
Quantum Inf Process (2008) 7:175–192
DOI 10.1007/s11128-008-0081-x

Heuristic methods to use don’t cares in automated
design of reversible and quantum logic circuits

Majid Mohammadi · Mohammad Eshghi

Published online: 23 August 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper introduces a broad concept of don’t cares in reversible and
quantum logic circuits. Don’t cares are classified into three categories: inputs, outputs,
and conditions. Some heuristic methods to use these don’t cares, when an optimization
algorithm such as genetic algorithm is used, are also presented. We show that, these
methods decrease the quantum cost of the reversible or quantum logic circuit, as well
as the design time of the resulting circuit. Some examples are also synthesized and
optimized using the don’t care concept and genetic algorithms.

Keywords Synthesis · Quantum circuit · Reversible logic · Optimization ·
Genetic algorithm

PACS 03.67.Lx · 03.67.Ta

1 Introduction

In 1961, Landauer [8] proved that irreversible processing of information in a logic
circuit can cause energy dissipations. This energy dissipation is equal to kTln 2 joules
per bit of information loss. Bennet [2] introduced reversible processing and showed
if the hardware and software of a digital computer are designed using the reversible
scheme, then the energy dissipation due to the irreversibility can be arbitrarily decrea-
sed. Therefore, there are forceful reasons to consider circuits composed of reversible

M. Mohammadi (B) · M. Eshghi
Shahid Beheshti University, Tehran, Iran
e-mail: m_mohamadi@sbu.ac.ir

M. Eshghi
e-mail: m-eshghi@sbu.ac.ir

123

176 M. Mohammadi, M. Eshghi

gates. Reversible circuits are of particular interest in low power CMOS design, optical
computing, quantum computing, and nanotechnology based systems.

Synthesis of reversible circuits differs significantly from synthesis using traditional
irreversible gates. Two restrictions are added to reversible circuits, namely fanout and
feedback are not allowed. Many algorithms have been proposed for synthesis of rever-
sible circuits [5,7,10,13]. Miller et al. [13] proposed a bidirectional, transformation-
based algorithm in 2003. Kerntopf [7] proposed a synthesis algorithm based on binary
decision diagram (BDD) for logical reversible circuits. Gupta et al. [5] presented an
algorithm using the positive polarity Reed–Muller expansion of a reversible function
to synthesize the function as a network of Toffoli gates. They used generalized Toffoli
gates (TOFn) to synthesize the reversible logic circuits.

Some automated reversible logic synthesis methods using optimization algorithms,
such as genetic algorithms (GAs) are also presented [10,11,14]. In this approach, the
global optimization characteristic of GA [3] is used to synthesize reversible circuits,
to obtain optimized or near optimized circuits.

When defining logical functions, there are inputs whose corresponding outputs
are not determined. That is, the truth table of the function is not completely defined.
Conventionally, these patterns are called “don’t care conditions”. In reversible or
quantum logic circuits, there are also some inputs or outputs whose values are not
important. These extra inputs or outputs are usually added to the circuit to maintain
the reversibility condition. Traditionally, these added inputs and outputs are called
“constant inputs” and “garbage outputs”, respectively [12].

Although, don’t cares (DCs) in reversible logic circuits are referenced in some
papers [4,15], the usage of DCs to obtain a minimal reversible circuit has not been
covered. In [14] we have proposed a method for using DC conditions to optimize a
reversible full adder. In this paper a broad concept of DCs is introduced and they are
classified to three categories. Some new heuristic methods to optimize a reversible or
quantum circuit using DCs are also proposed. We also present a behavioral description
of quantum V and V+ gates which allows us to construct a truth table for these quantum
gates.

The organization of this paper is as follows. Section 2 covers the background inclu-
ding reversible logic circuits, genetic algorithms and their application in the synthesis
of reversible circuits. The main topic of the paper, DCs in reversible and quantum
logic circuits, is presented in Sect. 3. In Sect. 4, the proposed method is applied to
some examples and their results are presented.

2 Background

2.1 Reversible gates and circuits

A function or a circuit is called reversible if there is a one-to-one correspondence
between its input and output assignments. If a reversible function is shown by a truth
table, then its output patterns must be the permutation of its input patterns. Conventio-
nal AND, OR, and XOR gates are not reversible. A reversible gate has equal number
of inputs and outputs. Generally, there are 2n! reversible gates for n Inputs.

123

Don’t cares in reversible and quantum logic circuits 177

Fig. 1 (a) Feynman gate. (b)
Copying a signal using Feynman
gate. (c) Toffoli gate. (d)
Quantum implementation of
Toffoli gate

B

A

Q=B

R= A.B ⊕ C C

P=A

(c)

P

Q

RV+V V

(d)

(a) (b)

B

0

B

B

B

A

Y=B

X=A ⊕ B

The well-known 2 × 2 Feynman gate, also known as CNOT, is shown in Fig. 1a.
It operates as a controlled NOT. If its control input (B) is ‘0’, then the gate acts as
a BUFFER gate. If its control input is ‘1’ the gate acts as a NOT gate. In reversible
circuits, a signal can be copied using the Feynman gate, if needed (Fig. 1b).

Figure 1c shows Toffoli 3 × 3 gate. This gate is universal, i.e. any reversible logic
circuit can be implemented using this gate.

Toffoli gate is generalized to n inputs and n outputs, named TOFn gate [13]. This
gate has n −1 control inputs and one target (or main) input/output. If all control inputs
are ‘1’, then the target output is the NOT of the target input; otherwise the target output
is equal to the target input. Using TOFn representation, The TOF2 and TOF1 gates
can be used instead of Feynman and NOT gates in the circuits, respectively. Other
specialized reversible logic gates are also proposed in papers such as [6] in which a
special reversible gate is proposed to design a reversible full adder.

2.2 Quantum gates and circuits

A quantum logic gate is a basic quantum circuit operating on a small number of
qubits. Quantum logic gates are reversible, unlike many classical logic gates. They are
represented by unitary matrices. The most common quantum gates operate on spaces
of one or two qubits. Quantum gates can be described by 2 × 2 or 4 × 4 matrices with
orthonormal rows. Some examples of quantum gates are Feynman, Toffoli, Fredkin,
Hadamard, and Phase Shifter gates. Some reversible logic gates, such as the Feynman,
Toffoli, and Fredkin gates are directly mapped onto quantum logic gates [1].

The controlled-U gate is a gate that operates on two qubits in such a way that the
first qubit serves as a control (Eq. 1).

C(U) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

⎤
⎥⎥⎦ (1)

Figure 1d shows a quantum implementation of a 3 × 3 Toffoli gate. In this figure,
a V gate indicates the state of the qubits is multiplied by a 2 × 2 matrix (Eq. 2).

V =
[

0 1
1 0

]0.5

= 1 + i

2

[
1 −i

−i 1

]
(2)

123

178 M. Mohammadi, M. Eshghi

The V gate is also named square root of NOT gate (
√

NOT). V+ gate is the complex
conjugate transpose of V. The V and V+ quantum gates have some properties that are
shown in Eq. 3.

⎧⎨
⎩

V × V = NOT
V × V+ = V+ × V = I
V+ × V+ = NOT

(3)

These equations show that two V gates in series or two V+ gates in series are equivalent
to the NOT gate; and two V and V+ in series, are equivalent to an identity or a BUFFER
gate.

A quantum circuit consists of quantum gates which are interconnected without
fanout or feedback by quantum wires. It can be seen as a classical circuit along with
quantum data [1]. Classic reversible logic circuits can be realized using quantum
gates. This is useful whenever a classical process is needed in a quantum computer.
The set of quantum V, V+, and Feynman gates is a universal set for reversible logic
circuits [1].

Quantum cost (QC) is used to measure the complexity of a reversible or quantum
circuit [9]. The QC of a reversible circuit is defined as the number of 1 × 1 or 2 × 2
reversible quantum or logic gates that are needed to realize the circuit. 1×1 and 2 ×2
quantum or logic gates are primitives of quantum circuits. The QC of a primitive gate
is one, regardless of its internal structure. The Toffoli gate is realized by a minimum
of five 2 × 2 gates (Fig. 1d); therefore, its QC is five.

2.3 Automated synthesis of reversible or quantum logic circuits using genetic
algorithm

The automated synthesis of a reversible circuit using a searching algorithm, such as
GA, is a complex problem having a huge searching space. The number of combinations
for placing one Toffoli r × r gate in an n × n circuit (0 < r < n − 1), to synthesize a
reversible n × n circuit is expressed by Eq. 4.

ρ = n ·
n−1∑
r=0

(
n − 1

r

)
= n · 2n−1 (4)

If the number of gates required to design a circuit is m, then the number of possible
circuits is ρm . If the quantum controlled gates V and V+ are added to the set of Toffoli
r × r gates, then the number of possible circuits is (3ρ)m .

Genetic algorithms (GAs) have shown their efficiency in optimization and finding
the global minimum or maximum of a function, in an extensive searching space [3].
They are also used in the synthesis of reversible logic circuits [10,11,14]. In the
next subsections, a review of GA, the circuit coding, and the fitness function are
presented.

123

Don’t cares in reversible and quantum logic circuits 179

2.3.1 Genetic algorithm

Genetic algorithm is one of the well-known evolutionary algorithms in Soft Compu-
ting. Although GA is an optimization algorithm, it is also used in the optimal synthesis
of reversible logic circuits.

First, the variables of the search space have to be coded to a string of bits, named
the chromosome. Then, a population of chromosomes is produced and three basic GA
operators, as follows, are applied to them:

(a) The crossover operator selects two chromosomes randomly and exchanges some
of their corresponding segments.

(b) The mutation operator applies random changes to the selected chromosome, with
a specific probability, by randomly inverting some of its bits.

(c) The selection operator selects some of the good chromosomes for reproduction
of the next population. Selection directs the algorithm toward the optimum.

The genetic algorithm for reversible logic synthesis is shown in Fig. 2. First, a
population of chromosomes (circuits) is generated and initialized randomly. This po-
pulation has µ (between 20 and 100) members. Two operators of GA, mutation and
crossover, are used to generate λ new members, named offspring. Now, the population
has µ + λ members.

Then the fitness function is calculated for any chromosome. The selection operator
selects µ from µ + λ individuals. These µ selected individuals are considered the
parent set of the next generation. The algorithm continues until the fitness function
reaches an acceptable value.

2.3.2 Circuit coding

In the synthesis of a circuit using GA, each chromosome is a coded circuit. Choosing a
proper style to represent a circuit is an essential step in coding. To represent a reversible
circuit, two styles are available. One style is to show the circuit using some individual
gates connected together by wires. Another style shows the circuit using a series of
connected gates on some parallel lines similar to the music lines. These lines are the

Fig. 2 The synthesis genetic
algorithm Initiate a random population of µ individuals;

//Each individual is a quantum or reversible circuit

while termination condition not met

{

Produce λ new individuals {circuits} by crossover

and mutation

Evaluate the fitness of each of λ+µ individuals

Select µ better {less error} individuals for

reproduction

}

123

180 M. Mohammadi, M. Eshghi

Fig. 3 Coding of a reversible
gate

Gate
Type

Main
I/O

Ctrl.
I/O 1

Ctrl.
I/O 2 …

Ctrl.
I/O r

Fig. 4 An example for coding
of a Toffoli gate

0

1

2

Fig. 5 A chromosome
of a circuit with m gates

Gate m…Gate2Gate1

inputs/outputs of the circuit. The reversible gates are placed on these parallel lines.
Using this style, designing of a reversible circuit is similar to composing a music piece.
Figure 7a–d are samples of the music line style presentation of circuits.

To code a circuit, it is presumed as an n × n circuit with m gates, where n is the
number of inputs/outputs (number of parallel lines) and m is number of columns or
gates are placed on the parallel lines. We assume that only one reversible gate can be
placed on each column.

As shown in Fig. 3 each gate is coded with some fields in it. The first field indicates
the type of gate. The second field shows the binary number of the location of its main
input/output. If the music lines are numbered from 0 to n − 1, this code shows the line
number of the main output.

The next r fields show the binary number of the location of gate inputs. For example
if a 3 × 3 Toffoli gate is placed on three music lines as shown in Fig. 4, its code is
01,10,00,01 (01 is assumed the code of Toffoli gate).

One chromosome which contains m gates, can completely code a circuit (Fig. 5).

2.3.3 Fitness function

The Fitness function (FF) has many aspects of the circuits’ optimality. To achieve an
optimum circuit, the FF should be maximized. Since the FF has to be maximized, the
reciprocal of the error is used in some papers [10,11] as FF (Eq. 5).

F F = 1

1 + Error
(5)

In this paper, GA is designed to minimize a desired function, such as the error
function (EF). The Hamming distance (HD), shown in Eq. 6, is a good candidate for
the error function,

E F = H D =
∑

i

∑
j

∣∣Oi j − Si j
∣∣, (6)

where Oi is a row vector of the desired truth table and Si is a row vector of the truth
table of the synthesized circuit. Oi j is the j th element of the vector Oi and Si j is the

123

Don’t cares in reversible and quantum logic circuits 181

j th element of the vector Si . As suggested in some papers [10,11], the number of
gates, used to synthesize the circuit, can be added to the error function (Eq. 7).

E F = α · H D + β · m, (7)

where m is the number of gates and α and β are weighting factors, specifying the
significance of each item. Note that for a valid circuit, the HD must be zero; thus,
adding m to the error function may result in an invalid circuit. We present a solution
for this problem by presenting a modified genetic algorithm in Sect. 3.5.

3 Using DCs in designing reversible and quantum logic circuits

3.1 Classifying the DCs in the reversible logic circuits

Among the input patterns of a logic function, there are some patterns whose cor-
responding outputs are insignificant. This also occurs in traditional irreversible logic
functions. The designer can use these conditions to achieve a better design. These
conditions appear in reversible logic circuits, but can not be handled in the same man-
ner as the irreversible case. Since the desired function must be one-to-one, all function
values have to be defined at the start of the synthesis process. As a result, the designers
assign some values to the DC conditions using their experience or a trial and error
process [13].

Three types of DCs can be recognized in a reversible logic circuit: DC inputs, DC
conditions and DC outputs. The DC inputs are additional bits that are added to the
input part of the truth table to keep the reversibility of the function. Traditionally, they
are named “constant inputs” because their values can not be varied in the circuit. When
GA assumes these inputs as DC inputs, it has permission to specify their values to
achieve the minimum circuit. Table 5 illustrates this type of DCs. In this table R1, R2,
R3, and R4 are DC inputs.

The DC conditions correspond to the rows of the truth table whose main (not
garbage) outputs are DCs. When the values of some rows of the truth table are not
specified or are not important, they are assumed as DC conditions. These conditions
occur when some DC inputs for the function are assumed; however, this is not the
whole case. In other words, a circuit may have DC conditions while it doesn’t have
any DC inputs. Example 2 shows this type of DCs.

The DC outputs are additional outputs whose values are not important in any row of
the truth table. They may be added to the circuit to maintain its reversibility. Conven-
tionally, they are called garbage outputs. Table 4 illustrates this type of DCs. In this
table G1 and G2 are DC outputs.

3.2 Heuristic method for using DC outputs to obtain an optimum circuit

Any n × n reversible function can be considered as n functions of n input variables
(Fig. 6) with reversibility restrictions. The goal of synthesis is to design a circuit whose
outputs have the same functions as the desired functions, using the reversible gates.

123

182 M. Mohammadi, M. Eshghi

Fig. 6 An n × n reversible
function can be considered as n
functions f1, . . . , fn of inputs
x1, . . . , xn

x1
x2

xn

.

.

.

f1(x1,…,xn)
f2(x1,…,xn)

fn(x1,…,xn)

.

.

.

Reversible
n×n

function

The functions f1 to fn have to satisfy the reversibility of the desired functions for all
input vectors and the synthesized circuit has to have the fanout and loop limitations
for reversible circuits.

When a reversible function has some DC outputs, it means that some of these f1
to fn are not specified or their values are not significant. Without loss of generality
we assume that the reversible function has only one main output (f1) and n − 1 DC
outputs (f2, . . . , fn). In this case, it is enough to design one function (f1) using the
synthesis tool. The designed circuit for f1 is simpler than a circuit which implements
all f1 to fn functions. The circuit for f1 is not more complex than the circuit which
implements whole functions; because f1− fn circuit is also an answer to the f1 circuit.
Actually, the worst case occurs when the obtained circuit for f1 alone is the same as
the circuit which implements whole functions.

If we restrict the synthesis algorithm to implement f1, can we guarantee the re-
versibility of the obtained circuit? The answer is affirmative, because our circuits are
composed of reversible gates which are placed on music line style (Sect. 2.3.2). In
these circuits, designed by GA, the reversibility restrictions, namely fanout and loop
limitations, are also guaranteed.

Therefore to obtain a simpler circuit for a function which has DC outputs, we limit
the synthesis algorithm to implement the care output functions and discard the DC
outputs. To do this, we ignore the values of DC outputs in “Hamming Distance” as
the error function (Sect. 2.3.3). A simple way to ignore the error for DC outputs is
using an n-bit string, named mask. We consider that the mask pattern has ‘0’ value in
DC output positions and ‘1’ in the care output positions. Then, we apply this mask
pattern to the outputs of desired function, using the AND operation. At any iteration
of GA, we also apply the mask to outputs of the designed circuit. Consequently, the
values for all DC outputs become zero and hamming distance for these outputs is also
zero. For example if mask pattern is “000, . . . , 01” then just the f1 value will appear
in the masked output.

Example 1 As a synthesis example, consider a 4 ×4 function F1 whose output values
are:

F1 = {0, 5, 2, 13, 4, 1, 6, 9, 7, 8, 15, 10, 3, 12, 11, 14}.

When there is no DC output in the circuit the mask pattern is “1111”. The obtained
circuit is shown in Fig. 7a. This circuit has 5 gates with QC of 17. With mask=“0111”
(i.e. one DC output), mask=“0011” (two DC outputs), and mask=“0001” (three DC
outputs), we obtain circuits in Fig. 7b, c, and d, respectively. QCs for these circuits are
8, 7, and 1, respectively. Note that the values of corresponding DC outputs in circuits
1a–d are not the same but the Q0 in all circuits has the same function.

123

Don’t cares in reversible and quantum logic circuits 183

Fig. 7 Synthesis of Example 1
with (a) mask=“1111”, (b)
mask=“0111”, (c) mask=“0011”,
and (d) mask=“0001”

A0

A1

A2

A3

Q0

Q1

Q2

Q3

MSB

A0

A1

A2

A3

MSB

A0

A1

A2

A3

Q0

Q1

G

G
MSB

A 0

A 1

A 2

A 3

Q0

G

G

G
MSB

A0

A1

A2

A3

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q3

MSB

(a) (b)

(d)(c)

A0

A1

A2

A3

MSB

A0

A1

A2

A3

Q0

Q1

G

G
MSB

A 0

A 1

A 2

A 3

Q0

G

G

G

G

MSB

3.3 Using DC conditions to optimize the circuit

In two cases the DC conditions may occur in reversible logic functions. The first case
is when the DC conditions are embedded in the function of the circuit. The second
case is when the circuit has constant inputs (called DC inputs in this paper). This case
is described in Sect. 3.4.

In the first case, the DC conditions are embedded in the function. For example, a
BCD adder has defined outputs for input digits 0–9. The outputs for input values of
10–15 are embedded DC conditions; because the decimal digits are not bigger than
9. The important problem with this type of functions is that the DC conditions have
to be assigned in such a way that the resulting function be reversible. In previously
proposed synthesis methods [5,7,13] that can not handle the DC conditions, these
conditions have to be assigned by a trial and error process or designer’s experience.
This is not applicable for functions with large number of DC conditions because for
r DC conditions, there are r ! combinations to select them. It is important to note that
the problem of DC assignment becomes more complicated when the number of DC
conditions in the truth table increases.

Assume that the truth table of an n × n function, having 2n rows, has one care
condition for input “00, . . . , 0” (first row) and the rest of 2n − 1 rows as DC condi-
tions. This function can be simply implemented using some NOT gates. For example,
consider a 4 × 4 function which has “1111” output pattern for the first row of its truth
table, and all other rows are DC conditions. This function can be implemented by
only four NOT gates (one NOT on each line). If we assume two care conditions, the
synthesis problem becomes slightly more complex and a bigger circuit is needed to
implement the function. Increasing the care conditions incorporates more complexity
to the circuit. Therefore, if we can restrict the synthesis tool to implement the care
conditions and ignore the DC conditions, then we can obtain a simpler circuit. The
worst case is when the obtained circuit for care conditions of truth table is the same
as the circuit which implements the whole truth table. The circuit for only care condi-
tions is not more complex than the circuit which implements all rows of truth table

123

184 M. Mohammadi, M. Eshghi

because this circuit is also an answer to the first case. As stated before, the music line
style presentation of circuit not only guarantees the reversibility of the circuit but also
assures the fanout and loop conditions for reversible circuit.

In order to obtain the optimum circuit we restrict the synthesis algorithm to design a
circuit which satisfies only the care conditions of the truth table. To do this, we ignore
the values of DC conditions in “Hamming Distance” as the error function. We design
the synthesis algorithm such that it jumps over the DC rows of truth table. We insert
‘x’ characters in DC rows to indicate that these rows are DC conditions. Using this
method, we not only obtain a simpler circuit, but also obtain it in less synthesis time.
Since the synthesis algorithm jumps over the DC rows, it performs each of iterations
faster. As a result, the total time needed to synthesize a circuit is decreased.

Note that, in the trial and error method to assign the DC conditions, the more DC
conditions, the more time needed to design the circuit, and the more quantum cost.
However, in our proposed method, the more DC conditions, the less time needed to
synthesis the circuit, and the fewer quantum cost.

Example 2 As a synthesis example, consider the 4 × 4 function F2 defined as:

F2 ={0, 2, 6, 4, 9, 11, 1, 8, 12, 13, 10, 3, 15, 14, 7, 5}

The designed circuit for this function is shown in Fig. 8a. This circuit has 8 gates with
QC of 24. Now, consider the above function with 8 DC conditions as

F3 = {0, 2, 6, 4, 9, 11, x, x, x, x, x, x, x, x, 7, 5}.

The synthesized circuit of F3 is shown in Fig. 8b. This circuit has only two gates with
QC of 2.

Fig. 8 Synthesis of Example 2:
(a) Without DC conditions and
(b) With eight DC conditions

A0

A1

A2

A3

MSB

Q0

Q1

Q2

Q3

A0

A1

A2

A3

MSB

Q0

Q1

Q2

Q3

A0

A1

A2

A3

MSB

Q0

Q1

Q2

Q3

(a)

(b)

123

Don’t cares in reversible and quantum logic circuits 185

Fig. 9 Modified chromosome
for DC inputs

Gate m…Gate2Gate1Rp…R0

3.4 Constant inputs

Constant inputs or DC inputs are constant; and they can not be masked or skipped
as the other types of DCs. The values of these inputs affect on the generated circuit;
therefore, choosing the best values for these inputs is important. In this research, to
obtain the optimum values for these DCs, they are inserted in the chromosomes of
genetic algorithm. Figure 9 shows a chromosome that codes a circuit and includes the
p DC inputs.

Initial values of these inputs are random, as the other bits of the chromosome. During
the synthesis process, these values are affected by GA operators: crossover, mutation,
and selection. Thus, in evolution of the circuit, the best values for R0, . . . , Rp are also
achieved.

3.5 Modified synthesis algorithm

As mentioned in Sect. 2.3.3, if the number of gates (m) is added to the error function,
GA may converge to an invalid result. On the other hand, to obtain a circuit with
minimum number of gates, m must be included in the synthesis algorithm. To solve
this problem the synthesis algorithm is modified and shown in Fig. 10.

In this algorithm Error function is hamming distance as defined in Sect. 2.3.3. We
also modified the algorithm to handle the DC outputs and conditions. In this algorithm
des_row[i] is the i th row of desired truth table, and syn_row[i] is the i th row of truth
table of synthesized circuit. The ‘&’ sign represents the bitwise AND operation.

Initially, m is set to 1, i.e. synthesis algorithm starts with one gate. In the while loop
the GA tries to find a valid circuit for the desired truth table, by using one gate. If GA
can find a valid circuit (Error = 0), it is the answer. Otherwise, m is incremented and
the while loop starts again, using two gates. This process continues until a valid circuit
(Error = 0), is obtained. Since the synthesis algorithm starts with m = 1, the answer is
a circuit with the minimum possible number of gates. The minimum number of gates
is not necessarily the minimum quantum cost (QC). To obtain a circuit with minimum
QC, the algorithm have to be restricted to the 1 × 1 and 2 × 2 quantum gates.

The while loop is limited to a maximum number of iterations, which depends on
the complexity of the circuit; and it can be obtained by a trial and error process. Since
the optimization is offline, this is not a sever dilemma.

3.6 Behavioral description of V and V+ gates

Quantum gates have been specified by their unitary matrices, often including complex
numbers. Defining the quantum gates using a truth table is not common. On the other
hand, the quantum V and V+ gates are necessary to construct a set of universal 2 × 2
quantum gates in synthesis process.

123

186 M. Mohammadi, M. Eshghi

Fig. 10 Modified synthesis
algorithm Set m := 1 {m is the number of gates being used for

synthesis}

Loop1:

Initiate a random population of µ circuits using m gates;

//each circuit is a Quantum or Reversible circuit

While (up to max-iteration)

 {

 Produce λ nnew circuits using crossover and mutation

 For all of λ + µ ccircuits

 {

 For i-th row of truth table

 {

 If i-th row is not “don’t care condition”then

 Error = Error + Abs (HD ((des_row [i] &

mask), (syn_row [i] & mask)));

 // mask bits are ‘1’ for a care output

 // and ‘ 0’ for a don’t care output

}

}

 Select µ bbetter {less error} circuits for reproduction

 } // End of while

If Minimum Error is not 0 then

 { Increment m; goto loop1; }

Print the best circuit

To construct a truth table for V and V+ gates, we use properties of these gates, Eq. 3.
This equation shows that two V gates, or two V+ gates, in series are equivalent to a
NOT gate. One V gate and one V+ gate in series are equal to identity. We define two
intermediate signals v and V for V gate output values and two intermediate signals w

and W for V+ gate output values. We assign v value to the V gate output if its input
is |0〉 and V value to the V gate output if its input is |1〉. In the same way, we assign
w and W values to the output values of a V+ gate, when input values are |0〉 and |1〉,
respectively. If the input of V gate is v then the output is |1〉 because the v value is
the result of applying input |0〉 to a V gate and two series V gates is equal to a NOT
gate. In the same way, applying V input to a V gate results a |0〉 output. If the input
of a V gate is w then its output is |0〉 because a w signal is a result of applying |0〉
to a V+ gate and two V and V+ series gates are equal to an identity or buffer gate.
These results can also be stated for a V+ gate. Based on these results we can construct
a truth table for V and V+ gates, shown in Table 1. In this table, for simplicity, we use
‘0’ and ‘1’ characters instead of |0〉 and |1〉 vectors, respectively.

Controlled V and V+ gates (Fig. 11) are also represented by truth tables, shown in
Table 2. Note that intermediate states (v, V, w, and W) are not valid for control inputs.

123

Don’t cares in reversible and quantum logic circuits 187

Table 1 Truth table of V and
V+ gates

A (input) Q (V gate) Q (V+ gate)

0 v w

1 V W
v 1 0
V 0 1
w 0 1
W 1 0

Fig. 11 Controlled V
and V+ gates

A0

A1 V

Q0

Q1

A0

A1

Q0

Q1V+

(a) (b)

Table 2 Truth table of
controlled V and V+ gates

A0 (control) A1 Q0 Q1 (V gate) Q1 (V+ gate)

0 X 0 X X
1 0 1 v w

1 1 1 V W
1 v 1 1 0
1 V 1 0 1
1 w 1 0 1
1 W 1 1 0

We use this truth table of V and V+ gates in simulation and synthesis of quantum
logic circuits.

3.7 Optimum location of DC outputs and DC inputs

In Sects. 3.2 and 3.4 we introduced the heuristic methods in order to handle DC outputs
and inputs. An important consideration about these inputs and outputs is their position
in the truth table. For example, consider the truth table of a full adder, depicted in
Table 3. In this table, Gs are garbage outputs, or DC outputs, which are placed in the
most significant positions. The result of synthesis of this table is shown in Fig. 12a.
If we place these DC outputs in the least significant positions, then the result is a
simpler circuit, shown in Fig. 12b. Thus, not only the value but also the location of a
DC input and output is important in synthesis process. We can automatically specify
the best location of DC outputs and inputs by inserting a SWAP gate in the gate set of
the synthesis tool. The SWAP gate exchanges the location of two wires in the circuit
which is represented in music line style.

When GA searches the best circuit, it inserts SWAP gates in different locations in
the circuit. This is equivalent to swap the position of DC inputs and outputs.

123

188 M. Mohammadi, M. Eshghi

Table 3 Truth table of full
adder

Gin a b c G G C S

0 0 0 0 x x 0 0
0 0 0 1 x x 0 1
0 0 1 0 x x 0 1
0 0 1 1 x x 1 0
0 1 0 0 x x 0 1
0 1 0 1 x x 1 0
0 1 1 0 x x 1 0
0 1 1 1 x x 1 1

c

b

a

Gin=0

S

C

G

G

(a)

c

b

a

Gin=0

S

C

G

G

(b)

Fig. 12 Synthesis results for different positions of DC outputs as: (a) Higher significant bits and (b) Lower
significant bits

4 Tests and results

In this section, four examples which have different combinations of DC inputs, condi-
tions and outputs are presented. We have used the QC as a measure to compare the
designs with and without DC. Another measure which we consider is the real time
of synthesis using an ordinary computer (a Pentium IV, 2.8 GHz, 512 MB RAM) to
show that DC concept also affects this time.

Example 3 A circuit with DC outputs

As an example for a circuit with DC outputs, consider the majority gate. A majority
irreversible gate has n inputs and one output. Parameter n has to be an odd number.
The output of the majority gate is ‘1’ if the number of ‘1’s in the input is more than the
number of ‘0’s; otherwise the output is ‘0’. On the other hand, a reversible majority
gate has n inputs and n outputs. Only one of its outputs represents the majority function
and the other n − 1 outputs are considered as DC outputs. For example consider a
3 × 3 reversible majority gate. Table 4 shows the truth table of this gate. G1 and G2
are the garbage outputs. These are masked in the proposed synthesis algorithm.

At the first attempt the values of 0, 2, 4, 1, 6, 3, 5, and 7 for the eight output rows are
considered, respectively. The synthesized circuit for these values is shown in Fig. 13a.
At the second attempt the DC outputs are masked as stated in Sect. 3.2. The generated
circuit is shown in Fig. 13b. The QC for generated circuits is 9 and 7, respectively.

Example 4 A circuit with DC outputs (the quantum implementation)

The DC concept can also be used in quantum reversible circuits. In quantum cir-
cuits the data bits are vectors named qubits. In this paper we consider qubits as bits,

123

Don’t cares in reversible and quantum logic circuits 189

Table 4 The truth table of a
3 × 3 reversible majority gate

Note: Entries in columns G1 and
G2 are DC outputs

a b c G1 G2 p

0 0 0 x x 0
0 0 1 x x 0
0 1 0 x x 0
0 1 1 x x 1
1 0 0 x x 0
1 0 1 x x 1
1 1 0 x x 1
1 1 1 x x 1

Fig. 13 A majority 3 × 3 gate:
(a) Without DCs and (b) With
DCs

a

b

c

G1

G2

p

(b)(a)

a

c

b

G1

p

G2

Fig. 14 A quantum majority
3 × 3 gate: (a) Without DCs and
(b) With DCs b

a

p

G2

V V+ G1V

c

(a)

b

a

p

G2

V V

G1

V+c

(b)

wherever it does not make a mistake. We also use the truth table form of V and V+
gates in simulations and synthesis procedure. For instance, consider the quantum im-
plementation of the majority 3×3 gate (Table 4) using 2×2 quantum gates. Two cases
are considered; (i) with predefined values (as the first attempt in the Example 3), and
(ii) with DCs. Figure 14a and b show the generated circuits, respectively. The QCs of
these circuits are 7 and 5, respectively.

Example 5 A circuit with DC inputs, outputs and conditions

Consider a 2 × 2 binary multiplier. This multiplier has two 2-bit inputs and one
4-bit output. The truth table of this multiplier is shown in Table 5. As shown in this
table, there are 7 repeated patterns of “0000” outputs. Based on the Maslov’s formula
[12] at least �Log2r� = 3 garbage outputs have to be added to the output part of
truth table (r is maximum number of repeated patterns in the output). Although, this
is the minimum number of DC outputs, sometimes it is better to consider more DCs
to increase the flexibility in the synthesis procedure. As shown in Table 5, four DC

123

190 M. Mohammadi, M. Eshghi

Table 5 Truth table of a 2 × 2 bit multiplier

DC inputs Care inputs Care outputs DC outputs

R4 R3 R2 R1 a b c d p q r s G1 G2 G3 G4

0 0 0 0 0 0 0 0 0 0 0 0 x x x x
0 0 0 0 0 0 0 1 0 0 0 0 x x x x
0 0 0 0 0 0 1 0 0 0 0 0 x x x x
0 0 0 0 0 0 1 1 0 0 0 0 x x x x
0 0 0 0 0 1 0 0 0 0 0 0 x x x x
0 0 0 0 0 1 0 1 0 0 0 1 x x x x
0 0 0 0 0 1 1 0 0 0 1 0 x x x x
0 0 0 0 0 1 1 1 0 0 1 1 x x x x
0 0 0 0 1 0 0 0 0 0 0 0 x x x x
0 0 0 0 1 0 0 1 0 0 1 0 x x x x
0 0 0 0 1 0 1 0 0 1 0 0 x x x x
0 0 0 0 1 0 1 1 0 1 1 0 x x x x
0 0 0 0 1 1 0 0 0 0 0 0 x x x x
0 0 0 0 1 1 0 1 0 0 1 1 x x x x
0 0 0 0 1 1 1 0 0 1 1 0 x x x x
0 0 0 0 1 1 1 1 1 0 0 1 x x x x
0 0 0 1 x x x x x x x x x x x x
.
.
1 1 1 1 x x x x x x x x x x x x
DC conditions (240 rows)

Fig. 15 Implementation
of a 2 × 2 bit multiplier

d

c

b

s

r

q

a

p

R4=0

R3=0

R2=0

R1=0

G4

G3

G2

G1

outputs are considered for this example. The function which is shown in Table 5 has
four DC inputs (R1 to R4), four DC outputs (G1 to G4) and 240 DC conditions.

The result of the synthesis is shown in Fig. 15. The circuit has six Toffoli and
Feynman gates with a total QC of 5 × 5 + 1 = 26.

Example 6 DC input value

In the previous examples the optimum value for all DC inputs is ‘0’. However,
sometimes the value of ‘0’ for DC inputs is not optimum. Consider the irreversible
NAND gate which has two inputs and one output. The truth table of this gate shows that
adding one DC input and two DC outputs make it reversible. In the proposed synthesis
algorithm, DC input is inserted in chromosomes. The DC outputs are also masked.

123

Don’t cares in reversible and quantum logic circuits 191

Fig. 16 Synthesized circuits
for NAND2 function (a) using
Toffoli gates and (b) using
quantum gates (c is output, G1
and G2 are garbage outputs)

a

b

R=1

(a)

G1

G2

c

a

b

R=1

(b)

G1

G2

cV V V+

The generated circuit is shown in Fig. 16a. The optimum value for DC input (R) is ‘1’.
The optimum quantum implementation of the circuit is also achieved for R = 1. The
generated quantum circuit is shown in Fig. 16b. The QCs for two implementations are
5 and 4, respectively.

5 Conclusions

In this paper, we introduced a broad concept of DCs in reversible logic circuits and
quantum circuits. We categorized DCs in reversible logic circuits to three types: DC
inputs, DC outputs, and DC conditions.

DC inputs are additional garbage input bits in the truth table of a logical circuit.
They are assumed constant since their values can not be varied in the circuit (Example
5 in Sect. 4). DC conditions correspond to the rows of the truth table whose main
outputs (not garbage) are DCs. DC conditions occur when some DC inputs for the
function are assumed; however, a circuit may have DC conditions but not DC inputs
(Example 2 in Sect. 3). DC outputs, called garbage outputs, are additional output bits
whose values are not important in any of the truth table rows (Examples 3–5 in Sect. 4).

In this paper, also, some heuristic methods to use these DCs, when an optimization
algorithm such as the genetic algorithm is used as a synthesis tool, were presented.
Table 6 shows the comparison between the designs with and without DC concepts, in
some examples. Examples 3–5 are basic circuits to design other reversible circuits.
This is the first time that these reversible circuits are synthesized efficiently, since the
DCs are widely used in their design procedure.

Table 6 Comparison between
the AVT and QC of the designs
with and without DC, in five
examples

a AVT is the average synthesis
time

Example Condition AVTa (s) QC

1 Mask=“1111” 10.5 17
Mask=“0111” 2 8
Mask=“0011” 1.3 7
Mask=“0001” 0.12 1

2 Without DC 74 24
With DC 0.1 2

3 Without DC 0.63 9
With DC 0.00185 7

4 Without DC 100 7
With DC 16 5

5 Without DC – –
With DC 120 26

123

192 M. Mohammadi, M. Eshghi

References

1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin,
J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467
(1995)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley, Reading, MA (1989). ISBN 0201157675
4. Grobe, D., Dueck, G.W., Chen, X., Drechsler, R.: Exact SAT-based Toffoli network synthesis. In: Pro-

ceedings of the 17th ACM Great Lakes Symposium on VLSI (GLSVLSI’07), Stresa-Lago Maggiore,
Italy, pp. 96–101 (2007)

5. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)

6. Haghprast, M., Navi, K.: A novel reversible BCD adder for nanotechnology based systems. Am.
J. Appl. Sci. 5(3), 282–288 (2008)

7. Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: Annual ACM IEEE Design
Automation Conference. Proceedings of the 41st Annual Conference on Design Automation, San
Diego, CA, USA, pp. 834–837 (2004). ISBN 1-58113-828-8

8. Landauer, R.: Irreversibility and heat generation in the computing processes. IBM J. Res. Dev. 5,
183–191 (1961)

9. Lee, S., Lee, S.J., Kim, T., Lee, J.-S., Biamonte, J., Perkowski, M.: The cost of quantum gate primitives.
J. Multi-Valued Logic Soft Comput. 12(5–6) (2006)

10. Lukac, M., Perkowski, M., Gol, H.: Evolutionary approach to quantum and reversible circuits
synthesis. Artif. Intell. Rev. 20(3–4), 361–417 (2003)

11. Lukac, M., Pivtoraiko, M., Mishchenko, A., Perkowski, M.: Automated synthesis of generalized
reversible cascades using genetic algorithms. In: Proceedings of the Fifth International Workshop on
Boolean Problems, Freiberg, Sachsen, Germany, 19–20 September, pp. 33–45 (2006)

12. Maslov, D., Dueck, G.W.: Garbage in reversible design of multiple output functions. In: 6th Interna-
tional Symposium on Representations and Methodology of Future Computing Technologies, Trier,
Germany, pp. 162–170 (2003)

13. Miller, D.M., Dueck, G.W., Maslov, D.: A transformation based algorithm for reversible logic synthe-
sis. In: Proceedings of the 40th Design Automation Conference, Anaheim, CA, pp. 318–323 (2003)

14. Mohamadi, M., Eshghi, M., Navi, K.: Optimizing the reversible full adder circuit. In: Proceedings of
the IEEE East-West on Design and Tests (EWDTS), Yerevan, Armenia, 7–10 September, pp. 312–315
(2007)

15. Shende, V.V., Markov, I.L.: Quantum circuits for incompletely specified two-qubit operators. Quan-
tum Inf. Comput. 5(1), 49–57 (2005)

123

	Heuristic methods to use don't cares in automated design of reversible and quantum logic circuits
	Abstract
	1 Introduction
	2 Background
	2.1 Reversible gates and circuits
	2.2 Quantum gates and circuits
	2.3 Automated synthesis of reversible or quantum logic circuits using genetic algorithm

	3 Using DCs in designing reversible and quantum logic circuits
	3.1 Classifying the DCs in the reversible logic circuits
	3.2 Heuristic method for using DC outputs to obtain an optimum circuit
	3.3 Using DC conditions to optimize the circuit
	3.4 Constant inputs
	3.5 Modified synthesis algorithm
	3.6 Behavioral description of V and V+ gates
	3.7 Optimum location of DC outputs and DC inputs

	4 Tests and results
	5 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

