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Recent research suggests that there are natural connections between quantum
information theory and the Yang–Baxter equation. In this paper, in terms of
the almost-complex structure and with the help of its algebra, we define the
Bell matrix to yield all the Greenberger–Horne–Zeilinger (GHZ) states from the
product basis, prove it to form a unitary braid representation and presents a new
type of solution of the quantum Yang–Baxter equation. We also study Yang–
Baxterization, Hamiltonian, projectors, diagonalization, noncommutative geome-
try, quantum algebra and FRT dual algebra associated with this generalized Bell
matrix.
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1. INTRODUCTION

Recently, a series of papers(1–10) have suggested there are natural and
deep connections between quantum information theory(11) and the Yang–
Baxter equation (YBE).(12,13) Unitary solutions of the braided YBE (i.e.,
the braid group relation)(1,2) as well as unitary solutions of the quan-
tum Yang–Baxter equation (QYBE)(3,4) can be often identified with uni-
versal quantum gates.(14) Yang–Baxterization(15) is exploited to set up the
Schrödinger equation determining the unitary evolution of a unitary braid
gate.(3,4) Furthermore, the Werner state(16) is viewed as a rational solution
of the QYBE and the isotropic state(17) with a specific parameter forms a
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braid representation, see Refs. 7,8. More interestingly, the Temperley–Lieb
algebra(18) deriving a braid representation in the state model for the Jones
polynomial(19) is found to present a suitable mathematical framework for
a unified description of various quantum teleportation phenomena,(20) see
Refs. 9,10.

Based on previous research work(3,4,6) in which the Bell matrix has
been recognized to form a unitary braid representation and generate all
the Bell states from the product basis, in this paper, a high dimensional
unitary braid representation called the Bell matrix is obtained to create
all the Greenberger–Horne–Zeilinger states (GHZ states) from the prod-
uct basis. The GHZ states are maximally multipartite entangled states
and play important roles in the study of quantum information phenom-
ena.(21–23) More importantly, this Bell matrix has a form in terms of the
almost-complex structure which is fundamental for complex and Kähler
geometry and symplectic geometry. Therefore, our paper is building heu-
ristic connections among quantum information theory, the Yang–Baxter
equation and differential geometry.

We hereby summarize our main result which is new to our knowl-
edge.

1. We define the Bell matrix to produce all the GHZ states from the
product basis, prove it to be a unitary braid representation, and derive the
Hamiltonian to determine the unitary evolution of the GHZ states.

2. We recognize the almost-complex structure in the formulation of
the Bell matrix and refine its algebra in the proof for the Bell matrix sat-
isfying the braided YBE, while we represent a new type of the solution of
the QYBE in terms of the almost-complex structure.

3. We study topics associated with the generalized Bell matrix which
include Yang–Baxterization, diagonalization, noncommutative geometry,
quantum algebra via the RT T relation and standard FRT procedure.(24,25)

We focus on the Bell matrix of the type 22n ×22n related to the GHZ
states of an even number of objects, and submit our result on the Bell
matrix of the type 22n+1 ×22n+1 elsewhere.

The plan of this paper is organized as follows. Section 2 sketches the
definition of the GHZ states and represent the Bell matrix in terms of the
almost-complex structure. Section 3 introduces the generalized Bell matrix
and presents a new type of solution of the QYBE in terms of the almost-
complex structure. Sections 4 and 5 deal with various topics around the
Bell matrix: projectors, diagonalization, noncommutative geometry, quan-
tum algebra and FRT dual algebra. The last section concludes with worth-
while problems for further research.
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2. GHZ STATES, BELL MATRIX AND HAMILTONIAN

This section is devised to set up a simplest example to be appreci-
ated by readers mostly interested in quantum information and physics, and
it explains how to observe the Bell matrix from the formulation of the
GHZ states (as well as the almost-complex structure from the Bell matrix)
and how to derive Hamiltonians to determine the unitary evolution of the
GHZ states.

2.1. GHZ States, Bell Matrix and Almost-complex Structure

In the 2N -dimensional Hilbert space with the basis denoted by the
Dirac kets |m1,m2, . . . ,m N 〉, m1, . . . ,m N =± 1

2 , there are 2N linearly inde-
pendent GHZ states of N -objects having the form

1√
2
(|m1,m2, . . . ,m N 〉± |−m1,−m2, . . . ,−m N 〉) (1)

which are maximally entangled states in quantum information theory.(11)

In this paper, all the GHZ states are found to be generated by the Bell
matrix acting on the chosen product basis,

|Φk〉= |m1,m2, . . . ,m N 〉, |Φ2N −k+1〉= |−m1,−m2, . . . ,−m N 〉, (2)

where 1≤ k ≤2N−1. One can take a notation similar to,(26,27)

k[m1, . . . ,m N ]=2N−1 + 1
2

−
N∑

i=1

2N−i mi (3)

which has the result at N =2, for example,

k

[
1
2
,

1
2

]
=1, k

[
1
2
,−1

2

]
=2, k

[
−1

2
,

1
2

]
=3, k

[
−1

2
,−1

2

]
=4, (4)

assigned to label the GHZ states of two objects (the well known Bell
states).

The 4 × 4 Bell matrix B4 acts on the product basis | 1
2

1
2 〉, | 1

2
−1
2 〉 and

|−1
2

1
2 〉, |−1

2
−1
2 〉 to yield the Bell states, and it has a known form,(1–4,6)

B4 = (Bkn, lm)4 = 1√
2

⎛

⎜⎜⎝

1 0 0 1
0 1 1 0
0 −1 1 0

−1 0 0 1

⎞

⎟⎟⎠ , k,n, l,m = 1
2
,−1

2
, (5)
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and the 8×8 Bell matrix B8 given by

B8 ≡ (Bαl, βm)8 = 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α, β= 3
2
,

1
2
,−1

2
,−3

2
, l,m = 1

2
,−1

2
(6)

creates the GHZ states of three objects by acting on |Φk〉, 1≤ k ≤8.
The 2N ×2N Bell matrix generating the GHZ states of N -objects from

the product basis |Φk〉, 1 ≤ k ≤ 2N , has a form in terms of the almost-
complex structure4 denoted by M ,

B = 1√
2
(11+ M), Bi j,kl ≡ Bkl

i j = 1√
2
(δk

i δ
l
j + Mkl

i j ) (7)

where 11 denotes the identity matrix, the lower index of B2N is suppressed
for convenience, δ j

i is the Kronecker function of two variables i, j which
is 1 if i = j and 0 otherwise, and the almost-complex structure M has the
component formalism involving the step function ε(i),

Mi j,kl ≡ Mkl
i j = ε(i)δ−k

i δ−l
j , ε(i)=1, i ≥0; ε(i)=−1, i <0, (8)

which satisfies M2 =−11. In terms of the tensor product of the Pauli matri-
ces, the Bell matrix B and the almost complex structure M for N -objects
have the forms given by

B = e
π
4 M , M =√−1σy ⊗ (σx )

⊗(N−1), (σx )
⊗(N−1)=σx ⊗· · ·⊗σx︸ ︷︷ ︸

N−1

. (9)

Note that there exist other interesting matrices to produce all the
GHZ states from the product basis, for example, one can choose matrix
entries ε(i)Bi j,kl for a new matrix. But so far as the authors know, only
the Bell matrix is found to form a unitary braid representation.

4The almost-complex structure is usually denoted by the symbol J in the literature and it is
a linear map from a real vector space to itself satisfying J 2 =−1. More details on geometry
underlying what we are presenting here will be discussed elsewhere.
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2.2. Yang–Baxterization and Hamiltonian

The Bell matrix B satisfies the characteristic equation

(B − ei π4 11)(B − e−i π4 11)=0 (10)

and so it has two distinct eigenvalues e±i π4 . Using Yang–Baxterization,5

a solution of the QYBE with the Bell matrix as its asymptotic limit, is
obtained to be

Ř(x)= B + x B−1 = 1√
2
(1+ x)11+ 1√

2
(1− x)M. (11)

As this solution Ř(x) is required to be unitary, it needs a normalization
factor ρ with a real spectral parameter x ,

B(x)=ρ− 1
2 Ř(x), ρ=1+ x2, x ∈R. (12)

As the real spectral parameter x plays the role of the time variable,
the Schrödinger equation describing the unitary evolution of a state ψ(0)
determined by the B(x) matrix, i.e., ψ(x)= B(x)ψ(0), has the form

√−1
∂

∂x
ψ(x)= H(x)ψ(x), H(x)≡√−1

∂B(x)

∂x
B−1(x), (13)

where the time-dependent Hamiltonian H(x) is given by

H(x)=√−1
∂

∂x
(ρ− 1

2 Ř(x))(ρ− 1
2 Ř(x))−1 =−√−1ρ−1 M. (14)

To construct the time-independent Hamiltonian, a new time variable θ

instead of the spectral parameter x is introduced in the way

cos θ = 1√
1+ x2

, sin θ = x√
1+ x2

, (15)

so that the Bell matrix B(x) has a new formulation as a function of θ ,

B(θ)= cos θB + sin θB−1 = e(
π
4 −θ)M , (16)

5See Subsects. 3.1 and 4.1 or Ref. 4 for details. Yang–Baxterization is applied to the Bell
matrix of the type 22n × 22n , while Yang–Baxterization of the Bell matrix of the type
22n+1 ×22n+1 is to be presented elsewhere.
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and hence the Schrödinger equation for the time evolution ψ(θ) =
B(θ)ψ(0) has the form

√−1
∂

∂θ
ψ(θ)= Hψ(θ), H ≡√−1

∂B(θ)

∂θ
B−1(θ)=−√−1M, (17)

where the Hamiltonian6 is time-independent and Hermitian together with
the unitary evolution operator U (θ)= e−Mθ .

3. GENERALIZED BELL MATRIX AND YBE

This section proves the generalized7 Bell matrix B̃ of the type 22n ×
22n to form a unitary braid representation with the help of the algebra of
the almost-complex structure M̃ , and presents a new type of solution of
the QYBE in terms of M̃ .

3.1. YBE and Yang–Baxterization

In this paper, the braid group representation σ -matrix and the QYBE
solution Ř(x)-matrix are d2 × d2 matrices acting on V ⊗ V where V is a
d-dimensional complex vector space. As σ and Ř act on the tensor prod-
uct Vi ⊗ Vi+1, they are denoted by σi and Ři , respectively.

The generators σi of the braid group Bn satisfy the algebraic relation
called the braid group relation,

σiσi+1σi = σi+1σiσi+1, 1≤ i ≤n −1,
σiσ j = σ jσi , |i − j |>1.

(18)

while the quantum Yang–Baxter equation (QYBE) has the form

Ři (x) Ři+1(xy) Ři (y)= Ři+1(y) Ři (xy) Ři+1(x) (19)

with the spectral parameters x and y. In addition, the component formal-
ism the QYBE (or the braid group relation) can be shown in terms of
matrix entries,

Ř(x)i
′ j ′

i1 j1
Ř(xy)k

′k2
j ′k1

Ř(y)i2 j2
i ′k′ = Ř(y) j ′k′

j1k1
Ř(xy)i2i ′

i1 j ′ Ř(x)
j2k2
i ′k′ . (20)

6The Hamiltonian(3,4) has an additional numerical factor 1
2 compared to (17), which makes

it possible that the action of exp 1
2 θM on the product basis is equivalent to a product of

two unitary rotations of Wigner functions of the Bell states. Note that no boundary condi-
tions are imposed on the Schrödinger equations (13) or (17).

7Here “generalized” means that the object has deformation parameters.
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In view of the fact that Ř(x = 0) forms a braid representation, the
braid group relation is also called the braided YBE. Concerning relations
between braid representations and x-dependent solutions of the QYBE
(19), the procedure of constructing the Ř(x)-matrix from a given braid
representation σ -matrix is called Yang–Baxterization.(15) For a braid rep-
resentation σ with two distinct eigenvalues λ1 and λ2, the corresponding
Ř(x)-matrix obtained via Yang–Baxterization has the form

Ř(x)=σ + xλ1λ2σ
−1 (21)

which has been exploited in Subsection 2.2, see (11).

3.2. Generalized Bell Matrix as a Solution of YBE

The generalized Bell matrix B̃ has the form by the almost-complex
structure M̃ with deformation parameters qi j ,

B̃kl
i j = 1√

2
(δk

i δ
l
j + M̃kl

i j ), M̃kl
i j = ε(i)qi jδ

−k
i δ−l

j , (22)

where qi j q−i− j =1 is required for M̃2 =−11 and the generalized step func-
tion ε(i) is defined by

ε(i)ε(i)=1, ε(i)ε(−i)=−1, (23)

which has solutions ε(i)=±1, ε(−i)=∓1.
We label B̃ by familiar indices for the angular momentum theory in

quantum mechanics,

(B̃ J1 J2)bνµa, µ, ν= J1, J1 −1, . . . ,−J1, a,b = J2, J2 −1, · · · ,−J2, (24)

where B̃ J J denotes the generalized Bell matrix B̃ associated with the GHZ
states of an even number of objects, for example,

B̃4 = B̃
1
2

1
2 , B̃16 = B̃

3
2

3
2 , B̃64 = B̃

7
2

7
2 , (25)

but the same type of generalized Bell matrix may be labeled differently, for
example, both B̃

1
2

3
2 and B̃

3
2

1
2 belong to the same type of B̃8.

In the following, we study the generalized Bell matrix of the type B̃ J J

denoted by B̃, and leave our result on B̃ J1 J2 , J1 
= J2 elsewhere.
In the proof for B̃ J J forming a braid representation (18) in terms of

its component formalism (22), deformation parameters qi j are found to
satisfy
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qi1 j1q−i1− j1 =q j1k1q− j1−k1 , i1, j1, k1 = J, J −1, . . . ,−J,

q j1k1 =qi1 j1q− j1k1q−i1 j1, qi1 j1 =q j1k1qi1− j1q j1−k1 ,
(26)

where no summation is imposed between same lower indices and which is
simplified by qi1 j1q−i1− j1 = 1. Furthermore, the unitarity of B̃ leads to a

constraint on M̃ , namely,

M̃† ≡ M̃∗T = M̃−1 =−M̃ ⇒q∗
i j qi j =1, (27)

where the superscript ∗ denotes the complex conjugation and the symbol
T denotes the matrix transpose operation.

As J is a half-integer, we obtain solutions for Eqs. (26) and (27) by
(J + 1

2 )-number of independent angle parameters ϕJ , ϕJ−1, . . ., ϕ 1
2
,

qlm = ei
ϕl +ϕm

2 , ϕ−l =−ϕl , 0≤ l ≤ J, (28)

where the method of separation of variables has been used by choosing
ql = eiϕl and then deriving qlm =qlqm .

For example, deformation parameters for the generalized Bell matrix
B̃

1
2

1
2 have the form

q 1
2

1
2
= eiϕ, q− 1

2 − 1
2
= e−iϕ, q 1

2 − 1
2
=q− 1

2
1
2
=1, (29)

which are the same as those,(3,4,6) and deformation parameters of the gen-
eralized Bell matrix B̃

3
2

3
2 are given by

q 3
2

3
2
= eiϕ1 , q 3

2
1
2
= ei

ϕ1+ϕ2
2 , q 3

2 − 1
2
= ei

ϕ1−ϕ2
2 , q 3

2 − 3
2
=1,

q 1
2

3
2
= ei

ϕ1+ϕ2
2 , q 1

2
1
2
= eiϕ2 , q 1

2 − 1
2
=1, q 1

2 − 3
2
= ei

ϕ2−ϕ1
2 .

(30)

In the 22n-dimensional8 compelx vector space, the almost-complex
structure M̃ is found to satisfy the algebraic relations,

M̃2 =−11, M̃i±1 M̃i =−M̃i M̃i±1,

M̃i M̃ j = M̃ j M̃i , |i − j |≥2, i, j ∈N,
(31)

which define an algebra different from the Temperley–Lieb algebra(18) or
the symmetric group algebra and where deformation parameters qi j have
to satisfy

qi j q−i− j =1, qi j q−i j =q jkq j−k . (32)

8Here we have 22n = (2J +1)2, for example, n =1, J = 1
2 and n =2, J = 3

2 , see Ref. 25.
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With the help of this algebra (31), the generalized Bell matrix B̃ can be
easily proved to satisfy the braided YBE (18) in the way

B̃i B̃i+1 B̃i =2M̃i +2M̃i+1 + M̃i M̃i+1 + M̃i+1 M̃i = B̃i+1 B̃i B̃i+1. (33)

Additionally, the almost-complex structure M̃ and the permutation
operator P satisfy the following algebraic relation

Pi M̃i+1 Pi = Pi+1 M̃i Pi , P =
∑

i j

|i j〉〈 j i |, (34)

which is underlying algebraic relations of the virtual braid group, i.e., the
braid B̃ and permutation P forming a unitary virtual braid representation,
see Refs. 7,8.

3.3. New Type of Solution of QYBE Via Reparameterization

Similar to the rational solution of the QYBE (19),

Řrational(u)=11+u P, P2 =11 (35)

with the permutation matrix P , we have a solution of the QYBE in terms
of the almost-complex structure,

˜̌R(u)=11+uM̃ (36)

satisfying the equation of Yang–Baxter type,

Ři (u) Ři+1

(
u +v
1+uv

)
Ři (v)= Ři+1(v) Ři

(
u +v

1+uv

)
Ři+1(u), (37)

which has been firstly exploited(4) and where new spectral parameters u, v
are related to original spectral parameters x, y in the way

u = 1− x

1+ x
, v= 1− y

1+ y
,

1− xy

1+ xy
= u +v

1+uv
. (38)

Using reparametrization of u, v in terms of angle variables Θ1,Θ2,

u=−√−1 tan Θ1, v=−√−1 tan Θ2,
u+v

1+uv
=−√−1 tan(Θ1+Θ2), (39)

the modified Yang–Baxter equation (37) has the ordinary form

Ři (Θ1) Ři+1(Θ1 +Θ2) Ři (Θ2)= Ři+1(Θ2) Ři (Θ1 +Θ2) Ři+1(Θ1). (40)
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with the solution given by

˜̌R(Θ)=11−√−1 tan ΘM̃, or ˜̌R(Θ′)=11+ tanh Θ′M̃ . (41)

Note that physical models underlying this type of solution of QYBE will
be explored elsewhere.

4. PROJECTORS, DIAGONALIZATION AND GEOMETRY

This section and the next one are aimed at introducing selective topics
related to the generalized Bell matrix (i.e., the almost-complex structure),
for example, associated noncommutative geometry, quantum algebra and
FRT dual algebra.

4.1. Projectors and Yang–Baxterization

In terms of M̃ , two projectors P̃+ and P̃− defined by

P̃+ = 1
2
(1+√−1M̃), P̃− = 1

2
(1−√−1M̃) (42)

satisfy properties of two mutually orthogonal projectors,

P̃+ + P̃− =11, P̃2± = P̃±, P̃+ P̃− =0. (43)

The generalized Bell matrix B̃ has two distinct eigenvalues e±i π4 and
it satisfies the same characteristic equation as (10),

(B̃ −λ−11)(B̃ −λ+11)=0, λ+ = e−i π4 , λ− = ei π4 . (44)

With the projectors P̃± and eigenvalues λ±, the generalized Bell matrix
and its inverse have the form

B̃ =λ+ P̃+ +λ− P̃−, B̃−1 =λ− P̃+ +λ+ P̃−. (45)

Using Yang–Baxterization,(4) the Ř(x)-matrix as a solution of the
QYBE (19) has a form similar to (11),

˜̌R(x)= (λ+ +λ−x)P̃+ + (λ− +λ+x)P̃− = B̃ + x B̃−1, (46)

and hence the Schrodinger equation has a form similar to (13) or (17)
except that the Hamiltonian is determined by M̃ instead of M .
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4.2. Diagonalization of ˜B

The diagonalization of the generalized Bell matrix B̃ is performed by
a unitary matrix D via the unitary transformation,

DB̃ D† = 1√
2

Diag(1+√−1, . . . ,1−√−1) (47)

where the diagonal matrix Diag has the same number of matrix entries
1 + √−1 as 1 − √−1. Assume D to have the form by a Hermitian
matrix N ,

D = 1√
2
(11+√−1N ), N † = N , N 2 =11 (48)

and then this N is found to satisfy an additional constraint,

N M̃ =−M̃ N = Diag(1,−1, . . . ,1,−1), (49)

where the diagonal matrix Diag has the same number of matrix entries 1
as −1 but the ordering between 1 and −1 is flexible.

After some algebra, a formalism of the N is given by

N kl
i j = f (i)qi jδ

−k
i δ−l

j , f (i) f (i)=1, f (i)= f (−i)= f ∗(i) (50)

where qi j are the same as unitary deformation parameters qi j in the gen-
eralized Bell matrix B̃. It gives rise to the diagonalization form of B̃,

(DB̃ D†)mn
i j = 1√

2
(1+√−1 f (i)ε(−i))δm

i δ
n
j , (51)

where f (i)= ε(−i), i >0 and f (i)= ε(i), i <0 leads to

DB̃ D† = 1√
2

Diag(1+√−1, . . . ,1+√−1︸ ︷︷ ︸
2N−1

,1−√−1, . . . ,1−√−1︸ ︷︷ ︸
2N−1

). (52)

For example, the Bell matrix B4 is diagonalized in the way

D4 B4 D†
4= 1√

2
Diag(1−√−1,1+√−1,1−√−1,1+√−1), N4 =−σy ⊗σy,

(53)

where B4 can be also diagonalized by unitary transformations of the
Malkline matrix (or the magic matrix),(26–28) or the diagonaliser,(29) and
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the generalized Bell matrix B̃4 can be diagonalized with a given N4,1,

B̃4 = 1√
2

⎛

⎜⎜⎝

1 0 0 q
0 1 1 0
0 −1 1 0

−q−1 0 0 1

⎞

⎟⎟⎠ , N4,1 =

⎛

⎜⎜⎝

0 0 0 −q
0 0 −1 0
0 1 0 0

q−1 0 0 0

⎞

⎟⎟⎠ ,

D4,1 B̃4 D4,1 = 1√
2

Diag(1+√−1,1+√−1,1−√−1,1−√−1). (54)

As a remark, calculation for noncommutative geometry and quantum
algebra associated with the generalized Bell matrix can be greatly simpli-
fied once the above diagonalization procedure is exploited.

4.3. Associated Noncommutative Geometry

In view of the standard procedure of setting up associated non-
commutative geometry with a given braid group representation,(30,31) we
denote coordinate operators X and differential operators ξ in the way

X T = (x1, x2, . . . , x2N ), ξ T = (ξ1, ξ2, . . . , ξ2N ) (55)

and demand them to satisfy constraint equations,

P̃−(X ⊗ X)=0, P̃+(ξ ⊗ ξ)=0, X ⊗ ξ = (µP̃+ −11)(ξ ⊗ X) (56)

where µ is a free parameter. Note that these equations can be chosen in
the other way by exchanging P̃+ with P̃−.

More essentially, noncommutative differential geometry generated by
X and ξ is determined by the equations in terms of the almost-complex
structure M̃ ,

X ⊗ X =√−1M̃(X ⊗ X), ξ ⊗ ξ =−√−1M̃(ξ ⊗ ξ),
X ⊗ ξ = (

µ
2 −1

)
ξ ⊗ X + µ

2

√−1M̃(ξ ⊗ X),
(57)

which have the formalism of component,

xi x j =√−1ε(i)qi j x−i x− j , ξiξ j =−√−1ε(i)qi jξ−iξ− j ,

xiξ j = (
µ
2 −1

)
ξi x j + µ

2

√−1ε(i)qi jξ−i x− j .
(58)

with the significant geometry at µ= 2. Note that noncommutative plane
related to the Bell matrix B4 has been already briefly discussed.(32)
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5. QUANTUM ALGEBRA VIA THE FRT PROCEDURE

For a given solution Ř of the braided YBE (18), there exists a stan-
dard procedure(24,25) using the ŘT T relation and ŘL L relations to respec-
tively define associated quantum algebra and FRT dual algebra. In this
section, we present quantum algebra and FRT dual algebra specified by
the B̃T T relation and B̃L L relations.

5.1. Quantum Algebra Using the ˜MT T Relation

In the well known ŘT T relation: Ř(T ⊗ T )= (T ⊗ T )Ř, all matrix
entries of the T -matrix are assumed to be noncommutative operators. As
the Ř-matrix is the generalized Bell matrix B̃, the B̃T T relation is essen-
tially the M̃T T relation,

B̃(T ⊗ T )= (T ⊗ T )B̃ ⇒ M̃(T ⊗ T )= (T ⊗ T )M̃, (59)

where M̃ is a 22n ×22n matrix and T is a 22n−1 ×22n−1 matrix. By matrix
entries of M̃ , T and the convention (A ⊗ B)i j,kl ≡ Aik B jl , the M̃T T rela-
tion has the component formalism,

Ti1−i2 Tj1− j2 + ε(i1)ε(i2)qi1 j1qi2 j2 T−i1i2 T− j1 j2 =0,

i1, i2, j1, j2 = J, J −1, . . . ,−J.
(60)

Note that this M̃T T relation (60) lead to eight simplified equations,

Tii Tii = T−i−i T−i−i , Tii T−i−i = T−i−i Tii ,

Ti−i Ti−i =−q2
i i T−i i T−i i , Ti−i T−i i =−T−i i Ti−i ,

Tii Ti−i =qii T−i−i T−i i , Tii T−i i =q−i−i T−i−i Ti−i ,

Ti−i Tii =−qii T−i i T−i−i , Ti−i T−i−i =−qii T−i i Tii

(61)

which completely determine the quantum algebra related to B̃4.
With the help of a new T̃ -matrix given by

T̃i j = ε(i)Ti j + T−i− j , T̃−i− j =−ε(i)T−i− j + Ti j , (62)

where qi j is chosen to be unit for convenience, the M̃T T relation (60) is
replaced by the M̃ T̃ T̃ relation having the algebraic relations,

T̃i1−i2 T̃ j1− j2 =−T̃−i1i2 T̃− j1 j2 , if ε(i1)ε(i2)=1, ε(i2)ε( j1)=1,

T̃i1−i2 T̃− j1 j2 = T̃−i1i2 T̃ j1− j2 , if ε(i1)ε(i2)=1, ε(i2)ε( j1)=−1,

T̃i1−i2 T̃ j1− j2 = T̃−i1i2 T̃− j1 j2 , if ε(i1)ε(i2)=−1, ε(i2)ε( j1)=1,

T̃i1−i2 T̃− j1 j2 =−T̃−i1i2 T̃ j1− j2 , if ε(i1)ε(i2)=−1, ε(i2)ε( j1)=−1,

(63)
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which give rise to four simplest algebraic relations,

T̃ 2
i−i =0, T̃ii T̃−i−i =0, T̃ii T̃−i i =0, T̃i−i T̃i i =0. (64)

5.2. Example: The Quantum Algebra from the B̃4T T Relation

The B̃4-matrix and T -matrix take the forms,

B̃4 =

⎛

⎜⎜⎝

1 0 0 q
0 1 1 0
0 −1 1 0

−q−1 0 0 1

⎞

⎟⎟⎠ , T =
(

â b̂
ĉ d̂

)
, (65)

and the B̃4T T relation leads to the quantum algebra generated by â, b̂, ĉ, d̂
satisfying algebraic relations,

ââ = d̂ d̂, âb̂ =qd̂ĉ, b̂b̂ =−q2ĉĉ, âĉ =q−1d̂ b̂,

âd̂ = d̂â, b̂â =−qĉd̂, b̂ĉ =−ĉb̂, ĉâ =−q−1b̂d̂,
(66)

where the deformation parameter q can be absorbed into the generator ĉ
by a rescaling transformation. With the new operators ˜̂a,˜̂b,˜̂c,˜̂d(33) speci-
fied by

˜̂a = â + d̂, ˜̂b = b̂ + ĉ, ˜̂c = b̂ − ĉ, ˜̂c = â − d̂, (67)

the above algebraic relations have a very simplified formalism,

˜̂a˜̂d =˜̂d˜̂a =0, ˜̂b̃b̂ =˜̂c̃ĉ =0, ˜̂ãĉ =˜̂d˜̂b =0, ˜̂b̃â =˜̂c˜̂d =0. (68)

Note that the quantum algebra from the B4T T relation and its rep-
resentation theory has been presented,(33) while the same quantum alge-
bra from the B̃4T T relation, interesting algebraic structures underlying its
representation and its natural connection to quantum information theory
has been explored.(6) Remarkably, quantum algebra obtained from B̃T T
relation may be higher-dimensional representations of that algebra given
by B̃4T T relation.

5.3. FRT Dual Algebra Using the ˜M LL Relations

The ŘL L relations determining the FRT dual algebra can be derived
from the generalized ŘT T relation which relies on the spectral parameter,

Ř(xy−1)(L(x)⊗ L(y))= (L(y)⊗ L(x))Ř(xy−1). (69)
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Assume the L(x)-matrix to have a similar form to B̃(x),

L(x)= L+ + x L−, B̃(x)= B̃ + x B̃−1, (70)

and this leads to the B̃L L relations for the FRT dual algebra,

B̃(L± ⊗ L±)= (L± ⊗ L±)B̃, B̃(L+ ⊗ L−)= (L− ⊗ L+)B̃, (71)

where matrix entries of L± are noncommutative operators. These B̃L L
relations, i.e., the M̃ L L relations,

M̃(L± ⊗ L±)= (L± ⊗ L±)M̃,
L+ ⊗ L− − L− ⊗ L+ + M̃(L+ ⊗ L−)− (L− ⊗ L+)M̃ =0,

(72)

have the component formalism,

L±
i1−i2

L±
j1− j2

+ ε(i1)ε(i2)qi1 j1qi2 j2 L±
−i1i2

L±
− j1 j2

=0,

L+
i1i2

L−
j1 j2

− L−
i1i2

L+
j1 j2

+ ε(i1)qi1 j1 L+
−i1i2

L−
− j1 j2

+ ε(i2)q−i2− j2 L−
i1−i2

L+
j1− j2

=0, i1, i2, j1, j2 = J, J −1, . . . ,−J.

(73)

Remark that the FRT dual algebra for the Bell matrix B4 firstly
given(29) and its quotient algebra with the condition L+ ⊗ L− = L− ⊗ L+
presented.(6) Also, in view of Refs. 6,29,33, further research is needed to
set up representation theories for these quantum algebra and FRT dual
algebra.

6. CONCLUDING REMARKS AND OUTLOOKS

This paper is motivated by recent work,(1–4,6) and it sheds a light on
further research for unraveling deep connections among quantum informa-
tion theory, Yang–Baxter equation and complex geometry. We find that
the GHZ states can be yielded by the high dimensional Bell matrix on the
product basis and prove that the generalized Bell matrix of the type 22n ×
22n forms a unitary braid representation with the help of the algebra gen-
erated by the almost-complex structure. The algebraic and diagrammatic
proofs for the generalized Bell matrix of the type 22n+1 × 22n+1 satisfying
the braided YBE together with other interesting result will be submitted
elsewhere.

Besides what we have done in the present paper, there still remain
many meaningful topics worthwhile to be explored. For example, almost-
complex structure, classical YBE and symplectic geometry; construction of
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a universal R-matrix(34) in terms of the generators of the algebra from the
B̃4T T relation; Yangian, Yang–Baxter equation and quantum information;
new quantum algebra obtained by exploiting methodologies for the Sklya-
nin algebra(35,36) to the generalized Bell matrix. The most important thing
(at least for the authors) is still to look for further connections among
physics, quantum information and the YBE.
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