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We investigate the geometrical structure of entangled and separable bipartite and
multipartite states based on the secant variety of the Segre variety. We show that
the Segre variety coincides with the space of separable multipartite state and the
higher secant variety of the Segre variety coincides with the space of entangled
multipartite states.
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1. INTRODUCTION

Recently, the geometry and topology of entanglement has got more atten-
tion and we know more about the geometrical structure of pure multipar-
tite entangled quantum states. We have also managed to construct some
useful measures of entanglement based on these underlying geometrical
structures. However, we know less about the geometrical structure of an
arbitrary multipartite quantum state and there is a need for further investi-
gation on these states. Concurrence is a measure of entanglement which is
directly related to the entanglement of formation. (1) Its geometrical struc-
ture is hidden in a map called Segre embedding. (2–5) The Segre variety is
generated by the quadratic polynomials that correspond to the separable
set of pure multipartite states. We can construct a measure of entangle-
ment for bipartite and three-partite states based on the Segre variety. (4) We
can also construct a measure of entanglement for general pure multipar-
tite states based on a modification of the Segre variety by adding similar
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quadratic polynomials. (5) In this paper, we will establish a relation between
the higher secant variety of the Segre variety and multipartite states. We
show that the secant variety of the Segre variety can describes the geom-
etry of entangled and separable general bipartite and multipartite quan-
tum systems. In Sect. 2, we will define the complex projective variety and
introduce the Segre embedding and the Segre variety for general pure mul-
tipartite states. We will also define and discuss the secant variety of the
Segre variety, which is of central importance in this paper. In Sect. 3 we
investigate relation and relevance of the secant variety of the Segre vari-
ety as geometrical structure of entangled and separable states. As usual,
we denote a general, composite quantum system with m subsystems as
Q=Qm(N1, N2, . . . , Nm)=Q1Q2 . . .Qm , consisting of the purestates |Ψ 〉=
∑N1

k1=1

∑N2
k2=1 · · ·∑Nm

km=1 αk1,k2,...,km |k1, k2, . . . , km〉 and corresponding to the

Hilbert space HQ =HQ1 ⊗HQ2 ⊗· · ·⊗HQm , where N j = dim(HQ j ) is the
dimension of the jth Hilbert space.

2. COMPLEX PROJECTIVE VARIETY, SEGRE VARIETY,
AND SECANT VARIETY

In this section, we review some basic definition of complex projec-
tive variety. The general reference on projective algebraic geometry can be
found in Refs. 6–8. Then, we will construct the Segre variety for complex
multi-projective space. Next, we will define the joint and secant variety of
a projective variety. We will also discuss the rank of a tensor in relation
with the Segre variety and the secant variety.

2.1. Complex Projective Variety

Let C[z] = C[z1, z2, . . . , zn] denote the polynomial algebra in n vari-
ables with complex coefficients. Then, given a set of q polynomials
{h1, h2, . . . , hq} with hi ∈C[z], we define a complex affine variety as

VC(h1, h2, . . . , hq)={P ∈C
n:hi (P)=0∀1≤ i ≤q}, (2.1.1)

where P = (a1,a2, . . . ,an) is called a point of C
n and the ai are called the

coordinates of P . A complex projective space CP
n is defined to be the set

of lines through the origin in C
n+1, that is, CP

n =C
n+1 − 0/∼, where the

equivalence relation ∼ is defined as follow; (x1, . . . , xn+1) ∼ (y1, . . . , yn+1)

for λ ∈ C − 0, where yi = λxi for all 0 ≤ i ≤ n + 1. Given a set of homo-
geneous polynomials {h1, h2, . . . , hq} with hi ∈ C[z], we define a complex
projective variety as



Geometrical Structure of Entangled States and the Secant Variety 45

V(h1, . . . , hq)={O ∈CP
n:hi (O)=0 ∀ 1≤ i ≤q}, (2.1.2)

where O = (a1,a2, . . . ,an+1) denotes the equivalent class of points
{α1, α2, . . . , αn+1}∈C

n+1. We can view the affine complex variety as a com-
plex cone over the complex projective variety.

2.2. Segre Variety

As an important example of projective variety we will discuss the
Segre variety. (4) For a multipartite quantum system Q(N1, . . . , Nm), let
N = (N1, . . . , Nm) and V1, V2, . . . , Vm be vector spaces over the field of
complex numbers C, where dim Vj = N j . That is, we have CP

N j −1 =CP(Vj )

for all j . Then we define a Segre map by

SN1,N2,...,Nm :CP
N1−1 ×CP

N2−1 ×· · ·×CP
Nm−1 −→CP

N−1, (2.2.1)

where N =∏m
j=1 N j . This map is based on the canonical multilinear map

V1 × V2 ×· · ·× Vm → V1 ⊗ V2 ⊗· · ·⊗ Vm

v1 ×v2 ×· · ·×vm �→ v1 ⊗v2 ⊗· · ·⊗vm
(2.2.2)

Thus, we have CP
N−1 = CP(V1, . . . , Vm). The Segre variety SN =

Im(SN1,N2,...,Nm ) is defined to be the image of the Segre embedding. By
definition, the Segre variety is formed by the set of all classes of decom-
posable tensors in CP

N−1. For a quantum system Q(N1, . . . , Nm), the
Segre variety is given by

SN =
⋂

∀ j

V(αk1,k2,...,km αl1,l2,...,lm

−αk1,k2,...,k j−1,l j ,k j+1,...,km αl1,l2,...,l j−1,k j ,l j+1,...,lm ). (2.2.3)

Let X ⊂ CP
N . Then, there are two important subsets of CP

N ; the secant
variety Sec(X), which is defined to be the closure of the set of point lying
on secant x1x2, where x1 and x2 are distinct points of X. The second one
Tan(X) is the union of the projective tangent spaces. In the next section
we will discuss the secant variety of a projective variety.

2.3. Secant Variety

The secant variety of a projective variety has been studied in alge-
braic geometry and some recent references include. (9,10) Let Y,Z⊂CP(V )
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be varieties and for y, z ∈CP(V ), such that y 
= z let CP
1
yz denote the pro-

jective line containing y and z. Then we define the join of Y and Z by

J(Y,Z)=
⋃

y∈Y,z∈Z

CP
1
yz . (2.3.1)

If Z = CP
k is a k-plane, we call J(Y,CP

k) the cone over Y with vertex
CP

k . Moreover, if Y=Z, we call Sec(Y)=J(Y,Y) the secant variety of Y.
We also define the join of k varieties to be the union of the corresponding
CP

k−1’s which is by definition J(Y1, . . . ,Yk) = J(Y1,J(Y2, . . . ,Yk)). Fur-
thermore, we let Seck(Y)=J(Y, . . . ,Y) be the join of k copies of Y which
we call the k-th secant variety of Y. Thus, the k-th secant variety Seck(X)

of X ⊂ CP
M with dim X = d is defined to be the closure of the union of

k-dimensional linear subspaces of CP
M determined by general k points

on X

Seck(X) =
⋃

{all secant CP
k−1’s to X}

=
⋃

x1,x2,...,xk∈X

CP
k−1
x1x2...xk

, (2.3.2)

where for CP
k−1
x1x2···xk

, denotes the linear space spanned by x1, x2, . . . , xk ,
e.g., CP

k−1. Moreover, the dimension of Seck(X) satisfies

dim Seck(X)≤min{M ′, k(d +1)−1}, (2.3.3)

where M ′ is the dimension of the linear subspace spanned by X. The sub-
variety X is called k-defect when dim Seck(X)<min{M ′, k(d +1)−1}. For
example, the secant variety of Segre variety Seck(SN ) is the closure of the
set of classes of those tensor products which can be written as the sum of
at most k + 1 decomposable tensor products. Thus, the secant variety of
Segre variety Seck(SN ) gives some useful information about the geometry
of entangled and separable mixed multipartite states.

2.4. Rank of Tensor and Secant Variety

The rank R(t) of a tensor U ⊗V ⊗W is defined as the minimum num-
ber r of triad ui ⊗vi ⊗wi such that t can be represented as t =∑r

i=1 ui ⊗
vi ⊗ wi . Let N = (N1, N2, N3) which is also called a format. (10) Then, to
this format we can assign the tensor product T (N )=U1 ⊗U2 ⊗U3, where
U j =C

N j . Moreover, the subset of nonzero triads S(N )={u1 ⊗u2 ⊗u3:u j ∈
U j }\0 is a smooth and irreducible Zariski closed subset of T (N ) of dimen-
sion

∑3
j=1 N j − 2 and its tangent space at point t = u1 ⊗ u2 ⊗ u3 ∈ S(N ) is

given by
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Tan(N )=U1 ⊗u2 ⊗u3 +u1 ⊗U2 ⊗u3 +u1 ⊗u2 ⊗U3. (2.4.1)

Note that by construction we have S(N ) = SN . Now, the image of the
summation map

σk(N ) : S(N )k −→ T (N ), (2.4.2)

defined by (t1, t2, . . . , tk) �−→ ∑k
i=1 ti consists of the tensors in T (N ) of

rank ≤ k, which we also denote by Seck(S(N )) and the Zariski closure of
Seck(S(N )) is called the (k −1)th secant variety of the format N .

3. GEOMETRY OF ENTANGLED STATES AND SECANT VARIETY

In this section we will apply above mathematical tools to find out
more about geometrical structure of entangled and separable bipartite and
multipartite quantum system. First we will consider a general bipartite
quantum system and show that the secant variety of the Segre variety fills
the enveloping space of the Segre embedding. Then we will discuss geo-
metrical structure of multipartite quantum system.

3.1. General Bipartite State and Secant Variety of the Segre Variety

For a bipartite quantum system Q(N1, N2), the Segre variety SN
is the variety of N1 × N2 matrices of rank 1. Thus the secant variety
Seck(SN1,N2) is the matrices of rank less than k and k = N1 is the least
integer for which

Seck(SN1,N2)=CP
N1 N2−1. (3.1.1)

In this case the Segre variety has two rulings by the families of linear
spaces v ⊗ CP(W ) and CP(V ) ⊗ w for all v ∈ V and w ∈ W . The Segre
variety can be seen as decomposable tensors in CP(V ) ⊗ CP(W ). The
k-fold secant plane to the Segre variety is given by the tensor of rank
k. For example, a tensor which can be written as

∑k
i=1 vi ⊗ wi=v1 ⊗

w1 + v2 ⊗ w2 + · · · + vk ⊗ wk . For a bipartite quantum system Q(N1, N2),
the first secant variety of the Segre variety Sec1(SN1,N2) = SN which
coincides with the Segre variety is the space of separable states. More-
over, for the higher secant variety of the Segre variety, k ≥ 2, we have
Seck(SN1,N2)=CP

N1 N2−1 for k ≤ N1 and the space of an entangled bipar-
tite state is given by

Seck(SN1,N2)\Sec1(SN1,N2)=CP
N1 N2−1\SN . (3.1.2)
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Fig. 1. Schematic structure of entangled and separable general bipartite states based on the
secant variety of the Segre variety. The space of pure separable state is defined by the Segre
variety SN and the space of entangled state is defined by Seck (SN )\SN .

This follows from the construction of the Segre variety and defini-
tion of the secant variety of the Segre variety. Since the Segre variety is
the space of completely decomposable tensor and the secant variety fills
the enveloping space under the Segre embedding. See also the Fig. 1. For
bipartite systems, if we assume that N1 < N2, then for all 1 ≤ k < N1 the
secant variety Seck(SN ) has dimension less than the expected dimension
and the least k for which Seck(SN ) fills its enveloping space is k = N1.

4. SECANT VARIETY AS THE SPACE OF MULTIPARTITE
ENTANGLED STATES

Now, we will show that the space of multipartite entangled states is
given by the higher secant variety of the Segre variety. For example this
geometrical structure can be seen by looking at the relation between per-
fect codes and secant variety of the Segre variety. The existence of perfect
codes can be proved based on finite fields with M elements. The perfect
code exist only for the following parameters: M is a prime power, m =
Ml−1
M−1 for l ≥ 2 and k = Mm−l . Let us look at some examples of this kind.

Let M = 2, m = 2l − 1, and k = 2m−l , where l is a positive number. Then,
for the Segre embedding

S2,2,...,2:
m-times

︷ ︸︸ ︷
CP

1 ×CP
1 ×· · ·×CP

1 −→CP
2m−1, (4.0.1)
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the secant variety of the corresponding Segre variety Seck(SN )=CP
2m−1

which fits exactly into its enveloping space and all Seck(SN ) have the
expected dimension. Thus for a multi-qubit quantum system Q(2,2, . . . ,2),
the first secant variety of the Segre variety Sec1(S2,2,...,2)=S2,2,...,2 which
coincides with the Segre variety is the space of separable states. More-
over, for the higher secant variety of the Segre variety, k ≥ 2, we have
Seck(S2,2,...,2)=CP

2m−1, and the space of an entangled multipartite state
is given by

Seck(S2,2,...,2)\Sec1(S2,2,...,2)=CP
2m−1\S2,2,...,2. (4.0.2)

This also follows from the construction of the Segre variety and defini-
tion of the secant variety of the Segre variety. See also the Fig. 2. Next,
let M be a prime power. Then for any l ≥ 1,m = Ml−1

M−1 , we have the Segre
embedding

SM,M,...,M :
m-times

︷ ︸︸ ︷
CP

M−1 ×CP
M−1 ×· · ·×CP

M−1 −→CP
Mm−1. (4.0.3)

The secant variety of this Segre variety Seck(SM,M,...,M )= CP
Mm−1 gives

useful information about the geometry of multipartite quantum system
which we also summarize as follows. For a quantum system Q(M, M, . . .,
M), the first secant variety of the Segre variety Sec1(SM,M,...,M ) =
SM,M,...,M which coincides with the Segre variety is the space of sepa-
rable states. Moreover, for the higher secant variety of the Segre variety

Fig. 2. Schematic structure of entangled and separable general multi-qubit states
based on the secant variety of the Segre variety. The space of pure separable state is
defined by the Segre variety S2,2,...,2 and the space of entangled state is defined by
Seck (S2,2,...,2)\S2,2,...,2.



50 Heydari

we have Seck(SM,M,...,M ) = CP
Mm−1. Thus the space of an entangled

multipartite state is given by

Seck(SM,M,...,M )\Sec1(SM,M,...,M )=CP
Mm−1\SM,M,...,M . (4.0.4)

We have established a connection between pure mathematics and funda-
mental quantum mechanics with some applications in the field of quan-
tum information and computation. We have introduced and discussed the
secant variety of the Segre variety. We have shown that geometrical struc-
ture of entangled and separable multipartite states are given by the secant
variety of the Segre variety. But the secant varieties are still subject of
research in algebraic geometry. For example, there are still many funda-
mental open questions about the secant variety of the Segre variety. How-
ever, we hope that this geometrical structure may give us some hint to how
to solve the problem of quantifying entanglement of an arbitrary multipar-
tite system.
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