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We give the mathematical theory of duality computer in the density matrix for-
malism. This result complements the mathematical theory of duality computer of
Gudder in the pure state formalism.
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1. INTRODUCTION

Very recently, Gudder has given the mathematical theory for the duality
computer.() In his timely work, he has provided two descriptions, one is
in the pure state formalism and the other is in the mixed state formal-
ism for the mathematics of duality computer. The duality computer is a
new type of computing machine based on the general principle of quan-
tum interference proposed in Ref. 2. Notably, unsorted database search
problem may be solved by using only a single query, and all NP-complete
problems may have polynomial algorithms in the duality computer.?)

In Ref. 1, it has been pointed out that a paradoxical situation occurs
with the mixed state situation where the formalism gives a different result
from the pure state formalism, and in particular, the advantage of duality
computer was lost in the mixed state formalism.

In this paper, we give the mathematical theory of the duality computer in
the density matrix formalism. This density matrix formalism description is in
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accordance with Gudder’s pure state description, and hence solves the paradox.
Density matrix may have different physical interpretations,>># and different
interpretation may lead to different results if issues concerning the fundamen-
tals are involved. In this short paper, we can either consider the density matrix
arises from the average of many computations using duality computers starting
from different initial states, or consider it as an improper mixed state arising
from the average over other unseen degrees of freedom. Here we just study
the mathematical formalism and do not consider fundamental issues where
difference may arise.

2. DIVIDER AND COMBINER OPERATORS IN DUALITY
COMPUTER

Two important operations in the duality computer are the quantum
wave divider and combiner.?’ A quantum wave divider is an operation
that divides a quantum wave into many sub-waves of the same quantum
system, and is represented graphically as

ny,
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where p; >0 and >_7_, pi=1. The quantum wave combiner is the reverse
operation of quantum wave divider, and it is represented graphically as
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Their mathematical descriptions have been given by Gudder as
DY =l (i) 6

for the divider, and the quantum wave combiner is given by

Co(p1¥ @ @& pa¥)=1pll D pivr, &

i=1

where the subscript p represents a probability distribution p=(py,..., pn)
with p; >0 and >/ pi=1. |pl = (3 p? 2 Then Gudder has shown
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that D, and C, are linear isometries satisfying szD;, where the dagger
superscript represents the hermitian conjugate operation, namely complex
conjugate plus transpose.

Thus the kind of operations allowed in duality computer are more
general than those in a quantum computer. It takes the general form
p1U + poUs for a two-path duality computer where U; and U, are uni-
tary operators and p;+ py=1.

If the input state of the duality computer is a mixed state, according
to Gudder, the divider operation is

DypD}=&pip. )

namely the mixed state has been divided into n parts. Then if the dual-
ity gate operations, @U; is applied to each path, the state becomes
D pi Ul-pU,.T. Then the quantum wave combiner operation gives the follow-
ing result > p;U; pUiT, namely the combiner operation in the density for-
malism gives

Cp(pl®p2"'€9pn)c;zzpi- (6)

Because > p; Ui,oUl.T describes a quantum operation, including both uni-
tary operation and measurements, the mixed state approach gave generally
different result from those obtained from the pure state approach, and a
paradoxical situation occured.

3. MATHEMATICS OF DUALITY COMPUTER IN THE DENSITY
MATRIX FORMALISM

We adopt Gudder’s mathematical definition of divider operation,®
however in accordance with Eq. (1)

1
DpPDI,:W@PiP- (7

However for the combinor operation we define,

;
CP(GBPiUi/OU,T)C;:||P||2(ZPiUi),0(ZPiUi) : ®)

It is easy to check that if the input state is a pure state, then the combined
operation of divider and combiner leaves the state invariant,
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The physical meaning is apparent if we interpret the density matrix
in the proper mixture sense:® we run the duality computer N times and
N; times the input state is |¢;), and then the density matrix for the input
state can be written as p=>". ¢;|¢;)(¢i| where g; =N;/N. Then in the jth
round of duality computation, the resulting state is

> pililg;).

In term of the density matrix formalism, it is

(Z pilil$;) () )(2 pkuk) : (10)

After the N rounds of duality computation, the averaged state after a
duality computation is just the average, namely

Zq, (Zp,U 16,)(¢; )(ZPkUk)

=(Z p,.U,.)p(zk; pkuk)j'. (11)

Equation (8) indicates that the combinor operation can only combine sub-
waves for the same quantum system, i.e., all the sub-waves are from the same
original wave through a quantum wave divider. This is a natural requirement of
the general principle of quantum interference.’?) Now we check the pure state
formalism results of Gudder in the density matrix formalism.

Lemma 2.1. is also valid in the density matrix formalism, i.e., the
divider operation is an isometry.

Lemma 2.2. is also true, i.e., the combiner operation Cp is also an
isometry.

Theorem 2.3. is also valid here in the density matrix formalism,
namely the identity /g is an extreme point of g(H).
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Corollary 2.4. is also true. Namely the extreme points of g(H) are
precisely the unitary operators of H.

Theorem 2.5. is also valid in the density matrix formalism, namely all
bounded linear operators on H is in the positive cone generated by the convex
set whose extreme points are the unitary operators on H. The proof of this
theorem in the density matrix formalism can be made in the same way as in the
pure state formalism of Gudder, noting that the density p can be written as a
convex combination of pure state density matrices.

Corollary 2.6. is also true in the density formalism.

4. THE MEASUREMENT EFFICIENCY IN THE DUALITY
COMPUTER

In Ref. 2, we have pointed that there exists the problem of measure-
ment efficiency of a partial wave in the duality computer, especially when
the final result is a near cancellation of the sub-waves. By measurement
efficiency we mean the probability to obtain a measured result if a per-
fect measuring apparatus is used. Mathematically, these three cases can be
described respectively by the following:

(1) When measuring a partial wave, the probability distribution is the
same as that when measuring a full wave. In this case, this is equivalent
to no renormalization of the final quantum state, the final state after the
duality computation in the pure state formalism is

Cp® o pililV) Z(p,Uw (12)

1
Ip

In general when an mixed input state is used, the final density matrix
will be

> (piUnp(pjUpT. (13)

i,j

(2) In the second scenario, the measurement efficiency is 100% but it
may require a longer time to get a measured result. In the third scenario,
the measurement efficiency is 100% and there is no time delay in getting
a result. In both cases, they correspond to a renormalization to the final
state before the measurement provided that the norm of density matrix is
greater than a threshold depending on the measurement device,
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2. pilily)
) piU;
[Yout) = |(W|(zi<piUi)T(zj piUNIY)| |ij il >e

0, else,

(14)

where € >0 is a small number dependent on the measurement device. For
an ideal measurement device, ¢ =0, namely as long as the sub-waves do
not cancel completely, the measurement device will detect it.

For mixed state, in terms of the density matrix formalism, this means that
the resulting density matrix just before the measurement is

) S piUDp (X piUNT
out = )
Tr (X piUne(X; psUT)

if Te((X; piUnp(X; pjUNT) > e Ttwillbe zero if Tr((X; piUnp(X; pjU)Y)

<E€.

(15)

Even in the first scenario, quantum Zeno effect may be used to increase the
measurement efficiency as one can repeatedly measure the same partial wave.
Then this may bring the final density matrix to the form in Eq. (15).

For efficient calculation, the second and third scenario are preferred.
However the final choice is up to to Nature and it depends further exper-
imental study. However, even in the first scenario, the duality computer is
at least as powerful as a quantum computer because when there is only a
single path, a duality computer is just a quantum computer. With the help
of quantum Zeno effect, the measurement efficiency may be increased.
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