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The unitary braiding operators describing topological entanglements can be viewed as
universal quantum gates for quantum computation. With the help of the Brylinski’s the-
orem, the unitary solutions of the quantum Yang–Baxter equation can be also related
to universal quantum gates. This paper derives the unitary solutions of the quantum
Yang–Baxter equation via Yang–Baxterization from the solutions of the braid rela-
tion. We study Yang–Baxterizations of the non-standard and standard representations
of the six-vertex model and the complete solutions of the non-vanishing eight-vertex
model. We construct Hamiltonians responsible for the time-evolution of the unitary
braiding operators which lead to the Schrödinger equations.
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1. INTRODUCTION

There are natural relationships between quantum entanglement(1) and
topological entanglement.(2) Topology studies global relationships in
spaces, and how one space can be placed within another, such as knot-
ting and linking of curves in three-dimensional space. One way to study
topological entanglement and quantum entanglement is to try making
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direct correspondences between patterns of topological linking and entan-
gled quantum states. One approach of this kind was initiated by Aravind,(3)

suggesting that observation of a link would be modelled by deleting one
component of the link. But this correspondence property of quantum
states and topological links is not basis independent.(3)

A deeper method (we believe) is to consider unitary gates Ř that
are both universal for quantum computation and are also solutions to
the condition for topological braiding. Such Ř-matrices are unitary solu-
tions to the Yang–Baxter equation (the braided relation). We are then
in a position to compare the topological and quantum properties of
these transformations. In this way, we can explore the apparently com-
plex relationship among topological entanglement, quantum entanglement,
and quantum computational universality. This way has been explored in a
series of papers.(4–12)

The present paper derives unitary solutions of the Quantum Yang–
Baxter Equation (QYBE) via Yang–Baxterization and explores the cor-
responding dynamical evolution of quantum entanglement states. The
solutions to the QYBE that we derive by Yang–Baxterization contain a
spectral parameter x, and hence do not, except in special cases, give repre-
sentations of the Artin braid group. These new solutions are unitary, and
they do give useful quantum gates. Thus we show in this paper that the
full physical subject of solutions to the quantum Yang–Baxter equation
(including the spectral parameter x) is of interest for quantum computing
and quantum information theory.

The plan of the paper is organized as follows. In Sec. 2, a uni-
tary braiding operator is regarded as a quantum entanglement operator
and further a universal quantum gate. To describe the dynamical evo-
lution of the unitary braiding operator Ř, Yang–Baxterization is used
to solve the QYBE. In Sec. 3, the unitary solutions of the QYBE for
the non-standard and standard representations of the six-vertex model
are obtained via Yang–Baxterization. In Sec. 4, the complete unitary
solutions of the QYBE for the non-vanishing eight-vertex model are
obtained via Yang–Baxterization. In Sec. 5, with the Brylinski’s theo-
rem,(13) all unitary Ř(x)-matrices presented in this paper are recognized to
be universal quantum gates for most x-values. In Sec. 6, the Hamiltonian
determining the time evolution of quantum state is constructed with
the unitary Ř(x)-matrix. In Sec. 7, as an example, the CNOT gate is
constructed in terms of the unitary Ř-matrix (Ř(x)-matrix) and local
unitary transformations. To conclude, remarks on our work are made.
In the Appendix A, a pragmatic introduction to Yang–Baxterization is
presented.
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2. THE QYBE IN QUANTUM ENTANGLEMENTS

This section presents basic elements underlying our work. The Braid
Group Representation (BGR) and the QYBE are described in the sense of
studying quantum entanglements. The Brylinski’s theorem(13) plays the key
role in relating a unitary Ř-matrix (Ř(x)-matrix) to a universal quantum
gate. Yang–Baxterization derives the corresponding Ř(x)-matrix from the
Ř-matrix and makes it possible constructing the Hamiltonian determining
the evolution of the unitary braiding operator (Ř-matrix).

2.1. The BGR in Quantum Entanglements

Braids are patterns of entangled strings. A braid has the form of a
collection of strings extending from one set of points to another, with a
constant number of points in each cross section. Braids start in one row
of points and end in another. As a result, one can multiply two braids to
form a third braid by attaching the end points of the first braid to the ini-
tial points of the second braid. Up to topological equivalence, this mul-
tiplication gives rise to a group, the Artin braid group Bn on n strands,
which is generated by {bi |1≤ i≤n−1}.

The group Bn consists of all words of the form b±1
j1
b±1
j2
...b±1

jn
modulo

the relations:

bibi+1bi = bi+1bibi+1, 1≤ i≤n−1,

bibj = bjbi, |i− j |>1. (1)

Each braid is, in itself, a pattern of entanglement. Each braid is also an
operator that operates on other patterns of entanglement (braids) to pro-
duce new entanglements (braids again).

The analogy between topological entanglement and quantum entan-
glement (from the point of view of braids) means the association of a uni-
tary operator with a braid that respects the topological structure of the braid
and allows exploration of the entanglement properties of the operator. In
other words, we propose to study the analogy between topological entan-
glement and quantum entanglement by looking at unitary representations
of the Artin braid group. The main point for the exploration of the anal-
ogy is that (from the point of view of a BGR) each braid is seen as an
operator rather than a state. (see Fig. 1).

Consider representations of the Artin braid group constructed in the
following manner. To an elementary two strand braid there is associated
an operator

Ř:V ⊗V −→V ⊗V.
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Id ⊗ Id ⊗ Id Ř ⊗ Id

Fig. 1. A braiding operator Ř⊗ Id.

=

(Ř ⊗ Id)(Id ⊗ Ř)(Ř ⊗ Id) = (Id ⊗ Ř)(Ř ⊗ Id)(Id ⊗ Ř)

Fig. 2. The Yang–Baxter equation (the braided relation).

Here V is a complex vector space, and for our purposes, V will be two-
dimensional so that V can hold a single qubit of information. One should
think of the two input and two output lines from the braid as represent-
ing this map of tensor products. Thus the left endpoints of Ř as shown in
Figs. 1 and 2 represent the tensor product V ⊗V that forms the domain
of Ř and the right endpoints of the diagram for Ř represent V ⊗V as the
range of the mapping. In the diagrams with three lines shown in Fig. 2,
we have mappings from V ⊗V ⊗V to itself.

The identity shown in Fig. 2 is called the Yang–Baxter Equation (the
braided relation), and it reads algebraically as follows, where Id denotes
the identity transformation on V.

(Ř⊗ Id)(Id⊗ Ř)(Ř⊗ Id)= (Id⊗ Ř)(Ř⊗ Id)(Id⊗ Ř). (2)

This equation expresses the fundamental topological relation in the Artin
braid group, and is the main requirement for producing a representation
of the braid group by this method.
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2.2. The Brylinski’s Theorem and Ř-Matrix

A two-qubit gate G is a unitary linear mapping G:V ⊗V −→V ⊗V

where V is a two complex dimensional vector space. A gate G is said to
be entangling if there is a vector

|αβ〉= |α〉⊗ |β〉∈V ⊗V

such that G|αβ〉 is not decomposable as a tensor product of two qubits.
Under these circumstances, one says that G|αβ〉 is entangled.

In Ref. 13, the Brylinskis give a general criterion of G to be universal
(in the presence of local unitary transformations). They prove that a two-
qubit gate G is universal if and only if it is entangling.

Here is the specific Ř-matrix that we shall examine

Ř=



a 0 0 0
0 0 d 0
0 c 0 0
0 0 0 b


 , (3)

where a, b, c, d can be any scalars on the unit circle in the complex plane.
Then Ř is a unitary matrix and it is a solution to the Yang–Baxter equa-
tion (2).

The point of this case study is that Ř, being unitary, can be consid-
ered as a universal quantum gate and since Ř is the key ingredient in a
unitary representation of the braid group, it can be considered as an oper-
ator that performs topological entanglement. We shall see that it can also
perform quantum entanglement in its action on quantum states. The Ř-
matrix can also be used to make an invariant of knots and links that is
sensitive to linking numbers.(2)

Consider the action of the unitary transformation Ř on quantum
states. We have

Ř|00〉 = a|00〉, Ř|01〉= c|10〉,
Ř|10〉 = d|01〉, Ř|11〉=b|11〉. (4)

Here is an elementary proof that the operator Ř can entangle quantum
states. If Ř is chosen so that ab �= cd, then the state Ř(|ψ〉 ⊗ |ψ〉), with
|ψ〉= |0〉+ |1〉, is entangled as a quantum state since

|φ〉= Ř(|ψ〉⊗ |ψ〉)=a|00〉+ c|10〉+d|01〉+b|11〉 (5)

for ab �= cd (see Fig. 3) is an entangled state.
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|ψ〉

|ψ〉
|φ〉

Ř(|ψ〉 ⊗ |ψ〉) = |φ〉

Fig. 3. The braiding operator Ř as an entangling operator.

2.3. Yang–Baxterization and Hamiltonian

In this paper, the BGR b-matrix(5) and the QYBE solution
Ř-matrix(14–17) are n2 × n2 matrices acting on V ⊗ V where V is an n-
dimensional vector space. As b and Ř act on the tensor product Vi⊗Vi+1,
we denote them by bi and Ři , respectively.

The BGR b-matrix has to satisfy the braided relation

bi bi+1 bi =bi+1 bi bi+1, (6)

while the QYBE has the form

Ři(x) Ři+1(xy) Ři(y)= Ři+1(y) Ři(xy) Ři+1(x) (7)

with the asymptotic condition

Ř(x=0)=b (8)

and x called the spectral parameter. From these two equations both b and
Ř(x) are fixed up to an overall scalar factor.

In terms of the permutation operator P specified by P(ξ ⊗η)=η⊗ ξ
and the Ř(x)-matrix, the solution of the algebraic QYBE reading

R12(x)R13(xy)R23(y)=R23(y)R13(xy)R12(x) (9)

takes the form

R(x)=P Ř(x), (10)

where Rij is an operator acting on the tensor product Vi ⊗ Vj . But we
will mainly deal with the unitary 4 × 4 Ř(x)-matrix since the unitary
permutation operator P can be found in order to obtain the unitary
R(x)-matrix.

As a solution of the QYBE (7), the Ř(x)-matrix usually depends on
a deformation parameter q and the spectral parameter x. With two such
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parameters, there exist two approaches to solving the QYBE (7). Taking the
limit as q→ 1 leads to the classical r-matrix satisfying the classical Yang–
Baxter equation. Then q-deforming r-matrices as solutions of the classical
Yang–Baxter equation regain the q-dependence for the Ř-matrices as solu-
tions for the QYBE (7). The QYBE solution via this line of thought has
been systematized by a general strategy in quantum groups (Hopf algebras)
approach.(18–23)

Taking the limit as x→ 0 leads to the braided relation (6) from the
QYBE (7) and the BGR b-matrix from the Ř(x)-matrix. Concerning rela-
tions between the BGR and x-dependent solutions of the QYBE (7), we
either reduce a known Ř(x)-matrix to the BGR b-matrix, (see Refs. 24–
26), or construct the Ř(x)-matrix from a given BGR b-matrix. Such a con-
struction is called Yang–Baxterization.

In knot theory, these solutions were first studied by Jones(27) and
Turaev(26) for the BGR (6) satisfying the Hecke algebra relations and for
the BGR (6) satisfying the Birman–Wenzl algebra relations (correspond-
ing to the Kauffman two-variable polynomial, see Ref. 2). Later the more
general cases with a BGR (6) having three or four unequal eigenvalues
were considered,(28–30) including all known trigonometric solutions to the
QYBE (7). Also Yang–Baxterization of non-standard BGR b-matrix has
been discussed.(31–38)

In this paper, via Yang–Baxterization the unitary Ř(x)-matrices are
derived and used to construct Hamiltonians determining the time evo-
lution of quantum states. In Appendix A, a pragmatic revisit to Yang–
Baxterization has been given.

3. UNITARY Ř(x)-MATRIX: THE SIX-VERTEX MODEL

In this section we deal with Yang–Baxterizations of both the standard
representation and the non-standard representation of the six-vertex model
in detail, as an example of deriving the unitary Ř(x)-matrix with the spec-
tral parameter x from the given BGR b-matrix.

Consider a non-standard BGR b-matrix suitable for constructing the
Alexander polynomial(2)

b=



q 0 0 0
0 0 1 0
0 1 q−q−1 0
0 0 0 −q−1


, (11)
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where the deformation parameter q has been assumed to be non-vanish-
ing. Let b† be the transpose and conjugation of b. The unitarity condition
b†b=b†b=1 leads to q=±1.

It has two distinct eigenvalues: q and −q−1. By Yang–Baxterization
as in Appendix A.1, the BGR b-matrix corresponds to the Ř(x)-matrix

Ř(x)=



q−q−1x 0 0 0

0 (q−q−1)x 1−x 0
0 1−x q−q−1 0
0 0 0 qx−q−1


, (12)

which satisfies the QYBE (7). The case of x = 1 will not be considered
since Ř(1)= (q−q−1)1.

Assume that q, x are complex numbers, x �=1 and q �=0, with the com-
plex conjugations q̄, x̄ and the norms ‖q‖2 := qq̄, ‖x‖2 := xx̄. The Ř(x)-
matrix has its conjugate matrix by

Ř†(x̄)=



q̄− q̄−1x̄ 0 0 0

0 (q̄− q̄−1)x̄ 1− x̄ 0
0 1− x̄ q̄− q̄−1 0
0 0 0 q̄x̄− q̄−1


. (13)

The unitarity condition shows

Ř(x)Ř†(x̄)= Ř†(x̄)Ř(x)=ρ1, (14)

where ρ is a normalization factor of the Ř(x)-matrix. It gives us the fol-
lowing equations

‖q−q−1x‖2 =‖qx−q−1‖2 = ρ,

(1−x)(q̄− q̄−1)x̄+ (q−q−1)(1− x̄) = 0,
‖q−q−1‖2 ‖x‖2 +‖1−x‖2 = ρ,

‖q−q−1‖2 +‖1−x‖2 = ρ.

(15)

Comparing the last two equations, we obtain

1
‖q‖2

‖1−q2‖2(1−‖x‖2)=0, (16)

which leads to the first case of q = ±1 and the second case of ‖x‖ = 1.
With ‖x‖=1 and

q−1 = q̄

‖q‖2
, q̄−1 = q

‖q‖2
, (17)
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going further to rewrite the above second equation as

(1− x̄)
(

1+ 1
‖q‖2

)
(q− q̄)=0, (18)

which shows that q has to be real. Analyzing the above first equation gives

1
‖q‖2

(q+ q̄)(q− q̄)(x− x̄)=0, (19)

which is satisfied for real q. To make a safe judgement, comparing the first
equation and the last two equations, we have

(q− q̄)(q(1− x̄)+ q̄(1−x))=0, (20)

which is also satisfied for real q. Therefore, as ‖x‖ = 1, x �= 1 and q real,
the Ř(x)-matrix obtained through Yang–Baxterization is unitary.

In the first case that q=±1, x �=1, we have

ρ=‖1−x‖2 := (1−x)(1− x̄) (21)

and then the corresponding Ř(x)-matrix is given by

Ř(x)|q=±1 = 1−x
‖1−x‖ b|q=±1. (22)

In the second case, taking x=e2 iθ , θ �=0 and q=eγ , the Ř(x)-matrix takes
the form

Ř(θ)=2 eiθ




sinh(γ − iθ) 0 0 0
0 eiθ sinh γ −i sin θ 0
0 −i sin θ e−iθ sinh γ 0
0 0 0 sinh(γ + iθ)


. (23)

Modulo the scalar factor 2eiθ , the unitary Ř(θ)-matrix has the normaliza-
tion factor ρ by

ρ= sinh2 γ + sin2 θ. (24)

In addition, with the new variable θ , such Ř(θ)-matrix satisfies the follow-
ing QYBE:

Ř12(θ1) Ř23(θ1 + θ2) Ř12(θ2)= Ř23(θ1) Ř12(θ1 + θ2) Ř23(θ2). (25)

Similarly, we can treat the case of q=−eγ .
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Now consider the BGR b-matrix which satisfies the Temperley–Lieb
algebra and plays the role in constructing the Jones polynomial (see Ref.
4),

b=



q 0 0 0
0 0 1 0
0 1 q−q−1 0
0 0 0 q


 . (26)

It has two eigenvalues: q and −q−1. With Yang–Baxterization, the corre-
sponding Ř(x)-matrix has the form

Ř(x)=



q−q−1x 0 0 0

0 (q−q−1)x 1−x 0
0 1−x q−q−1 0
0 0 0 q−q−1x


. (27)

Similar to the preceding case for the Alexander matrix, the unitarity con-
dition (14) informs us that the spectral parameter x lives on the unit circle
‖x‖=1 and the deformation parameter q has to be real.

We apply the ordinary unitarity requirements (14) instead of the
unitarity conditions Ř(x−1)Ř(x)∝ 1 often mentioned in literature related
to the QYBE (7). With the latter one, we have the following the normali-
zation factor ρ by

ρ= Ř(x)Ř(x−1)= (q2 +q−2 −x−x−1) (28)

for the non-standard representation and standard representation of the
six-vertex model. It is compatible with the normalization factor (24).

4. UNITARY Ř(x)-MATRIX: THE EIGHT-VERTEX MODEL

In this section we will present the complete solutions of the BGR (6)
for the non-vanishing eight-vertex model and the corresponding unitary
Ř(x)-matrices via Yang–Baxterization. In terms of non-vanishing Boltz-
man weights w1, w2, . . . , w8, the BGR b-matrix of the eight-vertex model
assumes the form

b=



w1 0 0 w7
0 w5 w3 0
0 w4 w6 0
w8 0 0 w2


. (29)
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Choosing suitable Boltzman weights leads to unitary solutions of the
Yang–Baxter equation or the braided relation (6). In Appendix A.2, Yang–
Baxterization used here is sketched in a practical way.

4.1. Solutions of the Eight-Vertex Model for w3 =−w4 (I)

Setting w5 =w1 =w2 =w6 gives us w2
1 =w2

3 =w2
4 and w2

3 +w7w8 = 0,
(see Appendix A.2). In the case of w3 �=w4, we have w3 =−w4 and w1 =
±w3. The BGR b-matrix has the form

b± =




w1 0 0 w7
0 w1 ±w1 0
0 ∓w1 w1 0

−w2
1

w7
0 0 w1


⇐⇒




1 0 0 q

0 1 ±1 0
0 ∓1 1 0

−q−1 0 0 1


. (30)

It has two eigenvalues λ1 = 1 − i and λ2 = 1 + i. The corresponding
Ř(x)-matrix via Yang–Baxterization is obtained to be

Ř±(x) = b+x λ1λ2

=




1+x 0 0 q(1−x)
0 1+x ±(1−x) 0
0 ∓(1−x) 1+x 0

−q−1(1−x) 0 0 1+x


. (31)

Assume the spectral parameter x and the deformation parameter q to
be complex numbers. The unitarity condition (14) leads to the following
equations

‖1+x‖2 +‖q‖2‖1−x‖2 = ρ,

‖1+x‖2 + 1
‖q‖2 ‖1−x‖2 = ρ,

‖1+x‖2 +‖1−x‖2 = ρ,

(1−x)(1+ x̄)− (1+x)(1− x̄) = 0,
−q−1(1−x)(1+ x̄)+ q̄ (1+x)(1− x̄) = 0,

(32)

which specify x real and q living at a unit circle.
Introducing the new variables of angles θ and ϕ as follows

cos θ = 1√
1+x2

, sin θ = x√
1+x2

, q= e−iϕ, (33)

we represent the Ř±(x)-matrix in a new form

Ř±(θ)= cos θ b±(ϕ)+ sin θ (b±)−1(ϕ) (34)
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in which the BGR b±(ϕ)-matrices are given by

b±(ϕ)= 1√
2




1 0 0 eiϕ

0 1 ±1 0
0 ∓1 1 0

−e−iϕ 0 0 1


. (35)

4.2. Solutions of the Eight-Vertex Model for w3 =w4 (II)

Imposing w5 =w6 and w3 =w4 in the given eight-vertex model. In the
first case of w1/w5 = 2 − t , set z= (t2 − 2t + 2)1/2. The BGR b±-matrices
take the form

b± =




2− t 0 0 q

0 1 ±z 0
0 ±z 1 0
q−1 0 0 t


. (36)

It has two distinct eigenvalues 1 ± z and so via Yang–Baxterization the
Ř(x)-matrices are obtained by

Ř±(x)=




2− t (1−x) 0 0 q(1−x)
0 1+x ±z(1−x) 0
0 ±z(1−x) 1+x 0

q−1(1−x) 0 0 2x+ t (1−x)


. (37)

For simplicity, assume t real and then z positive real. The unitarity
condition (14) leads to the following equations,

‖(2− t)+ tx‖2 +qq̄‖1−x‖2 = ρ,

q̄−1((2− t)+ tx)(1− x̄)+q(1−x)(t+ (2− t)x̄) = 0,
‖1+x‖2 + z2 ‖1−x‖2 = ρ,

z(1+x)(1− x̄)+ z(1−x)(1+ x̄) = 0,
q−1q̄−1‖1−x‖2 +‖t+ (2− t)x‖2 = ρ.

(38)

Analyzing the fourth equation leads to ‖x‖2 =1, while comparing the first
equation and the third one gives ‖q‖2 = 1. They survive the remaining
equations. The normalization factor ρ is given by

ρ=2(1+ z2)+ (1− z2)(x+ x̄)=4+ (t−1)2(2−x− x̄). (39)
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4.3. Solutions of the Eight-Vertex Model for w3 =w4 (III)

Following Sec. 4.2, consider the second case of w3 =w4, namely take
w1/w5 = t so that z=±t . The corresponding BGR b-matrix has the form

b± =




t 0 0 q

0 1 ±t 0
0 ±t 1 0
q−1 0 0 t


, (40)

which has three distinct eigenvalues. It needs two types of Yang–
Baxterization. The first case is essentially the same as the case of two distinct
eigenvalues, while the second case is treated in detail in Appendix A.2.

With Yang–Baxterization of the first case, we have

Ř±(x)=




t (1−x) 0 0 q(1+x)
0 1+x ±t (1−x) 0
0 ±t (1−x) 1+x 0

q−1(1+x) 0 0 t (1−x)


. (41)

The unitarity condition (14) shows

‖t‖2‖1−x‖2 +qq̄‖1+x‖2 = ρ,

‖t‖2‖1−x‖2 +‖1+x‖2 = ρ,

‖t‖2‖1−x‖2 +q−1q̄−1‖1+x‖2 = ρ,

t (1−x)(1+ x̄)+ t̄ (1+x)(1− x̄) = 0,
q̄−1t (1−x)(1+ x̄)+qt̄(1+x)(1− x̄) = 0.

(42)

The first three equations give ‖q‖2 = 1. Simplifying the fourth equation
gives

‖x‖2 =1+ 1− t21
1+ t21

(x− x̄), (43)

where t21 = t2

‖t‖2 .

Setting t=‖t‖eiφ leads to

‖x‖2 =1− i tanφ (x− x̄) (44)

and setting x=a+ i b gives us

a2 + (b− tanφ)2 = sec2 φ (45)

so that the normalization factor ρ has the form

ρ=2(1+‖t‖2)− i tanφ (x− x̄)(1+‖t‖2)+ (1−‖t‖2)(x+ x̄). (46)
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Assume t real, namely φ= 0, then ‖x‖2 = 1 and the normalization factor
ρ is given by

ρ= t2(2−x− x̄)+2+x+ x̄, (47)

which is non-negative since ‖x‖=1.

4.4. Solutions of the Eight-Vertex Model for w3 =w4 (IV)

Following Sec. 4.3, the second case for the BGR b-matrix (40) having
three distinct eigenvalues gives the following Ř(x)-matrix:

Ř±(x) =




t (1+x)g1 0 0 q(1−x)g1
0 (1+x)g2 ±t (1−x)g2 0
0 ±t (1−x)g2 (1+x)g2 0

q−1(1−x)g1 0 0 t (1+x)g1


,

⇐⇒




t (1+x) 0 0 q(1−x)
0 (1+x)g ±t (1−x)g 0
0 ±t (1−x)g (1+x)g 0

q−1(1−x) 0 0 t (1+x)


, (48)

where the symbols g1, g2 and g are respectively, defined by

g1 =1+ t+x(1− t), g2 =1+ t−x(1− t), g= g2

g1
. (49)

The unitarity condition (14) delivers us the following equations

‖t‖2 ‖1+x‖2 +‖q‖2‖1−x‖2 = ρ,

tq̄−1(1+x)(1− x̄)+ t̄q(1−x)(1+ x̄) = 0,
q−1q̄−1‖1−x‖2 +‖t‖2‖1+x‖2 = ρ,

‖g‖2‖1+x‖2 +‖t‖2‖g‖2‖1−x‖2 = ρ,

t̄‖g‖2(1+x)(1− x̄)+ t‖g‖2(1+ x̄)(1−x) = 0.

(50)

Identifying the first equation with the third one requires ‖q‖2 =1. Identi-
fying the second equation with the last one shows

(t− t̄ )(x− x̄)=0. (51)

Focus on the second equation: as t is real, we have ‖x‖= 1; as x is real,
we have t=−t̄ .

Comparing the first equation with the fourth one leads to the normal-
ization factor ρ. For real t , it takes

ρ=‖g2‖2 =2(1+ t2)− (1− t2)(x+ x̄) (52)
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for pure imaginary t , it gives

ρ=‖g2‖2 = (1−x)2 +‖t‖2(1+x)2. (53)

4.5. Two Types of Unitarity Conditions

In order to obtain the time-evolution of quantum entangled state
determined by the unitary Ř(x)-matrix, it is better to consider the
ordinary unitarity condition (14) instead of the unitarity condition
Ř(x)Ř(x−1)∝1.

For the first type of the eight-vertex model (31), we have

Ř(x)Ř(x−1)=2 (x+x−1)1, (54)

which is incompatible with the normalization factor ρ by

ρ=R(x)Ř†(x̄)=2(1+x2)1 (55)

except x=1. For the second type of the eight-vertex model (37), we have

Ř(x)Ř(x−1)=2 (1+ z2)+ (1− z2)(x+x−1), (56)

which is compatible with the normalization factor (39) for real t . For the
third type of the eight-vertex model (41), we have

Ř(x)Ř(x−1)=2(1+ t2)+ (1− t2)(x+x−1), (57)

which is obviously an special example of the normalization factor (46).
For the fourth type of the eight-vertex model (48), we have

Ř(x)Ř(x−1)=2(1+ t2)+ (t2 −1)(x+x−1), (58)

which is the same as the normalization factor (52) but not (53).

5. THE Ř(x)-MATRICES AS UNIVERSAL QUANTUM GATES

In this section we will view unitary Ř(x)-matrices as universal quan-
tum gates with the help of the Brylinski’s theorem.(13) It is a natural gen-
eralization of the argument regarding a unitary braiding operator as a
universal quantum gate. Therefore quantum entanglements not only see
topological entanglements or topological invariants but also know geomet-
ric information or geometric invariants hidden in unitary solutions of the
QYBE (7).
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A pure state |ψ〉 denoted by

|ψ〉=
1∑

i,j=0

aij |ij〉, |ij〉= |i〉⊗ |j〉 (59)

is entangled if a00a11 �= a01a10. The entanglement of |ψ〉 is equivalent to
the statement that |ψ〉 is not the tensor product of two one-qubit states.(39)

The Ř-matrix having the form

Ř=




Ř00
00 Ř00

01 Ř00
10 Ř00

11

Ř01
00 Ř01

01 Ř01
10 Ř01

11

Ř10
00 Ř10

01 Ř10
10 Ř10

11

Ř11
00 Ř11

01 Ř11
10 Ř11

11



, (60)

acts on the tensor product |i〉⊗ |j〉 via the formula

Ř|ij〉=
1∑
k=0

1∑
l=0

Řklij |kl〉, (61)

where i, j, k, l take either 0 or 1. The Brylinski’s theorem(13) says that it is
a universal quantum gate when it is a quantum entangling operator which
transforms the tensor product |ψtp〉 into an entangling state Ř|ψtp〉 given
by

Ř|ψpt 〉=
1∑

i,j=0

1∑
k,l=0

Řklij aij |kl〉=
1∑

k,l=0

bkl |kl〉, (62)

where the coefficients aij satisfy a00a11 =a01a10 and the coefficients bkl are
defined by

bkl =
1∑

i,j=0

Řklij aij (63)

satisfying b00b11 �=b01b10.
Introduce the four-dimensional vectors a, b and rij as

a=



a00
a01
a10
a11


, b=



b00
b01
b10
b11


, rTij =




Ř
ij

00
Ř
ij

01
Ř
ij

10
Ř
ij

11


 , (64)
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where the upper index T denotes the transpose of the vector rij , so that

Ř a= b, bij = rij · a. (65)

For convenience of the following discussion, consider the 2 × 2 matrix A
instead of the vector a and the 2 × 2 matrix B instead of the vector b as
follows

A=
(
a00 a01
a10 a11

)
, B=

(
b00 b01
b10 b11

)
. (66)

The criteria of quantum entanglement for the quantum state deter-
mined by the matrix A (B) is that the determinant of the matrix A (B)
is not zero, namely,

Det(A)=a00a11 −a01a10 �=0, Det(B)=b00b11 −b01b10 �=0, (67)

where the determinant Det(A) [or Det(B)] can be called as the concur-
rence of the corresponding quantum state, (see Refs. 40 and 41). Here in
order to judge whether the unitary Ř(x)-matrix is a universal quantum
gate with the Brylinski’s theorem,(13) we choose Det(A)= 0 (so that the
initial state is unentangled).

5.1. The Case for Solutions of the Six-Vertex Models

For the non-standard representation (23) of the six-vertex model, the
vector b is obtained to be



b00
b01
b10
b11


=




sinh(γ − iθ) a00
eiθ sinh γ a01 − i sin θ a10
−i sin θ a01 + e−iθ sinh γ a10
sinh(γ + iθ) a11


, (68)

which gives

b00b11 = (sinh2 γ + sin2 θ) a00a11,

b01b10 = (sinh2 γ − sin2 θ) a01a10 − i sin θ sinh γ (a2
01e

iθ +a2
10e

−iθ ). (69)

So the criteria of quantum entanglement has the form

Det(B)= sin θ [2a00a11 sin θ + i(a2
01e

iθ +a2
10e

−iθ ) sinh γ ] �=0. (70)

Consider the case of the spectral parameter x �= 1, namely sin θ �= 0.
The choice: a00 = a10 = 0, a01 �= 0 and γ �= 0 satisfies Det(B) �= 0. When



176 Zhang, Kauffman, and Ge

γ = 0, namely the deformation parameter q = 1, the criteria of quantum
entanglement requires a00a11 �= 0. Hence the unitary Ř(θ)-matrix for the
non-standard representation of the six-vertex model is a universal quan-
tum gate except for x=1.

For the standard representation (27) of the six-vertex model, the
determinant of the matrix B is a difference between two terms b00b11 and
b01b10 given by

b00b11 = sinh(γ − iθ) sinh(γ − iθ) a00a11,

b01b10 = (sinh2 γ − sin2 θ) a01a10 − i sin θ sinh γ (a2
01e

iθ +a2
10e

−iθ ). (71)

The choice: a00 = a10 = 0, a01 �= 0 and γ �= 0 satisfies Det(B) �= 0. But the
case of γ = 0 leads to Det(B)= 0. Hence the unitary Ř(θ)-matrix for the
standard representation of the six-vertex model is a universal quantum
gate except for x=1 or q=1.

To distinguish the non-standard representation from the standard
representation in a clear way, the Ř(x)-matrices of q=1 are given, respec-
tively, by

Řnon =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


, Řstandard =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (72)

in which the non-standard one for constructing the Alexander polynomial
is a universal quantum gate and the standard one for constructing the
Jones polynomial is not a universal quantum gate.(2)

5.2. The Case for Solutions of the Eight-Vertex Model (I)

For simplicity of analyzing the criteria of quantum entanglement, we
introduce the new variable u, v instead of the spectral parameter x, y so
that

u= 1−x
1+x , v= 1−y

1+y ,
1−xy
1+xy = u+v

1+uv , (73)

which suggest the following Yang–Baxter-like equation

Ř12(u) Ř23

(
u+v
1+uv

)
Ř12(v)= Ř23(u) Ř12

(
u+v

1+uv
)
Ř23(v). (74)
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Specifying x=eiθ1 and y=eiθ2 , the parameters in the above equation have
the forms

u=−i tan θ1, v=−i tan θ2,
u+v
1+uv =−i tan(θ1 + θ2). (75)

The unitary Ř(u)-matrix being a universal quantum gate suggests that
the unitary Ř(x)-matrix is a universal quantum gate since the determinant
Det(B) are not vanishing in both cases. In terms of the new variable u, the
unitary Ř±(u)-matrix for the first type of solution (31) of the eight-vertex
model has the form

Ř±(u)=




1 0 0 qu

0 1 ±u 0
0 ∓u 1 0

−q−1u 0 0 1


. (76)

The corresponding matrix B± is given by
(
b±

00 b±
01

b±
10 b±

11

)
=
(
a00 +qu a11 a01 ±u a10
∓u a01 +a10 −q−1u a00 +a11

)
. (77)

It has the determinant

Det(B±)=u(q a2
11 −q−1 a2

00 ±a2
01 ∓a2

10), (78)

which is not zero for the case of u �=0 (x �=1), a00 =a01 =0 and a2
10 �=qa2

11.
Hence the unitary Ř±(u)-matrix is a universal quantum gate except u=0,
that is to say the unitary Ř±(x)-matrix is a universal quantum gate except
x=1.

In terms of the coefficients a, b, c, d given by

a00 =ac, a01 =ad, a10 =bc, a11 =bd, (79)

instead of aij , the criteria of quantum entanglement leads to

(d2 ∓q−1c2)(qb2 ±a2) �=0. (80)

Consider which type of quantum states violate the criteria of quantum
entanglements. For the Ř+-matrix, we have

d2 =q−1c2 or a2 =−q b2, (81)

while for the Ř−-matrix, we have

d2 =−q−1c2 or a2 =q b2. (82)
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Therefore, although a universal quantum gate is identified as an entangling
operator, it is also able to transform a specified unentangled state (a ten-
sor product of quantum states) into another unentangled state.

5.3. The Case for Solutions of the Eight-Vertex Model (II)

In terms of the new variable u, the corresponding Ř±(u)-matrix has
the form

Ř±(u)=




1+ (1− t)u 0 0 qu

0 1 ±zu 0
0 ±zu 1 0

q−1u 0 0 1+ (t−1)u


 (83)

so that the vector b± are given by



b±
00

b±
01

b±
10

b±
11


=




(1+ (1− t)u)a00 +qu a11
a01 ± zua10

±zu a01 +a10
q−1u a00 + (1+ (t−1)u)a11


, (84)

which leads to

b±
00b

±
11 = (1+ (2− z2)u2) a00a11

+u(q−1(1+ (1− t)u)a2
00 +q(1+ (t−1)u)a2

11), (85)

b±
01b

±
10 = (1+ z2u2) a01a10 ±uz(a2

01 +a2
10).

To satisfy Det(B) �= 0, choose u �= 0, a00 = a01 = a11 = 0 but a10 �= 0. Hence
the unitary Ř±(x)-matrix (37) is a universal quantum gate for real t and
x �=1.

5.4. The Case for Solutions of the Eight-Vertex Model (III)

With the new variable u, the Ř±(u)-matrix is given by

Ř±(u)=



tu 0 0 q

0 1 ±tu 0
0 ±tu 1 0
q−1 0 0 tu


, (86)

which says

b±
00b

±
11 = (1+ t2u2) a00a11 +ut(qa2

11 +q−1a2
00),

b±
01b

±
10 = (1+ t2u2) a00a11 ±ut(a2

01 +a2
10). (87)
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So the unitary Ř(x)-matrix (41) is a universal quantum gate except tu=0.
The criteria of quantum entanglement in terms of the coefficients (79)

has the form

(a2 ∓b2q−1)(c2q∓d2) �=0. (88)

For the unitary Ř±(x)-matrix, the quantum state specified by

a2 =±b2q−1 or d2 =±c2q (89)

is not entangling even under the action of the unitary Ř±(x)-matrix.

5.5. The Case for Solutions of the Eight-Vertex Model (IV)

With the new variable u, the Ř±(u)-matrix has the form

Ř±(u)=




t (1+ tu) 0 0 qu(1+ tu)
0 u+ t ±tu(u+ t) 0
0 ±tu(u+ t) u+ t 0

q−1u(1+ tu) 0 0 t (1+ tu)


, (90)

which gives us

b±
00b

±
11 = (t2 +u2)(1+ tu)2 a00a11 +ut(1+ tu)2(q−1a2

00 +qa2
11),

b±
01b

±
10 = (1+ t2u2)(u+ t)2 a00a11 ±ut(u+ t)2(a2

01 +a2
10). (91)

It can be observed that the unitary Ř±(x)-matrix (48) is a universal quan-
tum gate for ut �=0.

6. THE CONSTRUCTIONS OF THE HAMILTONIAN

In this section, we present a method of constructing the Hamiltonian
from the unitary Ř(x)-matrix (Ř(θ)-matrix) for the six-vertex and eight-
vertex model. The comments on our construction are given in the last sub-
section.

The wave function ψ(x) is specified by the unitary Ř(x)-matrix, with
ψ(x)= Ř(x)ψ , the pure state ψ independent of the time (or the spectral
parameter x). Hence we obtain the Shrödinger equation corresponding to
the time evolution of ψ(x) controlled by the unitary Ř(x)-matrix,

i
∂ψ(x)

∂x
=H(x)ψ(x), H(x)= i ∂Ř(x)

∂x
Ř−1(x). (92)
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Here the unitary Ř(x)-matrix has to be the form containing the nor-
malization factor, namely ρ− 1

2 Ř(x) satisfying (ρ− 1
2 Ř)−1 = (ρ− 1

2 Ř)†. The
“time-dependent” Hamiltonian H(x) is obtained to be

H(x)= i ∂(ρ
− 1

2 Ř)

∂x
(ρ− 1

2 Ř)−1(x)= i ∂(ρ
− 1

2 Ř)

∂x
ρ− 1

2 Ř†(x). (93)

It is expanded into the form

H(x) = i(∂x lnρ− 1
2 (x)+ ∂xŘ(x)Ř−1(x))

= iρ−1(x)

(
−1

2
∂ρ(x)

∂x
+ ∂Ř(x)

∂x
Ř†(x)

)
(94)

where the formula in terms of Ř†(x) is applied in the following since the
calculation of Ř†(x) is easier than that of Ř−1(x).

In this paper, the spectral parameter x often takes ‖x‖ = 1, namely
x= eiθ so the Hamiltonian H(θ) has another form

H(θ)= iρ−1(θ)

(
−1

2
∂ρ(θ)

∂θ
+ ∂Ř(θ)

∂θ
Ř†(θ)

)
(95)

which leads to the following Schrödinger equation

i
∂ψ(θ)

∂θ
=H(θ)ψ(θ). (96)

6.1. The Case for Solutions of the Six-Vertex Models

For the non-standard representation (23) of the six-vertex model, the
Hamiltonian H(θ) is constructed as follows

H(θ)= sinh γ
ρ




coth γ 0 0 0
0 − sinh γ 1 0
0 1 sinh γ 0
0 0 0 − coth γ


, (97)

where the following formulas are used in calculation

sinh(a+b) = sinh a coth b+ sinh b coth a, sinh ia= i sin a,

coth(a+b) = coth a coth b+ sinh a sinh b, coth ia= cosa. (98)

Here the Pauli matrices σx , σy and σz are set up as usual

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz=

(
1 0
0 −1

)
. (99)
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In addition, the new matrices σ± are introduced by σ± = 1
2 (σx ± iσy):

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
0 1

)
. (100)

To represent the Hamiltonian (97) in terms of the Pauli matrices, the for-
mulas like

1
2
(1⊗σz+σz⊗1)=




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 , σ+ ⊗σ− =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0




(101)

are often used.
The Hamiltonian (97) has another form by the Pauli matrices

H(θ) = sinh γ
2ρ

[coth γ (1⊗σz+σz⊗1)+ sinh γ (1⊗σz−σz⊗1)

+(σ+ ⊗σ− +σ− ⊗σ+)]

= sinh γ
2ρ

[coth γ (1⊗σz+σz⊗1)+ (σx ⊗σx +σy ⊗σy)
+ sinh γ (1⊗σz−σz⊗1)], (102)

where only the normalization factor ρ depends on the time variable θ by

ρ= sin2 θ + sinh2 γ. (103)

For the standard representation (27) of the six-vertex model, the Hamilto-
nian H(θ) is obtained to be

H(θ)= sinh γ
ρ




coth γ 0 0 0
0 − sinh γ 1 0
0 1 sinh γ 0
0 0 0 coth γ.


 . (104)

In terms of the Pauli-matrices, it has the form

H(θ) = sinh γ
2ρ

[coth γ (1+σz⊗σz)+ sinh γ (1⊗σz−σz⊗1)

+ (σ+ ⊗σ− +σ− ⊗σ+)]

= sinh γ
2ρ

[coth γ 1+ sinh γ (1⊗σz−σz⊗1)

+ (σx ⊗σx +σy ⊗σy + coth γ σz⊗σz)], (105)

which is different from the Hamiltonian (102) for the non-standard repre-
sentation of the six-vertex model.
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6.2. The Case for Solutions of the Eight-Vertex Model (I)

With the unitary solution Ř(x) (31) of the QYBE (7), we construct
the time-independent Hamiltonian H± having the form

H± = i ∂
∂x
(ρ

− 1
2± Ř±)|x=1 =− i

2
b2
± = i

2




0 0 0 − e−iϕ
0 0 ∓1 0
0 ±1 0 0
eiϕ 0 0 0


. (106)

Interestingly, we have the “time-dependent" Hamiltonian H±(x) by

H±(x)= i ∂
∂x
(ρ− 1

2 Ř±)ρ− 1
2 Ř

†
±(x)=− i

1+x2
b2
±, (107)

which derives the above Hamiltonian H± at x = 1. When x is real, the
Hamiltonian H±(x) is a Hermitian operator.

For simplicity, we study the unitary Ř(θ)-matrix (34) to decide the
unitary evolution of quantum states. After some algebra, the Hamiltonian
H± is obtained to be

H±(θ)= iρ−1(θ)

(
− 1

2
∂ρ(θ)

∂θ
+ ∂Ř±(θ)

∂θ
Ř

†
±(θ)

)
= i

2
∂x

∂θ
H±(x)=H±,(108)

which is independent of the time variable θ .
In terms of the Pauli matrices σx , σy and σz and σ±, the Hamiltonian

(108) has the form

H± = i

2

(
−e−iϕσ+ ⊗σ+ + eiϕσ− ⊗σ− ∓σ+ ⊗σ− ±σ− ⊗σ+

)
. (109)

Introducing the two-dimensional vector σ and two unit directional vector
n1 and n2 in xy-plane:

σ = (σx, σy), n1 =
(

cos
π +ϕ

2
, sin

π +ϕ
2

)
, n2 =

(
cos

ϕ

2
, sin

ϕ

2

)

(110)

the projections of the vector σ into n1 and n2 are given by

σn1 = σ · n1 =σ+e−
i
2 (ϕ+π)+σ−e

i
2 (ϕ+π),

σn2 = σ · n2 =σ+e−
i
2ϕ +σ−e

i
2ϕ. (111)

The Hamiltonian (109) can be recast to

H+ = 1
2σn1 ⊗σn2 , H− = 1

2σn2 ⊗σn1 . (112)
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Consider the time-evolution operator U±(θ) determined by the Ham-
iltonian H±, for example, U+(θ) given by

U+(θ)= e−
i
2 (σn1⊗σn2 )θ = cos

θ

2
− i sin

θ

2
σn1 ⊗σn2 . (113)

6.3. The Case for Solutions of the Eight-Vertex Model (II)

The unitary Ř±(x)-matrix (37) requires x = eiθ , ‖q‖2 = 1 and real t .
The normalization factor ρ and its derivative have the forms

ρ=4+4(t−1)2 sin2 θ

2
,

∂ρ

∂θ
=2(t−1)2 sin θ. (114)

After some calculation, the Hamiltonian H±(θ) is obtained to be

H±(θ) = iρ−1(θ)

(
−1

2
∂ρ(θ)

∂θ
+ ∂Ř±(θ)

∂θ
Ř

†
±(θ)

)

= −1

2
+2ρ−1




1− t 0 0 q

0 0 ±z 0
0 ±z 0 0
q−1 0 0 t−1


 . (115)

In terms of the Pauli matrices, it is shown up as follows

H±(θ) = −1
2

1+ (1− t)ρ−1(1⊗σz+σz⊗1)

+ 2
ρ

[
qσ+ ⊗σ+ +q−1σ− ⊗σ− ± z(σ+ ⊗σ− +σ− ⊗σ+)

]
. (116)

Consider two special cases of making the normalization factor ρ inde-
pendent of the time variable θ . Take θ = 0, namely, choose the Hamilto-
nian H±(θ) defined as

H±(θ)= i ∂
∂θ
(ρ

− 1
2± Ř±(θ))|θ=0, (117)

which leads to the time-independent Hamiltonian

H±|θ=0 = 1
2

[qσ+ ⊗σ+ +q−1σ− ⊗σ− ± z(σ+ ⊗σ− +σ− ⊗σ+)]

− 1
2

1+ 1− t
4
(1⊗σz+σz⊗1). (118)
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Take the parameter t = 1, the time-independent Hamiltonian H± is given
by

H± = 1
2 [−1+qσ+ ⊗σ+ +q−1σ− ⊗σ− ± (σ+ ⊗σ− +σ− ⊗σ+)]. (119)

With the two unit directional vector n1 and n2 in xy-plane:

n1 =
(

cos
ϕ

2
, sin

ϕ

2

)
, n2 =

(
cos

π +ϕ
2

, sin
π +ϕ

2

)
, q= e−iϕ (120)

the Hamiltonians (119) have the following forms

H+ = 1
2 (−1+σn1 ⊗σn1), H− =− 1

2 (1+σn2 ⊗σn2). (121)

Consider the unitary time-evolution operator U±(θ), for example, U+(θ)
given by

U+(θ)= e−iH+θ = e iθ2
(

cos
θ

2
− i sin

θ

2
σn1 ⊗σn1

)
. (122)

6.4. The Case for Solutions of the Eight-Vertex Model (III)

Choose real t , x= eiθ and ‖q‖=1 for the unitary Ř±(x)-matrix (41).
The normalization factor ρ and its derivative are given by

ρ=4+4(t2 −1) sin2 θ,
∂ρ

∂θ
=2(t2 −1) sin θ. (123)

The corresponding Hamiltonian H±(θ) is found to be

H±(θ)=−1
2

1+ 2t
ρ




0 0 0 q

0 0 ±1 0
0 ±1 0 0
q−1 0 0 0


, (124)

which leads to the Hamiltonian represented by the Pauli matrices

H±(θ)=−1
2

1+ 2t
ρ

[
qσ+ ⊗σ+ +q−1σ− ⊗σ− ± (σ+ ⊗σ− +σ− ⊗σ+)

]
.

(125)

In the case of θ =0, the time-independent Hamiltonian is given by

H±|θ=0 =−1
2

1+ t

2

[
qσ+ ⊗σ+ +q−1σ− ⊗σ− ± (σ+ ⊗σ− +σ− ⊗σ+)

]
.

(126)

In the other case of t=1, the other time-independent Hamiltonian H± has
the form the same as (119).
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6.5. The Case for Solutions of the Eight-Vertex Model (IV)

Consider x=eiθ , ‖q‖=1 and real t for the unitary Ř±(x)-matrix (48).
The factor ‖g1‖2, ‖g2‖2 and the normalization factor ρ take the forms

‖g1‖2 = 2(1+ t2)+2(1− t2) cos θ, ‖g2‖2 =2(1+ t2)−2(1− t2) cos θ,

ρ = ‖g1‖2‖g2‖2 =4(1+ t2)2 −4(1− t2)2 cos2 θ. (127)

Through some calculation, the Hamiltonian H±(θ) is obtained to be

H±(θ)=−1+ 2t
ρ




‖g2‖2 0 0 q‖g1‖2

0 ‖g1‖2 ±‖g2‖2 0
0 ±‖g2‖2 ‖g1‖2 0

q−1‖g1‖2 0 0 ‖g2‖2


, (128)

which gives the following Hamiltonian as

H±(θ)=−1+ 2t
ρ

[
1
2 (‖g1‖2 +‖g2‖2)1⊗1+ 1

2 (‖g2‖2 −‖g1‖2)σz⊗σz

+‖g1‖2(qσ+ ⊗σ+ +q−1σ− ⊗σ−)±‖g2‖2(σ+ ⊗σ− +σ− ⊗σ+)
]
. (129)

The time-independent Hamiltonian obtained by taking θ = 0 is given
by

H±|θ=0 =−1+ 1
4t

[
(t2 +1)1⊗1+ (t2 −1)σz⊗σz

+2(qσ+ ⊗σ+ +q−1σ− ⊗σ−)±2t2(σ+ ⊗σ− +σ− ⊗σ+)
]
, (130)

while the other time-independent Hamiltonian H± obtained by taking t=1
is the same as (119).

6.6. Comments on our Constructions of Hamiltonian

The Schrodinger equation is a differential equation. It’s solution rep-
resents the evolution of the initial state (input). Here before treating the
Schrodinger equation, the time evolution of the state (the unitary braid-
ing operator) is known as a discrete evolution and is determined by the
unitary Ř(x)-matrix. Our problem is to find out which type of Schroding-
er equation has evolutionary solutions the same as the evolutions given by
the unitary Ř(x)-matrices. In our case, therefore, the Schrodinger evolution
is recognized as the unitary Ř(x)-matrix.

However, the Schrodinger equation says more than just the unitary
Ř(x)-matrix. It leads us to study the physics behind it, and gives us new
unitary solutions which are not necessarily solutions to the QYBE. The
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construction of a Hamiltonian from the unitary Ř(x)-matrix shows that
the QYBE is a physical subject. In history, the Schrodinger equation is
the starting point and how to solve the Schrodinger equation is a central
topic. Now we try to recover(relate) physics from (to) the unitary Ř(x)-
matrix.

In our case, the construction of the Hamiltonian in terms of the uni-
tary Ř(x)-matrix follows a traditional approach in literature on the QYBE.
There are two ways of choosing the time-variable. Each choice is determined
by a corresponding purpose. We explain the spectral parameter x (θ ) as the
time variable. That is to say that we choose the time-evolution of quantum
state (the unitary braiding operator) as the unitary Ř(x)-matrix. This is a
natural and necessary choice in the sense of regarding unitary Ř-matrices as
universal quantum gates. We want to see the evolution of unitary braiding
operator or quantum state.

Indeed in the literature, the ordinary time in space-time as the time
variable, the spectral parameter can be explained as the momentum, but
the time-evolution of quantum state determined by the Hamiltonian can
not be identified with the unitary Ř(x)-matrix. The physics in the case is
well-known such as XXX model (and so on).

Finally it seems that the Schrodinger equation in our construction
does not have space variables like the ordinary Schrodinger equation has.
We could explain that we have physics on lattices of space: discrete phys-
ics. It seems that physics in our case is close to that on spin chains like
XXX model (and so on).

7. THE CNOT GATES VIA THE Ř-MATRIX

The gate G is universal for quantum computation (or just universal)
if G together with local unitary transformations (unitary transformations
from V to V ) generates all unitary transformations of the complex vector
space of dimension 2n to itself. It is well-known(1) that CNOT is a univer-
sal gate.

In Ref. 10, Kauffman and Lomonaco prove the following result.

Theorem 1. Let

Ř=




1/
√

2 0 0 1/
√

2
0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
−1/

√
2 0 0 1/

√
2


 (131)
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be the above unitary solution to the braid relation (6). Then Ř is a
universal gate. The proof below (repeated from Ref. 10) gives a specific
expression for CNOT in terms of Ř.

Proof. This result follows at once from the Brylinksis’ theorem,(13)

since Ř is highly entangling. For a direct computational proof, it suffices
to show that CNOT can be generated from Ř and local unitary transfor-
mations. Let

α =
(

1/
√

2 1/
√

2
1/

√
2 −1/

√
2

)
, β=

(−1/
√

2 1/
√

2
i/

√
2 i/

√
2

)
,

γ =
(

1/
√

2 i/
√

2
1/

√
2 −i/√2

)
, δ=

(
1 0
0 i

)
, (132)

Let M=α⊗β and N =−γ ⊗ δ. Then it is straightforward to verify that

CNOT=M · Ř ·N.
This completes the proof. �

We now show how Yang–Baxterization illuminates the structure of
this Bell basis transformation. We discuss physics related to the time-
evolution of the universal quantum gate determined by the unitary Ř(θ)-
matrix (34). The braid group representation b±(ϕ)-matrix (35) yields the
Bell states with the phase factor eiϕ ,

b±(ϕ)




|00〉
|01〉
|10〉
|11〉


= 1√

2




|00〉− eiϕ |11〉
|01〉∓ |10〉

±|01〉+ |10〉
e−iϕ |00〉+ |11〉


, (133)

which shows that ϕ=0 leads to the Bell states, the maximum of entangled
states,

1√
2
(|00〉± |11〉), 1√

2
(|10〉± |01〉). (134)

In terms of the Hamiltonian H± (108), the Ř±(θ)-matrix (34) has the form

Ř±(θ)= cos
(π

4
− θ

)
+2 i sin

(π
4

− θ
)
H± = ei( π2 −2 θ)H±, (135)

which can be also used to construct the CNOT gate with additional single
qubit transformations (examples see Ref. 10). The unitary Ř-matrix (131)
is realized by

Ř= Ř−(θ)|θ=ϕ=0 = ei π4 (σx⊗σy). (136)
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In addition, with the unitary Ř(θ)-matrix (34), we have

Ř±(θ)




|00〉
|01〉
|10〉
|11〉


=




cos(π4 − θ)|00〉− eiϕ sin(π4 − θ)|11〉
cos(π4 − θ)|01〉∓ sin(π4 − θ)|10〉
cos(π4 − θ)|10〉± sin(π4 − θ)|01〉)
cos(π4 − θ)|11〉+ e−iϕ sin(π4 − θ)|00〉


. (137)

Hence with the concept of the Bloch vectors on the Bloch sphere,(1) the
variables θ and ϕ realize their geometric meanings and the construction
of the CNOT quantum gate becomes clear.

To obtain other two-qubit quantum gates, for instance the CNOT
gate, we have to apply single qubit unitary transformations A,B,C,D

which can be possibly found in the Bloch sphere(1) by SO(3) rotations,
namely,

(A⊗B)U±(θ)(C⊗D)=P↑ ⊗1+P↓ ⊗σx =CNOT, (138)

which yields the CNOT gate and where the states | ↑〉 and | ↓〉 are the
eigenvectors of σz, σz| ↑〉= | ↑〉, σz| ↓〉=−|↓〉 and the projection operators
P↑ and P↓ have the forms

P↑ = |↑〉〈↑ |, P↓ = |↓〉〈↓ |. (139)

Define the SO(3) rotation around the n-axis by

Dn(θ)= e−
i
2 (σ ·n)θ , (140)

where σ = (σx, σy, σz). For examples:

Dz

(
−ϕ

2

)
= ei ϕ4 σz , Dx

(π
2

)
= ei π4 σx , Dy

(π
2

)
= e−i π4 σy (141)

satisfy

Dx

(π
2

)
Dz

(
−ϕ

2

)
σn1Dz

(ϕ
2

)
Dx

(
−π

2

)
=σz, Dz

(
−ϕ

2

)
σn2Dz

(ϕ
2

)
=σx.

(142)

Consider the time-evolution operator U+(θ) (113). Choosing suitable
single qubit transformations, we obtain

(
Dx

(π
2

)
Dz

(
−ϕ

2

)
⊗Dz

(
−ϕ

2

))
U+(θ)

(
Dz

(ϕ
2

)
Dx

(
−π

2

)
⊗Dz

(ϕ
2

))

= e i2 (σz⊗σx)θ , (143)
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which has another form

e−
i
2 (σz⊗σx)θ =P↑ ⊗ e− i

2 σxθ + P↓ ⊗ e i2 σxθ . (144)

Set θ=π/2. To construct the CNOT gate, we need additional single qubit
transformations

(
δ⊗ ei π4 σx

)
e−i

π
4 (σz⊗σx)=CNOT (145)

in which the phase gate δ has the form δ=P↑ − i P↓ (see (132)).
Consider the time-evolution operator U−(θ = −π

2 , ϕ= 0), namely the
unitary Ř-matrix (131) given by ei

π
4 (σx⊗σy) which is transformed into

ei
π
4 (σz⊗σx) by
(
Dy

(
−π

2

)
⊗Dz

(
−π

2

))
ei

π
4 (σx⊗σy)

(
Dy

(π
2

)
⊗Dz

(π
2

))
= ei π4 (σz⊗σx).

(146)

So we obtain another proof for Theorem 1.(10)

8. CONCLUDING REMARKS

Motivated by the observation that there are certain natural similar-
ities between quantum entanglements and topological entanglements, we
derive the unitary solutions of the QYBE or the unitary Ř(x)-matrices
via Yang–Baxterization and construct the related Hamiltonians for the
standard and non-standard representations of the six-vertex model and
the complete solutions of the non-vanishing eight-vertex model. With the
Brylinksis’ Theorem,(13) the unitary Ř(x)-matrix is also a universal quan-
tum gate except very special cases.

The remark has to be made on the classification of the unitary Ř(x)-
matrices we obtained. We classify them according to Yang–Baxterization.
We don’t try to classify them with other approaches since we can’t obtain
the complete solutions of the QYBE (7) only via Yang–Baxterization.
But the unitary solutions of the Yang–Baxter equation (the braided rela-
tion) have been classified.(12) For example, the first type of solution for
the eight-vertex model in our case belongs the fourth family specified by
Dye.(12) But for the eight-vertex model, we have three types solutions of
the BGR (6) but have four types of the unitary Ř(x)-matrices.

It is worthwhile arguing again that quantum entanglements for quan-
tum information processing are related to not only topological entangle-
ments but also geometric invariants. The previous one leads us to viewing
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the unitary braiding operator as a quantum entanglement operator and
a universal quantum gate, while the latter one suggests us to regard uni-
tary Ř(x)-matrices as universal quantum gates. In addition, it is important
to mention another view of topological issues for quantum computing in
terms of anyonic models, (see Refs. 42–47).
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APPENDIX A: A PRACTICAL REVISIT
TO YANG–BAXTERIZATION

Yang–Baxterization(24) is a prescription deriving solutions to the
QYBE (7) from the BGR (6). We consider a BGR b-matrix with two dis-
tinct non-vanishing eigenvalues λ1 and λ2 taking the form

b=λ1 P1 + λ2 P2, (147)

where P1 and P2 are the projection matrices satisfying

P1 +P2 =1, P 2
1 =P1, P 2

2 =P2, P1 P2 =0. (148)
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With the help of Yang–Baxterization, the corresponding Ř(x)-matrix mod-
ulo an overall scalar factor(28,29) has the form

Ř(x) = (λ1 +λ2 x)P1 + (λ2 + λ1 x)P2

= b+λ1 λ2 x b
−1, (149)

where the inverse matrix b−1 is given by

b−1 = 1
λ 1
P1 + 1

λ 2
P2. (150)

In the case that the BGR b-matrix has three distinct non-vanishing
eigenvalues λ1, λ2 and λ3, Yang–Baxterization(28,29) leads to the following
formula

Ř(x)=λ1λ3x(x−1)b−1 + (λ1 +λ2 +λ3 +λ1λ3λ
−1
2 )x1− (x−1)b. (151)

Changing the ordering of three different eigenvalues in principle gives us
different solutions of the QYBE (7). However, this formula is symmetric
with respect to interchanging λ1 and λ3, so usually we obtain three types
of the Ř(x)-matrices.

With two formulas (149) and (151), the Ř(x)-matrix is proportional
to the unit matrix 1 at x=1, namely,

Ř(x=1)∝1 (152)

except the case of λ1 +λ2 +λ3 +λ1λ3λ
−1
2 = 0. Hence for simplicity, in the

following we will not pay special attention to the case of x=1.
One remark has to be made. The formula (149) has been proved to

satisfy the QYBE (7), however the formula (151) does not have the gen-
eral proof verifying that it is the solution of the QYBE (7). Once the Ř(x)-
matrix is obtained via Yang–Baxterization, it would be safest to check
whether it truly satisfies the QYBE (7).

A.1. Yang–Baxterization of the Six-Vertex Model

Consider a non-standard BGR b-matrix suitable for constructing the
Alexander polynomial(2)

b=



q 0 0 0
0 0 1 0
0 1 q−q−1 0
0 0 0 −q−1


, (153)
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where the deformation parameter q has been assumed to be non-vanish-
ing. It has two distinct eigenvalues: q and −q−1. In terms of the projec-
tion matrices P1(q) and P2(q):

P1(q)=




1 0 0 0
0 1

1+q2
q

1+q2 0

0 q

1+q2
q2

1+q2 0
0 0 0 0


, P2(q)=




0 0 0 0

0 q2

1+q2
−q

1+q2 0

0 −q
1+q2

1
1+q2 0

0 0 0 1




(154)

the BGR b-matrix is also given by

b=q P1(q)−q−1 P2(q). (155)

With the help of Yang–Baxterization, the BGR b-matrix corresponds to
the following Ř(x)-matrix satisfying the QYBE (7),

Ř(x) = (q − q−1 x)P1(q) + (−q−1 + q x)P2(q)

= b−x b−1. (156)

A.2. Yang–Baxterization of the Eight-Vertex Model

The eight-vertex model assumes a general form

b=



w1 0 0 w7
0 w5 w3 0
0 w4 w6 0
w8 0 0 w2


 , (157)

in terms of non-vanishing Boltzman weights wi , i=1, . . .8. We will present
the complete solutions of the BGR (6) for the non-vanishing eight-vertex
model and construct the corresponding Ř(x)-matrices via Yang–Baxteriza-
tion.

Introduce f κλωαβγ by

f κλωαβγ =
∑
µνρ

(b
µν
αβ b

ρκ
νγ b

λω
µρ −bµνβγ bλραµbωκρν ), (158)

where indices take spin up or spin down, namely ± sign or spins ± 1
2 . With

the above ansatz, we have bκωαβ = 0 for α+ β �= κ +ω mod 2. In the case
of α+β+ γ �=λ+ω+ κ mod 2, the braided relation (6) is satisfied auto-
matically, f λωκαβγ =0. Hence we have to treat 32 equations of the Boltzman
weights.
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We solve all possible equations obtained by substituting the above an-
satz of the eight-vertex model into the braided relation (6). We observe
the equation (w5 − w6)w7w8 = 0 showing w5 = w6. With the equations
(w3 −w4)(w1 −w5)w8 =0 and (w3 −w4)(w2 −w5)w7 =0, we have to choose
either w3 =w4,w5 =w6 or w3 �=w4,w5 =w1 =w2 =w6.

Setting w5 =w1 =w2 =w6 gives us w2
1 =w2

3 =w2
4 and w2

3 +w7w8 = 0.
In the case of w3 �=w4, we have w3 =−w4 and w1 =±w3. The BGR b±-
matrices have the forms

b± =




w1 0 0 w7
0 w1 ±w1 0
0 ∓w1 w1 0

−w2
1

w7
0 0 w1


⇐⇒




1 0 0 q

0 1 ±1 0
0 ∓1 1 0

−q−1 0 0 1


. (159)

It has two eigenvalues λ1 =1− i, λ2 =1+ i. The corresponding Ř(x)-matri-
ces via Yang–Baxterization are obtained to be

Ř±(x)=b± + 2x b−1
± . (160)

Imposing w5 =w6 and w3 =w4 in the given eight-vertex model, the solu-
tions of the QYBE (7) have to satisfy the following three independent
equations,(29)

w2
5 −w7w8 = 0,

w2
1 −w2

3 −w1w5 +w2w5 = 0, (161)

w2
2 −w2

3 +w1w5 −w2w5 = 0.

Since the Ř(x)-matrix is modulo an overall scalar factor, we introduce

q= w7

w5
, q−1 = w8

w5
, t= w2

w5
, z= w3

w5
(162)

and rewrite the above equations in an explicit way as

t2 +
(
w1

w5

)2

= 2z2,

(
w1

w5
− t
)(

w1

w5
+ t−2

)
= 0. (163)

Therefore we obtain two types of the BGR (6). The first one is given by
taking w1

w5
=2− t and the second one is specified by w1

w5
= t .
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In the first case of w1
w5

= 2 − t , set z= (t2 − 2t + 2)1/2. The BGR b±-
matrices take the form

b± =




2− t 0 0 q

0 1 ±z 0
0 ±z 1 0
q−1 0 0 t


. (164)

It has two distinct eigenvalues 1 ± z and so via Yang–Baxterization the
Ř(x)-matrices are obtained by

Ř±(x)=b± +x(1− z2)b−1
± , (165)

where the matrix entries satisfy w1w2 +w3w4 =w5w6 +w7w8.
In the second case of w3 =w4, namely take w1

w5
= t so that z=±t . The

corresponding BGR b±-matrix has the form

b± =




t 0 0 q

0 1 ±t 0
0 ±t 1 0
q−1 0 0 t


. (166)

It has three eigenvalues 1+ t , 1− t and −1+ t . To apply the formula (151)
for the case of three distinct eigenvalues, we arrange three eigenvalues λ1,
λ2 and λ3 in three different orderings as follows

λ1 λ2 λ3
the first ordering: 1+ t 1− t t−1
the second ordering: 1+ t t−1 1− t
the third ordering: 1− t 1+ t t−1

. (167)

For the first ordering and the second one, we have

λ1 +λ2 +λ3 +λ1λ3λ
−1
2 =0 (168)

so that the situation goes back to the case of two distinct eigenvalues,

Ř±(x) = −(x−1)(b± ± x (1− t2) b−1
± )

∝ b± ± x (1− t2) b−1
± , (169)

where the plus is for the first ordering and the minus is for the second
ordering. We only need discuss the case of the first ordering.

For the BGR b-matrix (166) having three distinct eigenvalues, with
the first ordering, we have

Ř±(x)=b± +x(1− t2)b−1
± (170)
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with the third ordering (167), we have

Ř±(x)=−(x−1)λ2(b± −λ1λ3x b
−1
± )+ (λ2

2 +λ1λ3)x1. (171)

REFERENCES

1. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge
University Press, Cambridge, 1999).

2. L. H. Kauffman, Knots and Physics (World Scientific Publishers, 2002).
3. P. K. Aravind, Borromean Entanglement of the GHZ state, in Cohen, Robert S., Michael

Horne, and John Stachel (eds.) Potentiality, Entanglement and Passion-at-a-Distance
(Kluwer Academic Publishers, Boston, 1997).

4. L. H. Kauffman, Quantum Computation and the Jones Polynomial, in S. Lomonaco, Jr.
(ed.), Quantum Computation and Information, AMS CONM/305, 2002, pp. 101–137.
Arxiv: math. QA/0105255.

5. L. H. Kauffman and S. J. Lomonaco Jr., Quantum Entanglement and Topological Entan-
glement, New J. Phys. 4, 73.1–73.18. (2002).

6. L. H. Kauffman and S. J. Lomonaco Jr., Entanglement Criteria–Quantum and Topological,
in E. Donkor, A. R. Pirich and H. E. Brandt (eds.), Quantum Information and Compu-
tation-Spie Proceedings, (21-22 April, Orlando, FL, 2003), Vol. 5105, pp. 51–58. Arxiv:
quan-ph/0304091.

7. L. H. Kauffman, Quantum Topology and Quantum Computing, in S. Lomonaco (ed.),
Quantum Computation, AMS PSAPM/58, (2002), pp. 273–303.

8. L. H. Kauffman and S. J. Lomonaco Jr., Quantum Knotsç in E. Donkor, A. R.
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