U1ρU †

1 ⊕ · · · ⊕ p1qmU1ρU †
1

)
. (22)
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(4) After Vj being used to the j th sub-subwave of Dq , j = 1, . . . ,m, these m
sub-subwaves is changed to

⊕m
j=1 p1q j VjU1ρU †

1 V †
j .

The final global quantum state is

(
⊕m

j=1 p1q j VjU1ρU †
1 V †

j

)
⊕

(
⊕n

i=2

(
p jU jρU †

j

))

=
(

p1q1V1U1ρU †
1 V †

1 ⊕ · · · ⊕ p1qm VmU1ρU †
1 V †

m

)

⊕
(

p2U2ρU †
2 ⊕ · · · ⊕ pnUnρU †

n

)
. (23)

Case 2. It is easily obtained that r is a probability distribution and Wk is a unitary
operator, k = 1, . . . ,m + n − 1. The operation process of Case 2 is described in the
following.

(1) The duality computers going through the QWD Dr , the quantum wave is divided
into m + n − 1 subwaves:

DrρD†
r = (p1q1ρ ⊕ · · · ⊕ p1qmρ ⊕ p2ρ ⊕ · · · ⊕ pnρ). (24)

(2) After Wk being used to the kth subwave of Dr , k = 1, . . . ,m + n − 1, these
subwaves are changed to

(
p1q1W1ρW †

1 ⊕ · · · ⊕ p1qm WmρW †
m ⊕ p2Wm+1ρW †

m+1 ⊕ · · ·
⊕pnWm+n−1ρW †

m+n−1

)
=

(
p1q1V1U1ρU †

1 V †
1 ⊕ · · · ⊕ p1qm VmU1ρU †

1 V †
m

)

⊕
(

p2U2ρU †
2 ⊕ · · · ⊕ pnUnρU †

n

)
. (25)

Contrasting Eqs. 23 and 25, we finish the proof. 
�
By the proof of Theorem 3.5, if the QWD Dq in Case 2 is on the i th path of the

QWD Dp, i = 2, . . . , n, the corresponding conclusion is also true.
From the special case of Theorem 3.5 when Ui = Vj = IH , i = 1, . . . , n, j =

1, . . . ,m, we know that the second problem mentioned in Sect.2 does not exist in the
new mathematical theory of the duality computers.

4 Nonunitary operations in the duality computers

Previous works on the duality computers usually consider the unitary operations on
subwaves. In this section, we discuss nonunitary operations on some pathes of a QWD.
As is well known, there are nonunitary operators in quantum theory, such as taking
partial trace after interacting with environment. The basic interaction is the CNOT
operation. We discuss that a subwave interacts with other qubits in the following.
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|

| u

| d

QWD QWC

| The final state of |

|

Fig. 1 The subwave is the aim bit

For simplicity, we only discuss the case that after a qubit goes through a QWD
Dp, p = ( 1

2 ,
1
2 ), one subwave interacts with another qubit by a CNOT gate.

First, we consider the case that the first subwave is the aim bit of the CNOT gate.
This model is pictured in Fig. 1.

The initial state is

|ϕ〉 ⊗ |ψ〉 = (a|0〉 + b|1〉)⊗ (x |0〉 + y|1〉). (26)

After |ψ〉 goes through the QWD Dp, |ψ〉 is changed to

Dp |ψ〉 = |ψu〉 ⊕ |ψd〉 =
(

x√
2
|0〉 + y√

2
|1〉

)

⊕
(

x√
2
|0〉 + y√

2
|1〉

)

, (27)

and the global state is changed to

|ϕ〉 ⊗ (|ψu〉 ⊕ |ψd〉) = (a|0〉+ b|1〉)⊗
[(

x√
2
|0〉+ y√

2
|1〉

)

⊕
(

x√
2
|0〉+ y√

2
|1〉

)]

=
[

(a|0〉 + b|1〉)⊗
(

x√
2
|0〉 + y√

2
|1〉

)]

⊕
[

(a|0〉 + b|1〉)⊗
(

x√
2
|0〉 + y√

2
|1〉

)]

=
(

ax√
2
|00〉 + ay√

2
|01〉 + bx√

2
|10〉 + by√

2
|11〉

)

⊕
(

ax√
2
|00〉 + ay√

2
|01〉 + bx√

2
|10〉 + by√

2
|11〉

)

. (28)

After |ϕ〉 and |ψu〉 are interacted by a CONT gate, the global state is changed to

|µ〉 =
(

ax√
2
|00〉+ ay√

2
|01〉+ by√

2
|10〉+ bx√

2
|11〉

)

⊕
(

ax√
2
|00〉+ ay√

2
|01〉+ bx√

2
|10〉 + by√

2
|11〉

)

. (29)
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For describing this process clearly, we consider two kinds of special cases: |ϕ〉 = |0〉
and |ϕ〉 = |1〉.

(1) When |ϕ〉 = |0〉, the global state after the CONT gate is

|µ0〉 = |0〉
(

x√
2
|0〉 + y√

2
|1〉

)

⊕ |0〉
(

x√
2
|0〉 + y√

2
|1〉

)

. (30)

Hence, the final global state after the QWC is

|ν0〉 = |0〉
[

1

2
(x |0〉 + y|1〉)

]

+ |0〉
[

1

2
(x |0〉 + y|1〉)

]

= |0〉(x |0〉 + y|1〉) = |ϕ〉|ψ〉.
(31)

Thus, the density matrix of the final global state after the QWC is

ρ0 = |0〉〈0| ⊗ (x |0〉 + y|1〉)(x |0〉 + y|1〉)† = |ϕ〉〈ϕ| ⊗ |ψ〉〈ψ |. (32)

(2) When |ϕ〉 = |1〉, the global state after CONT gate is

µ1 = |1〉
(

y√
2
|0〉 + x√

2
|1〉

)

⊕ |1〉
(

x√
2
|0〉 + y√

2
|1〉

)

. (33)

Therefore, the density matrix of the final global state after the QWC is

ρ1 = |1〉〈1| ⊗
[

1

2
(y|0〉 + x |1〉)(y|0〉 + x |1〉)† + 1

2
(x |0〉 + y|1〉)(x |0〉 + y|1〉)†

]

,

(34)

i.e.,

ρ1 = |1〉〈1| ⊗
(

1

2
|0〉〈0| + yx + x y

2
|0〉〈1| + yx + x y

2
|1〉〈0| + 1

2
|1〉〈1|

)

. (35)

Unfortunately, the final global state after the QWC is not |a|2ρ0 +|b|2ρ1 in general
when |ϕ〉 = a|0〉 + b|1〉. When |ϕ〉 = a|0〉 + b|1〉, the density matrix of the global
state after the CONT gate is

ρC N OT =
(

ax√
2
|00〉 + ay√

2
|01〉 + by√

2
|10〉 + bx√

2
|11〉

)

×
(

ax√
2
|00〉 + ay√

2
|01〉 + by√

2
|10〉 + bx√

2
|11〉

)†

⊕
(

ax√
2
|00〉 + ay√

2
|01〉 + bx√

2
|10〉 + by√

2
|11〉

)

×
(

ax√
2
|00〉 + ay√

2
|01〉 + bx√

2
|10〉 + by√

2
|11〉

)†

. (36)

123



On mathematical theory of the duality computers 47

Thus, the final global state after the QWC is

ρ f inal =
(

ax√
2
|00〉+ ay√

2
|01〉+ by√

2
|10〉+ bx√

2
|11〉

)

×
(

ax√
2
|00〉+ ay√

2
|01〉+ by√

2
|10〉+ bx√

2
|11〉

)†

+
(

ax√
2
|00〉+ ay√

2
|01〉+ bx√

2
|10〉+ by√

2
|11〉

)

×
(

ax√
2
|00〉+ ay√

2
|01〉 + bx√

2
|10〉 + by√

2
|11〉

)†

, (37)

i.e.,

ρ f inal

= 1

2

⎛

⎜
⎜
⎝

2|ax |2 2|a|2x y ab|x |2 + abx y ab|x |2 + abx y
2|a|2 yx 2|ay|2 ab|y|2 + abyx ab|y|2 + abyx
ab|x |2 + abyx ab|y|2 + abx y |b|2 |b|2 yx + |b|2x y
ab|x |2 + abyx abyx + ab|y|2 |b|2x y + |b|2 yx |b|2

⎞

⎟
⎟
⎠ .

(38)

In particular, ρ f inal = ρ0 if |ϕ〉 = |0〉; ρ f inal = ρ1 if |ϕ〉 = |1〉.
Now, we consider the case that the second subwave is the control bit of the CNOT

gate. This model is pictured in the Fig. 2. Similarly to the discussion of the first case,
in the interest of convenience, let the initial state be

|ψ〉 ⊗ |ϕ〉 = (x |0〉 + y|1〉)⊗ (a|0〉 + b|1〉). (39)

After |ψ〉 goes through the QWD Dp, |ψ〉 is changed to

| u

| d

QWD QWC

| The final state of |

| |

Fig. 2 The subwave is the control bit
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Dp |ψ〉 = |ψu〉 ⊕ |ψd〉 =
(

x√
2
|0〉 + y√

2
|1〉

)

⊕
(

x√
2
|0〉 + y√

2
|1〉

)

, (40)

and the global state is changed to

(|ψu〉 ⊕ |ψd〉)⊗ |ϕ〉 =
[(

x√
2
|0〉+ y√

2
|1〉

)

⊕
(

x√
2
|0〉+ y√

2
|1〉

)]

⊗ (a|0〉+b|1〉)

=
[(

x√
2
|0〉 + y√

2
|1〉

)

⊗ (a|0〉 + b|1〉)
]

⊕
[(

x√
2
|0〉 + y√

2
|1〉

)

⊗ (a|0〉 + b|1〉)
]

=
(

ax√
2
|00〉 + bx√

2
|01〉 + ay√

2
|10〉 + by√

2
|11〉

)

⊕
(

ax√
2
|00〉 + bx√

2
|01〉 + ay√

2
|10〉 + by√

2
|11〉

)

. (41)

After |ψd〉 and |ϕ〉 are interacted by the CONT gate, the global state is changed to

µ =
(

ax√
2
|00〉 + bx√

2
|01〉 + ay√

2
|10〉 + by√

2
|11〉

)

⊕
(

ax√
2
|00〉 + bx√

2
|01〉 + by√

2
|10〉 + ay√

2
|11〉

)

. (42)

Thus, the density matrix of the global state after the CONT gate is

ρCNOT =
(

ax√
2
|00〉 + bx√

2
|01〉 + ay√

2
|10〉 + by√

2
|11〉

) (
ax√

2
|00〉 + bx√

2
|01〉

+ ay√
2
|10〉 + by√

2
|11〉

)†

⊕
(

ax√
2
|00〉 + bx√

2
|01〉 + by√

2
|10〉 + ay√

2
|11〉

)

×
(

ax√
2
|00〉 + bx√

2
|01〉 + by√

2
|10〉 + ay√

2
|11〉

)†

. (43)

Therefore, the final global state after the QWC is

ρ f inal =
(

ax√
2
|00〉 + bx√

2
|01〉 + ay√

2
|10〉 + by√

2
|11〉

)

×
(

ax√
2
|00〉 + bx√

2
|01〉 + ay√

2
|10〉 + by√

2
|11〉

)†

+
(

ax√
2
|00〉 + bx√

2
|01〉 + by√

2
|10〉 + ay√

2
|11〉

)

×
(

ax√
2
|00〉 + bx√

2
|01〉 + by√

2
|10〉 + ay√

2
|11〉

)†

, (44)
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i.e.,

ρ f inal

= 1

2

⎛

⎜
⎜
⎝

2|ax |2 2ab|x |2 |a|2x y + abx y |a|2x y + abx y
2ab|x |2 2|bx |2 abx y + |b|2x y abx y + |b|2x y
|a|2x y + abx y abx y + |b|2x y |ay|2 + |by|2 ab|y|2 + ab|y|2
|a|2x y + abx y abx y + |b|2x y ab|y|2 + ab|y|2 |ay|2 + |by|2

⎞

⎟
⎟
⎠ .

(45)

Especially, if |ϕ〉 = |0〉,

ρ f inal = ρ0 = 1

2

⎛

⎜
⎜
⎝

2|x |2 0 x y x y
0 0 0 0
x y 0 |y|2 0
x y 0 0 |y|2

⎞

⎟
⎟
⎠ ; (46)

if |ϕ〉 = |1〉,

ρ f inal = ρ1 = 1

2

⎛

⎜
⎜
⎝

0 0 0 0
0 2|x |2 x y x y
0 x y |y|2 0
0 x y 0 |y|2

⎞

⎟
⎟
⎠ . (47)

We can obtain the density matrix of the final state of |ψ〉 by taking corresponding
partial trace from ρ f inal .

Similarly, we can obtain the final global state ρ f inal when p is another probability
distribution and any one of the subwaves goes through the CNOT gate.

5 Conclusion

In this paper, we have followed Gudder’s mathematical theory of the duality com-
puters for the mixed state formalism, and his mixed state description of the duality
computers may more accord with quantum mechanics principle.

First, we have pointed out two existing problems in the pure state description of
the duality computers [3–5]. (1) The pure state description of the duality computers
can not explain well the result of Long’s duality quantum search algorithm [1] when
there is not a marked state in the database. (2) The pure state description of the duality
computers can not explain well the difference between the results of reusing a QWD
on one of pathes of another QWD and using a single QWD.

Then, we have given the mathematical theory of the duality computers for the pure
state formalism such that it accords with Gudder’s mixed state description and then
we have generalized the mathematical theory of the duality computers in the den-
sity matrix formalism. Also, we have discussed some basic properties of the divider
operators and the combiner operators of the duality computers.
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Finally, we have pointed out that each nonunitary operation can be performed on
every path of the QWD in a duality computer. In addition, we have discussed in detail
that a subwave interacts with environment by a CNOT gate.

From the foregoing discussion, we have known that the new mathematical theory
of the duality computers has not the two problems of the pure state description of
the duality computers in Refs. [3,4]. Though the duality computers will lose its super
capacity in the search problem of unsorted database and other NP-complete prob-
lems mentioned in Ref. [1], we may find new capacity of the duality computers by
performing nonunitary operation on subwaves.
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