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Existence of the Exact CNOT on a Quantum
Computer with the Exchange Interaction
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We prove the existence of the exact CNOT gate on a quantum computer with the
nearest-neighbor exchange interaction in the serial operation mode. Its existence
has been an open problem, though a concrete sequence of exchange operations,
which is approximately locally equivalent to the exact CNOT, has already been
found. We found the exact values of time parameters (exchange rates between
qubits) by using computer algebraic techniques such as Gröbner bases and resul-
tants. These techniques have been widely used for finding rigorous solutions of
simultaneous algebraic equations, and here are applied to finding quantum gates
on the decoherence-free subsystem for the first time.
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1. INTRODUCTION

The study of quantum computation explosively advanced after Shor dis-
covered a quantum algorithm that solves factorization problems much
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faster than a classical computer. Shor also found a quantum error-collect-
ing code, which set the course for a breakthrough in fault-tolerant quan-
tum computation. The error-correcting code was generalized, and since
then many quantum codes have been proposed (cf. Chapter 10 in Ref.
1). The theory of quantum error-correcting codes tells us how much gate
error is allowed for performing quantum computation when these codes
are used. If gate errors in a quantum circuit are below the threshold, the
quantum computation can be performed by correcting the quantum state
after each gate.

The importance of fault-tolerant quantum computation has let to
the study of another type of quantum error-correcting strategy called the
decoherence-free subsystem (DFS).(2–7) Simply speaking, a DFS means the
quantum computation in a subspace essentially invariant to noises from
the environment. Quantum error-correcting codes are used for correcting
control errors of quantum gates, while a DFS targets the circumvention of
global errors caused by a uniform electromagnetic field that changes over
time. Kempe et al.(3) describes these error-corrections as active and pas-
sive, respectively.

DiVincenzo and co-workers(8) have proposed explicit schemes for
single-qubit rotations and for the CNOT on a DFS using three qubits as
a logical qubit. In this model, |0L〉 (logical zero) and |1L〉 (logical one)
are defined as (1/

√
2)(|01〉 − |10〉)|0〉 and (1/

√
6)(2|001〉 − |010〉 − |100〉),

respectively, and quantum operations on the logical qubits are performed by
the nearest-neighbor exchange interaction (the isotropic Heisenberg interac-
tion). They considered two operation modes: serial and parallel. The serial
mode allows one exchange interaction at a time, while the parallel mode
allows using exchange interactions simultaneously between any neighboring
pair of qubits at a time. Constructing quantum gates in the serial mode is
more difficult than that in the parallel mode.

In the serial mode, they have shown that any single-qubit rotation can
be performed precisely in principle, whereas the set of the diagram and
the exchange rates between qubits (The diagram will be called the 19-gate
sequence in this paper. See Fig. 1.) proposed as the CNOT in their paper is
an approximate one whose absolute inaccuracy to the CNOT is no greater
than 6 × 10−5. These values of the exchange rates are obtained by com-
putational numerical search, and the exact values may not be found even
if we greatly extend the computation time. Nevertheless, they state with-
out any mathematical proof that ‘further fine-tuning of these time param-
eters (exchange rates) would give the CNOT to any desired accuracy.’
There seems to be no simple evidence that the exact CNOT exists on this
model. Their research has been developed in Refs. 9, 10 and more accurate
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Fig. 1. This shows the diagram proposed by DiVin-
cenzo and co-workers.(8) It will be called the 19-gate
sequence in this paper. Each horizontal line represents a
physical qubit. The upper three lines represent the first
logical qubit, and the lower three represent the second.
Variables t1, . . . , t7 are time parameters for exchange
interactions between qubits, while t̄j is a value that
satisfies tan(πtj )tan(π t̄j ) = −2 for each tj . The dia-
gram becomes approximately locally equivalent to the
CNOT, when t1 = 0.410899, t2 = 0.207110, t3 = 0.2775258,
t4 =0.640505, t5 =0.414720, t6 =0.147654, t7 =0.813126.

solutions have been found using numerical search plus other techniques.
However, the existence of the exact CNOT still remains an open problem.

In this paper, we solve this open problem. We obtained the exact values
of time parameters (exchange rates) so that the 19-gate sequence makes the
exact CNOT. Values for the exact CNOT are as follows: The value of t1
is obtained by taking arccosine of a real solution of an integer-coefficient
12-degree polynomial equation; those of t4 and t6 are obtained by tak-
ing arccosines of real solutions of integer-coefficient 24-degree polynomial
equations; those of t3 and t5 are obtained by taking arctangents of real
solutions of integer-coefficient 48-degree polynomial equations; and those
of t2 and t7 are obtained by taking arctangents of real solutions of inte-
ger-coefficient 96-degree polynomial equations. The following is one set
of exact solutions given in units such that the SWAP gate corresponds
to t = 1/2: t1 = 0.4108988797..., t2 = 0.2071066664..., t3 = 0.2775259469...,
t4 = 0.6405019519..., t5 = 0.4147161436..., t6 = 0.1476552801..., and t7 =
0.8131082111.... There are no other solutions around this one.

We obtained the exact values by the following strategy. We first rep-
resented the condition where the 19-gate sequence makes the exact CNOT
by simultaneous equations with variables whose absolute values are 1,
and then solved these equations by computer algebraic techniques, such
as Gröbner bases and resultants.(11,12) Finally, we checked whether the
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absolute values of them were 1. We used the computer software Maple(13)

and Risa/Asir(14).
The key techniques are Gröbner bases and resultants. A Gröbner

basis is a good generating set for an ideal in a polynomial ring and can be
used for analyzing the solutions of simultaneous polynomial equations. A
resultant gives the necessary conditions of solutions of simultaneous poly-
nomial equations. Both are known as useful tools for solving simultaneous
polynomial equations and have been deeply studied in the field of com-
puter algebra. Our study applies these techniques to the construction of
quantum gates in a DFS for the first time.

The rest of the paper organized as follows. We will give background
materials in Section 2, which covers the DFS and describes fundamental
notions of the Gröbner bases and resultants. Section 3 presents the main
theorem. Section 4 concludes the paper. In Appendix A, we give the poly-
nomials that represent the condition of time parameters so that the 19-gate
sequence makes the exact CNOT. We calculated Gröbner bases of the
ideal generated from those polynomials, which are shown in Appendix B.
Values (to 50 decimal places) of time parameters for the exact CNOT are
shown in Appendix C.

2. PRELIMINARIES

2.1. Three-qubit Decoherence-free System

We consider a quantum system that consists of n spin-(1/2) particles.
Let σx, σy, σz be Pauli matrices, i.e.,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz=

(
1 0
0 −1

)
.

We define σ jx , σ
j
y , σ

j
z as

σ jw = I ⊗ I ⊗· · ·⊗σw⊗· · ·⊗ I ⊗ I︸ ︷︷ ︸
n

(w=x, y, z) in n spin-(1/2) particles. Let �Sj = (σ jx , σ jy , σ jz ) be the j th spin
qubit. Heisenberg Hamiltonian between qubits is defined as

HHeis = 1
2

∑
i �=j

JHij
�Si · �Sj .
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We assume JHij = J when i and j are successive numbers (i.e., they are
adjacent), and JHij =0 otherwise. Then,

HHeis =J
n−1∑
j=1

�Sj · �Sj+1. (1)

By the Schrödinger equation,

U(t)|ψ〉= exp
(−itJHHeis

–h

)
|ψ〉. (2)

Let Ejk be the swap operation between the j th and kth qubits. Since
2 ·Ejk − I = �Sj · �Sk, we have e−it · exp(2itEjk)= exp(it �Sj · �Sk) for any real
value t , i.e., unitary operators made by Heisenberg interaction (1) is equiv-
alent to the swap operation up to a phase. Equation (2) implies

U(t)|ψ〉= exp
(−2itJ

∑
Ejj+1

–h

)
|ψ〉

up to a phase. By changing the time scale, we define

Ujj+1(t)= exp
(
πitEjj+1

)
.

Ujj+1(t)= exp(πitEjj+1) is the identity when t=0,1,2, . . . , and the swap
when t = 1

2 ,
3
2 ,

5
2 , . . . Here, t is called the time parameter. By selecting

the value of the time parameter, partial exchange can be performed by
Ujj+1(t).

As is well-known, the set of exchange operations is not universal.
Therefore, we encode a logical qubit into three spin-(1/2) particles so that
the set of exchange operations becomes universal on the quantum com-
puter by logical qubits.

We split physical qubits into blocks, each of which consists of three
particles. The logical zero and one, denoted by |0L〉 and |1L〉, is defined
as

|0L〉 def= 1√
2
|010〉− 1√

2
|100〉, and

|1L〉 def= 2√
6
|001〉− 1√

6
|010〉− 1√

6
|100〉.

Then, U12(t) is a rotation around the z axis of the logical Bloch
sphere made by the logical zero and one. U23(t) is a rotation around the
axis of 120◦ from the z axis of the logical Bloch sphere. Any single-qubit
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rotation on the logical Bloch sphere can then be performed by U12(t) and
U23(t).

We assume that six spin-(1/2) qubits are in a queue, and that
interactions between adjacent qubits can be performed. Let Ejj+1 (j =
1,2, . . . ,5) be the swaps between the j th and (j +1)-st qubits.

The Hilbert space where the total spin 1 and Stotal
z =1 in the six-qubit

system is nine-dimensional. This Hilbert space is denoted H̃. Let H be
the Hilbert space spanned by {|0L〉|0L〉, |0L〉|1L〉, |1L〉|0L〉, |1L〉|1L〉}. Then,
H⊆ H̃.

Exchange operations make an evolution on the whole nine-dimensional
Hilbert space H̃.(3) This means that states in H may leak to the outside of
H by exchange operations. We say that a sequence of exchange operations
becomes a gate on the encoded qubits when the leak is null (after operat-
ing the sequence of exchange operations).

The gate made by a sequence of exchange operations can be expressed
as follows. First, we introduce a basis of the nine-dimensional Hilbert
space H, |a1〉, . . . , |a9〉, where |a1〉 = |0L〉|0L〉, |a2〉 = |0L〉|1L〉, |a3〉 =
|1L〉|0L〉, |a4〉= |1L〉|1L〉. The swaps E12, . . . ,E56 can then be represented
by 9 × 9 matrices on the basis. Unitary operators U12(x), U23(x), U34(x),
U45(x), and U56(x) can also be calculated by the definitions Ujj+1(x)=
exp(πixEjj+1) for j =1, . . . ,5. A sequence of exchange operations is then
expressed by a sequence of pairs ((Uj1j1+1, t1), . . . , (Ujnjn+1, tn)) compris-
ing a unitary operator and the parameter value.

Given a sequence of exchange operations, ((Ui1i1+1, t1), . . . , (Uinin+1, tn)),
let A(�t), B(�t), C(�t), D(�t) (�t= (t1, . . . , tn)) be matrices such that

Uinin+1(tn) · · ·Ui2i2+1(t2)Ui1i1+1(t1)=
(
A(�t) B(�t)
C(�t) D(�t)

)
, (3)

where A(�t),B(�t),C(�t), and D(�t) are 4×4, 4×5, 5×4, and 5×5 matrices,
respectively. Then, the sequence of exchange operations is called the gate
A(�t) on the encoded qubits if B(�t)= 0. (C(�t)= 0 is also true if B(�t)= 0,
since the matrix (3) is unitary.)

The following fact is shown in Ref. 8; There is a set of time param-
eters t1, . . . , t7 such that the sequence of exchange operations shown in
Fig. 1 is approximately locally equivalent to the CNOT.

Here, local equivalence is defined as follows.

Definition 1. Let A and A′ be two-qubit quantum gates. A is locally
equivalent to A′ if there are single-qubit rotations R1, . . . ,R4 such that
A= (R1 ⊗R2)A

′(R3 ⊗R4).
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The notion of local equivalence is characterized by a set of numbers,
which is called the Makhlin invariant.

Definition 2. Let M be an element in SU(4). Define MB =Q†MQ,
where

Q= 1√
2




1 0 0 i

0 i 1 0
0 i −1 0
1 0 0 −i


 .

Set m=MT
BMB , M1 = tr2(m)/16detM, and M2 = (tr2(m)− tr(m2))/4detM.

We call (M1,M2) the Makhlin invariant of M.

Theorem 1(16). A is locally equivalent to A′ iff the Makhlin invariants
of A and A′ are the same.

Example 1. The Makhlin invariants of the identity, the CNOT, the
SWAP, and the root SWAP are (1,3), (0,1), (−1,−3), (i/4,0), respec-
tively.

DiVincenzo and his co-workers(8) state that

1. the Makhlin invariant of A(t1, . . . , t7) is approximately equal to (0,1),
and

2. all elements in B(t1, . . . , t7) are approximately equal to 0,

when t1 =0.410899(2), t2 =0.207110(20), t3 =0.2775258(12), t4 =0.640505(8),
t5 = 0.414720(10), t6 = 0.147654(12), t7 = 0.813126(12). Here, the values in
the parenthesis show the uncertainty of the values of the last digits. Using
a computer search technique, they found that this set of solution satisfies
the condition. They state that ‘further fine-tuning of these time parameters
would give the CNOT to any desired accuracy.’

More accurate solutions have been obtained by numerical search plus
other techniques (cf. Refs. 9, 10). However, these strategies cannot be used
for proving the existence of the exact CNOT. In this paper, we will prove
algebraically the existence of the exact CNOT by solving the simultaneous
equations that represent

1. the Makhlin invariant of A(t1, . . . , t7) is (0,1), and
2. all elements in B(t1, . . . , t7) are 0.

2.2. Gröbner Bases and Resultants

In this section, we explain Gröbner bases, which can transform simul-
taneous equations into the equivalent ones, and resultants, a kind of
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powerful transformation tools, which transform simultaneous equations
under necessary conditions, and other techniques. See(11,12,15) for details.

First, we explain the correspondence between simultaneous equations
and ideals. Consider simultaneous equations f1 = · · · = fl = 0, where fi ∈
C[x1, . . . , xn]. Let 〈f1, . . . , fm〉 be{

l∑
i=1

aifi

∣∣∣∣ai ∈C[x1, . . . , xn]

}

the ideal generated by f1, . . . ,fl . Then, two systems of simultaneous equa-
tions f1 =· · ·=fl=0 and g1 =· · ·=gm=0 have the same zeros if and only
if the two ideals, 〈f1, . . . , fl〉 and 〈g1, . . . , gm〉, are equal. Therefore, if we
find a good basis {g1, . . . , gm} of the ideal 〈f1, . . . , fl〉, then, computing the
common zeros of g1 =· · ·=gm=0, we can find the common zeros of f1 =
· · ·=fl =0. The Gröbner basis is one such good basis.

To define a Gröbner basis, we need some preparations. Let N be the
set of nonnegative integers.

Definition 3 [monomial ordering]. Let K be a field. A monomial
ordering on K[x1, . . . , xn] is any relation on the set of monomials xα, α∈
N
n satisfying:

1. < is a total ordering on N
n.

2. If α<β and γ ∈N
n, then α+γ <β+γ .

3. Every nonempty subset of N
n has a minimal element under <.

Definition 4. Let K be a field and let < be a monomial order on
K[x1, . . . , xn]. Let f =∑

α aαx
α be a nonzero polynomial in K[x1, . . . , xn].

1. The multidegree of f is

multideg(f )=max{α∈N
n |aα �=0}.

2. The leading term of f is

LT(f )=amultideg(f)x
multideg(f).

Once we choose a monomial ordering, then, for any ideal I of K[x1, . . . , xn],
we can define its ideal of leading terms.

Definition 5. Let I ⊂K[x1, . . . , xn] be an ideal other than {0}.
1. We denote by LT(I ) the set of leading terms of elements of I .
2. We denote by 〈LT(I )〉 the ideal generated by the elements of LT(I ).

After preparing the above definitions, we can define a Gröbner basis.



Existence of the Exact CNOT 73

Definition 6 [Gröbner basis]. Let I be an ideal of K[x1, . . . , xn]. Fix a
monomial order. A finite subset {g1, . . . , gm} of I is said to be a Gröbner
basis if 〈LT(I )〉=〈LT(g1), . . . ,LT(gm)〉.
Then the following statement holds (see (11,12,15) for the proof).

Theorem 2. Fix a monomial order. Then every ideal other than {0}
has a Gröbner basis. Furthermore, for any Gröbner basis {g1, . . . , gm} for
an ideal I , I =〈g1, . . . , gm〉.

To compute the simultaneous zeros of the polynomials fi(x1, . . . , xn)

(i = 1, . . . , l), we take a good monomial ordering on K[x1, . . . , xn] and
compute the Gröbner basis {g1, . . . , gm} of the ideal 〈f1, . . . , fl〉. It is
desirable that the Gröbner basis consists of polynomials, one of which is
a polynomial only in a variable xi and the others are the polynomials of
the form xj −hj (xi), where hj (xi)∈K[xi ]. This style of the basis is called
the shape basis. See (11,12,15) for details about the shape basis and compu-
tation methods for a Gröbner basis such as Buchberger’s algorithm.

Next, we explain resultants. Let f (x)=∑l
i=0 aix

i and g(x)=∑m
i=0 bix

i .
Then the following (l+m)× (l+m) matrix




al al−1 . . . a1 a0 0 . . . 0
0 al al−1 . . . a1 a0 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 al al−1 . . . a1 a0 0
0 . . . 0 al al−1 . . . a1 a0
bm bm−1 . . . b1 b0 0 . . . 0
0 bn bm−1 . . . b1 b0 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 bm bm−1 . . . b1 b0 0
0 . . . 0 bm bm−1 . . . b1 b0






m



l

is said to be the Sylvester matrix of f and g with respect to x, and its
determinant is said to be the resultant of f and g with respect to x,
denoted Res(f, g, x). Here, the coefficients ai ’s and bi ’s may be polynomi-
als in other variables than x.

Let f and g be polynomials in x1, . . . , xn with coefficients in C.
Then, Res(f, g, x1)∈C[x2, . . . , xn] and

Res(f, g, x1)=Af +Bg,
where A, B ∈ C[x1, . . . , xn] (See for example (11)). Therefore, when two
polynomials f and g ∈ C[x1, . . . , xn] have a common zero at x1 =α1, . . . ,



74 Kawano et al.

xn=αn, the polynomial Res(f, g, x1)∈ C[x2, . . . , xn] has a zero at x2 =α2,
. . . , xn=αn. Unfortunately, the converse is not true. Consider the follow-
ing example.

f1(x1, x2) = x1x2 +1,

f2(x1, x2) = x1x2 −1.

Clearly, the simultaneous equations f1 =f2 =0 have no solution; however,
the resultant Res(f1, f2, x1)= −2x2 has a zero at x2 = 0. Transformations
utilizing resultants are only necessary condition transformations; however,
they can transform the original problems to subproblems. To recover the
sufficiency, we add the original equations into the subproblems.

We introduce two other techniques, saturation and prime ideal decom-
position. In our setting, we should treat the conditions Dj �= 0 (See Sec-
tion 3.2 for Dj s). We can treat these conditions by adding a new variable
t and an equation tDj −1=0. This technique is called saturation.

Next, we introduce prime ideal decomposition. For example, we con-
sider the following simultaneous equations.

x2 +y2 −3 = 0,

xy−1 = 0.

The Gröbner basis in the lexicographic order y<x (See (11,12,15)) is as fol-
lows.

−y4 +3y2 −1 = 0,

x+y3 −3y = 0.

The left side of the first equation can be factorized as follows.

−y4 +3y2 −1=−(y2 −y−1)(y2 +y−1)

Therefore, the simultaneous equations are transformed into two subprob-
lems:

y2 −y−1 = 0,

x+y3 −3y = 0

and

y2 +y−1 = 0,

x+y3 −3y = 0.

The prime ideal decomposition can treat these procedures systematically.
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3. MAIN THEOREM

Our main theorem is given below.

Theorem 3. There exist values of time parameters t1, . . . , t7 such that
the 19-gate sequence is exactly locally equivalent to the CNOT. More pre-
cisely, there exist values of time parameters t1, . . . , t7 such that they satisfy
the conditions

1. A(t1, . . . , t7) is locally equivalent to the CNOT, and
2. B(t1, . . . , t7)=0.

Our strategy to prove the theorem can be split into three stages.

1. Represent the conditions by algebraic equations with seven variables
r1, . . . , r7 whose absolute values are 1.

2. Solve the algebraic equations by computer using Gröbner bases and
the resultants, and check if the absolute values of the obtained solu-
tions of r1, . . . , r7 are 1.

3. Compute numerical values of t1, . . . , t7.

3.1. First Stage

To represent the conditions by equations, we first introduce a basis
of the nine-dimensional Hilbert space, which is the eigenspace of the total
spin is 1 and Stotal

z = 1 in six qubits. The following is one of the bases of
the space.

|a9〉 def= 1
2
(|01〉− |10〉)(|01〉− |10〉)|00〉,

|a8〉 def= 1√
3
(2E23 − I )|a9〉,

|a7〉 def= 1√
3
(2E45 − I )|a9〉,

|a6〉 def= 1√
3
(2E23 − I )|a7〉,

|a5〉 def= 1

2
√

2
(3E34 − I )|a6〉,

|a4〉 def= 1

2
√

2
(3E56 − I )|a7〉,

|a3〉 def= 1

2
√

2
(3E56 − I )|a6〉,
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|a2〉 def= 1

2
√

2
(3E56 − I )|a5〉,

|a1〉 def= 1√
15
(4E45 − I )|a2〉.

None of {|a1〉, . . . , |a9〉} coincides with four states {|0L〉|0L〉, |0L〉|1L〉,
|1L〉|0L〉, |1L〉|0L〉}. To describe the swap operations by matrices on a basis
including these four states, we introduce a translation matrix S defined by

S=




0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0

0 0 0 2
√

2
3 0 0 1

3 0 0

0 0 2
√

2
3 0 0 1

3 0 0 0
0 0 0 0 1 0 0 0 0

0
√

3
2 0 − 1

6 0 0
√

2
3 0 0√

3
2 0 − 1

6 0 0
√

2
3 0 0 0

0 − 1
2 0 − 1

2
√

3
0 0

√
6

3 0 0

− 1
2 0 − 1

2
√

3
0 0

√
6

3 0 0 0




.

It can be easily checked that S−1 =ST , i.e., S is an orthogonal matrix. Let
|b1〉, . . . , |b9〉 be S−1|a1〉, . . . , S−1|a9〉, respectively. Then, |b1〉 = |0L〉|0L〉,
|b2〉 = |1L〉|0L〉, |b3〉 = |0L〉|1L〉, |b4〉 = |1L〉|1L〉. {|b1〉, . . . , |b9〉} is another
basis of the nine-dimensional Hilbert space. S is the translation from
{|b1〉, . . . , |b9〉} to {|a1〉, . . . , |a9〉}.

The operators U12(x), . . . ,U56(x) can be represented by 9 × 9 matri-
ces. We introduce new operators: U123(t)=U23(t)U12(t̄)U23(t) and U456(t)=
U45(t)U56(t̄)U45(t), where t and t̄ satisfy the t-t̄ relation. The 19-gate
sequence can be written by

U34(t1)U456(t3)U123(t7)U34(t6)U123(t5)U34(t4)U123(t2)U456(t3)U34(t1).

Thus, the conditions that the 19-gate sequence is locally equivalent to the
CNOT can be represented by simultaneous equations of t1, . . . , t7.

However, the equations that represent the conditions contain expo-
nentials, since Ujj+1(t)= exp(πitEjj+1). In order to represent the condi-
tions by algebraic equations, we introduce seven new variables: r1, r2, . . . , r7,
defined as r1 =exp(2πit1), r2 =exp(2πi(t2 + t̄2)), r3 =exp(2πi(t3 + t̄3)), r4 =
exp(2πit4), r5 = exp(2πi(t5 + t̄5)), r6 = exp(2πit6), and r7 = exp(2πi(t7 +
t̄7)), where tj and t̄j satisfy tan(πtj )tan(π t̄j )=−2 (the t-t̄ relation). Since
t1, . . . , t7 are real numbers, r1, . . . , r7 must satisfy

|rj |=1 for j =1, ...,7. (4)
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All elements in Ujj+1(t) are then represented by fractions of integer-
coefficient polynomials of r1, . . . , r7. We solved the condition that the
19-gate sequence is locally equivalent to the CNOT using Maple software
and obtained seven fractions of integer-coefficient polynomials.

P =
{
N1

D1
,
N2

D2
,
N3

D3
,
N4

D4
,
N5

D5
,
N6

D6
,
N7

D7

}
.

N1, . . . ,N7 and D1, . . . ,D7 will be given in Appendix A. Thus, zeros of
(4) and P satisfy the condition that the 19-gate sequence is locally equiv-
alent to the CNOT.

3.2. Second Stage

We find the common zeros of the set of the polynomials P ′

P ′ = {N1,N2,N3,N4,N5,N6,N7} ,

under the conditions that denominators are not zero; that is, Dj �=0 (j=1,
. . . , 7), and |rj |=1. The denominator conditions are equivalent to the fol-
lowing (see Appendix A):

r1r3 − r3 −2r1 −1 �=0, (5)

2r1r3 +7r3 +2r1 −2 �=0, (6)

2r2
1 r3 +2r2

1 −3r3r1 + r3 +6r1 +1 �=0, (7)

4r1 +1 �=0, (8)

r1r3 +2r3 −2r1 +2 �=0, (9)

r1 −1 �=0, (10)

r4 −1 �=0, (11)

r6 −1 �=0. (12)

Using techniques described in Section 2, we finally obtain 12 components
of the solutions, and we immediately find that 11 components do not sat-
isfy the absolute value condition since the monomials rj ’s appear (which
means that rj =0).

Below, we examine the last component V (see Appendix B). Let the
monomial ordering be the lexicographic order r2<r1<r3<r4<r5<r6<r7
and compute the Gröbner basis. Then the basis is the shape basis. Add the
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polynomials x+ iy− r2 and x2 +y2 −1, reduce the polynomials in V by the
relation x2 +y2 −1=0 and compute the Gröbner basis V ∪{x+ iy− r2, x2 +
y2 −1} with the lexicographic order in y <x<r2<r1<r3<r4<r5<r6<r7.
Then, we find that x and rj ’s are polynomials in y. That is, the real parts
and the imaginary parts of r1, . . . , r7 are rational polynomials of y. We write
them as Rj (y) and Ij (y). Let f (y) be the minimal polynomial of y.

f (y) = −39031585969656430161819346100554240000y24

−13034178206275816025220581634519763968000y22

−673842769773534158149886149875623500210176y20

+364778923989155181457175041861026632635776y18

+6133185463037662946721854335699988078216832y16

−13854926979243219590587010385949871627682624y14

+10774683492876675732753422160410527517858967y12

−1417956975509132294533602118249021036668456y10

−2152584480126796127631822175047849315392496y8

+833758594015099541566119653077053871603968y6

+52095028092680191026935578295687475255552y4

−46622214916288265789457107993467999119360y2

−10659808451805770720564390069926170624.

We have confirmed that the 24-degree polynomial f (y) divides Rj (y)2 +
Ij (y)

2 − 1 for j = 1, . . . ,7. It is necessary that y is real to guarantee the
absolute value condition |rj |=1, and this divisibility implies that it is also
the sufficient condition. We can construct all solutions of rj = Rj (y) +
i · Ij (y) from the real solutions y of f (y)=0.

3.3. Third Stage

To compute the numerical values of tj ’s, we first compute the real
roots of f (y)=0. Using Sturm’s algorithm, we find that there are no mul-
tiple roots and four real roots. Note that f (y) does not change with sub-
stitutions y →−y, 1±y. There exists one and only one real root y0 in the
interval I = [l, h], where
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l=−0.89700265256658418957521979481503186071682851157388

and h= l+10−50.
Second, we compute the numerical value for t2. Put τ2 = tan(πt2) and

τ̄2 = tan(π t̄2). Then, we have

y= sin(2π(t2 + t̄2))=
6τ 3

2 −12τ2

τ 4
2 +5τ 2

2 +4
,

considering the relation τ2τ̄2 = −2. In f (y) = 0, substitute y into
(6τ 3

2 −12τ2)/(τ
4
2 +5τ 2

2 +4) and cancel the denominator (τ 4
2 +5τ 2

2 +4 is pos-
itive for any real value τ2). Then, we get a 96-degree equation in τ2, which
has no multiple roots and 16 real roots. Among 16 real roots, the real root
τ20 in the interval [0.76122,0.76123] satisfies the equation

6τ 3
20 −12τ20

τ 4
20 +5τ 2

20 +4
=y0.

Computing τ20 with sufficient accuracy, we realize that t2 = arctan(τ20/π)

is in the interval [l2, h2], where

l2 =0.20710666649395355654611419604502076932557162116304

and h2 = l2 +10−50.
Third, we explain how to compute t1. The computation for t4 and t6

are similar. First, take the 22-degree polynomial R1(y), which is the real
part of r1. By checking that R′

1(y) has no real root in the interval I , we
know that R1(y) is monotone in the interval I . Therefore, we can eas-
ily compute the interval containing R1(y0) by computing only the end-
points of the interval I (or subintervals of I ) containing y0. For example,
R1(y0)= cos(2πt1) is in the interval

[−0.84734070089963161998567396737280797819525416228990198607375,

−0.84734070089963161998567396737280797819525416228990198607374].

From this interval we know that t1 =arccos(R1(y0))/(2π) is in the interval
[l1, h1], where

l1 =0.41089887975718144636523336288597624194632833958785

and h1 = l1 +10−50.
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Finally, we describe the calculation for t7. The computation for t3 and
t5 are similar to that for t7. To compute t7, first we take the 23-degree
polynomial I7(y), which is the imaginary part of r7. I7(y0) is in the inter-
val [0.9699291,0.9699292]. Next, we compute the minimal polynomial r7,
which is 24-degree. The imaginary part y7 of r7 satisfies the same equation
for y. Put τ7 = tan(πt7) and τ̄7 = tan(π t̄7). Then, we have

y7 = sin(2π(t7 + t̄7))=
6τ 3

7 −12τ7

τ 4
7 +5τ 2

7 +4
,

considering the relation τ7τ̄7 =−2. In f (y7)= 0, substitute y7 into (6τ 3
7 −

12τ7)/(τ
4
7 + 5τ 2

7 + 4) and cancel the denominator (τ 4
7 + 5τ 2

7 + 4 is positive
for any real value τ7). Then, we get a 96-degree equation in τ7, which has
no multiple roots and 16 real roots. Among these 16 real roots, the real
root τ70 in the interval [−0.66542,−0.66541] satisfies the equation

6τ 3
70 −12τ70

τ 4
70 +5τ 2

70 +4
= I7(y0).

Computing τ70 with sufficient accuracy, we realize that t7 = arctan(τ70/π)

is in the interval [l7, h7], where

l7 =0.81310821111630563803711838610580990574895573944832

and h7 = l7 + 10−50. The above interval for t7 is a little out of the range
[0.813114,0.813138] that DiVincenzo and co-workers(8) have proposed.

4. CONCLUDING REMARKS

We proved the existence of the exact CNOT on a quantum computer
with the nearest–neighbor exchange interaction in the serial mode. Com-
puter algebraic techniques such as Gröbner bases and resultants were used
for this purpose. Values for the exact CNOT are obtained as follows: The
value of t1 is obtained by taking arccosine of a real solution of an integer-
coefficient 12-degree polynomial equation; those of t4 and t6 are obtained
by taking arccosines of real solutions of integer-coefficient 24-degree poly-
nomial equations; those of t3 and t5 are obtained by taking arctangents
of real solutions of integer-coefficient 48-degree polynomial equations; and
those of t2 and t7 are obtained by taking arctangents of real solutions
of integer-coefficient 96-degree polynomial equations. We confirmed that
there is a set of values of time parameters for the exact CNOT around the
one proposed by DiVincenzo and co-workers.(8)
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We found the exact values of time parameters so that the 19-gate
sequence makes the exact CNOT; however, the existence of a shorter
sequence that can make the exact CNOT is an open problem. If there
exists such a sequence, we might be able to find it using the strategy in
this paper. Even if there is no such sequence, our approach could be used,
because Gröbner bases tell us of not only the existence of zeros of poly-
nomials but also of the non-existence of them.

Appendix A. Polynomial Functions Obtained in the First Stage

The condition P is written as

P =
{
N1

D1
,
N2

D2
,
N3

D3
,
N4

D4
,
N5

D5
,
N6

D6
,
N7

D7

}
.

Here, N1, . . . ,N7 and D1, . . . ,D7 are the following polynomials.

N1 = (−12r1r3
3 +4r3

1 r
3
3 +8r3

3 −6r3
1 r

2
3 +30r1r2

3 −24r2
1 r

2
3 −24r3

1 r3 −21r2
1 r3 −30r1r3 −6r3 −14r3

1 +2

+3r2
1 +9r1)− (−r3 + r1r3 −1−2r1)(r1r3 +2r3 +2−2r1)(2r1r3 +7r3 −2+2r1)r6r4r7r5r2

N2 = 3(−26+785r1r3 −582r1r2
3 −1599r2

1 r
2
3 +2195r2

1 r3 −229r1 +88r3 −607r2
1 −30r2

3 −142r1r3
3 +506r2

1 r
3
3

+2481r3
1 r3 +603r3

1 r
2
3 +538r4

1 r
3
3 +4r4

1 r
4
3 −92r5

1 r
3
3 +1302r5

1 r
2
3 +1684r5

1 r3 −56r5
1 r

4
3 +156r6

1 r
2
3 +788r6

1 r3

+8r6
1 r

4
3 −148r6

1 r
3
3 −4r1r4

3 −196r2
1 r

4
3 −558r3

1 r
3
3 +204r3

1 r
4
3 +150r4

1 r
2
3 +2914r4

1 r3 −104r3
3 −342r3

1 +382r4
1

+476r6
1 +346r5

1 +40r4
3 )+ r2r7(4r1 +1)(2r1r3 +7r3 −2+2r1)(2r2

1 r3 +2r2
1 −3r1r3 +6r1 + r3 +1)(r1r3

+2r3 +2−2r1)(−r3 + r1r3 −1−2r1)(r5r6r4 +2r5r6 +2r5r4 +4r5 −2r6r4 +2r6 +2r4 −2)

N3 = 3(14−461r1r3 +636r1r2
3 +1023r2

1 r
2
3 −788r2

1 r3 +103r1 −64r3 +169r2
1 +66r2

3 −254r1r3
3 −584r2

1 r
3
3

+258r3
1 r3 −1044r3

1 r
2
3 +38r4

1 r
3
3 −148r4

1 r
4
3 −352r5

1 r
3
3 −267r5

1 r
2
3 +356r5

1 r3 +80r5
1 r

4
3 −102r6

1 r
2
3 +166r6

1 r3

+28r6
1 r

4
3 −86r6

1 r
3
3 +4r1r4

3 +352r2
1 r

4
3 +1182r3

1 r
3
3 −228r3

1 r
4
3 −312r4

1 r
2
3 +533r4

1 r3+56r3
3 −204r3

1 −427r4
1

+154r6
1 +191r5

1 −88r4
3 )+r7(4r1 +1)(2r1r3 +7r3−2+2r1)(2r2

1 r3+2r2
1 −3r1r3 +6r1 + r3 +1)(r1r3 +2r3

+2−2r1)(−r3 + r1r3 −1−2r1)(r5r6r4 − r5r6 +2r5r4 −2r5 −2r6r4 − r6 +2r4 +1)

N4 = 3(14−461r1r3 +636r1r2
3 +1023r2

1 r
2
3 −788r2

1 r3 +103r1 −64r3 +169r2
1 +66r2

3 −254r1r3
3 −584r2

1 r
3
3

+258r3
1 r3 −1044r3

1 r
2
3 +38r4

1 r
3
3 −148r4

1 r
4
3 −352r5

1 r
3
3 −267r5

1 r
2
3 +356r5

1 r3 +80r5
1 r

4
3 −102r6

1 r
2
3 +166r6

1 r3

+28r6
1 r

4
3 −86r6

1 r
3
3 +4r1r4

3 +352r2
1 r

4
3 +1182r3

1 r
3
3 −228r3

1 r
4
3 −312r4

1 r
2
3 +533r4

1 r3 +56r3
3 −204r3

1 −427r4
1

+154r6
1 +191r5

1 −88r4
3 )+ r2(4r1 +1)(2r1r3 +7r3 −2+2r1)(2r2

1 r3 +2r2
1 −3r1r3+6r1+r3 +1)(r1r3+2r3

+2−2r1)(−r3 + r1r3 −1−2r1)(r5r6r4 +2r5r6 − r5r4 −2r5 −2r6r4 +2r6 − r4 +1)

N5 = 3(−4+346r1r3 −1272r1r2
3 −1542r2

1 r
2
3 +166r2

1 r3 +10r1 +80r3 +106r2
1 −204r2

3 +1156r1r3
3 −80r2

1 r
3
3

+144r3
1 r3−3780r3

1 r
2
3 −1030r4

1 r
3
3 −28r4

1 r
4
3 −676r5

1 r
3
3 −1455r5

1 r
2
3 −472r5

1 r3 +224r5
1 r

4
3 −282r6

1 r
2
3 −62r6

1 r3

+52r6
1 r

4
3 −98r6

1 r
3
3 −152r1r4

3 +64r2
1 r

4
3 +744r3

1 r
3
3 −432r3

1 r
4
3 −2400r4

1 r
2
3 −202r4

1 r3 −16r3
3 −3r3

1 −262r4
1

+70r6
1 +83r5

1 +272r4
3 )+ (4r1 +1)(2r1r3 +7r3 −2+2r1)(2r2

1 r3 +2r2
1 −3r1r3 +6r1 + r3 +1)(r1r3 +2r3

+2−2r1)(−r3 + r1r3 −1−2r1)(2r5r6r4 −2r5r6 −2r5r4 +2r5 −4r6r4 −2r6 −2r4 −1)
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N6 = (−1+2r2
1 − r1 +4r3 −4r2

3 + r1r3 +2r1r2
3 +4r2

1 r3 +2r2
1 r

2
3 )+ r4r6(r1r3 +2r3 +2−2r1)(−r3 + r1r3−1−2r1)

N7 = −r2
1 r6r4(−8+16r5r6r4 +20r2

3 r5r7r
2
1 r4 −28r2r6r2

1 −46r5r3r7r6r1r4 +10r2
3 r5r7r6r4 −20r2

3 r5r7r6r1r4

+68r5r3r7r6r2
1 r4 −40r2

3 r5r7r1r4 −8r2
3 r5r6r1r4 +10r2

3 r2 +92r3r7r6r1r4 +40r2
3 r7r6r1r4 −40r5r3r6r1r4

+10r2
3 r5r7r6r

2
1 r4 −20r2

3 r2r5r6r1r4 +16r3r4 +70r2
3 r2r5r7r6r4 −28r2

1 r3 −2r2
1 r

2
3 +4r1r2

3 +20r1r3 −68r6r4

−16r5r4 −16r5r6 +100r2
3 r2r7r6r1r4 −22r5r3r7r6r4 −92r5r3r7r1r4 +10r5r7r6r1r4 −22r3r2r5r6r4

+20r2
3 r5r7r6r1 +46r5r3r7r6r1 −56r1 +8r3 −16r6 −16r4 +4r7 +16r5 +4r2 −98r2

1 −2r2
3 +46r6r4r7r5r2

+16r5r3r6 −22r3r7 +40r3r6r1 +22r3r7r6 −46r3r7r1 −10r7r6r1 −112r6r1 +16r3r6 +10r7r1 −4r7r6
+46r3r7r6r1 −112r1r4 −100r3r6r1r4 +44r3r7r6r4 −92r3r7r1r4 −20r7r6r1r4 +40r5r3r6r1 +22r5r3r7r6
+92r5r3r7r1 −10r5r7r6r1 +112r5r6r1r4 −16r5r3r6r4 +40r5r1r3r4 −44r5r3r7r4 +20r5r7r1r4 +4r5r7r6r4
−476r6r1r4 −40r3r6r4 +40r1r3r4 −44r3r7r4 +20r7r1r4 −8r7r6r4 +16r5r3r4 −40r5r1r3 +44r5r3r7
−112r5r6r1 −20r5r7r1 −4r5r7r6 −112r5r1r4 +8r5r7r4 +8r7r4 +112r5r1 −16r5r3 −8r5r7 −68r3r7r6r2

1

+140r3r6r2
1 r4+136r3r7r2

1 r4+28r7r6r2
1 r4−56r5r3r6r2

1 −136r5r3r7r2
1 +14r5r7r6r2

1 +196r5r6r2
1 r4−56r5r2

1 r3r4

−28r5r7r2
1 r4−196r6r2

1 −14r7r2
1 −196r2

1 r4+196r5r2
1 −56r3r6r2

1 +68r3r7r2
1 +14r7r6r2

1 −833r6r2
1 r4−56r2

1 r3r4

−28r7r2
1 r4 +56r5r2

1 r3 −196r5r6r2
1 +28r5r7r2

1 −196r5r2
1 r4 −10r2

3 r2r4 +10r2
3 r2r

2
1 −20r2

3 r2r1 +68r3r2r2
1

−50r2
3 r2r7 +20r2

3 r2r6 −136r3r7r6r2
1 r4 +56r5r3r6r2

1 r4 +136r5r3r7r2
1 r4 −14r5r7r6r2

1 r4 −68r5r3r7r6r2
1

+10r2r1 +8r2r6 −4r2r4 −2r2r7 −8r2r5 −14r2r2
1 −22r3r2 +44r3r2r6r4 +22r3r2r5r4 −44r3r2r5r6

+20r2
3 r2r5r6 −40r2

3 r2r6r1 +50r2
3 r2r7r6 +100r2

3 r2r7r1 −92r3r2r6r1 −40r3r2r7r1 −20r3r2r7r6 +46r3r2r1r4

−20r2
3 r2r6r4 +20r2

3 r2r1r4 +50r2
3 r2r7r4 −10r2

3 r2r5r4 +40r2
3 r2r5r1 +100r2

3 r2r5r7 −20r3r2r7r4 +92r3r2r5r1

−40r3r2r5r7 +136r3r2r6r2
1 +20r3r2r7r2

1 −68r3r2r2
1 r4 −136r3r2r5r2

1 +20r2
3 r2r6r

2
1 −50r2

3 r2r7r
2
1 −10r2

3 r2r
2
1 r4

−20r2
3 r2r5r

2
1 +4r2r5r6r4−4r2r7r6r1−20r2r6r1r4−140r2

3 r2r5r7r6r1r4+70r2
3 r2r5r7r6r

2
1 r4−100r2

3 r2r5r7r1r4

−160r3r2r5r7r6r1r4 −100r2
3 r2r5r7r6r1 +40r3r2r7r6r1 −100r2

3 r2r7r6r1 +40r2
3 r2r6r1r4 −50r2

3 r2r7r6r4

−100r2
3 r2r7r1r4 −40r3r2r7r6r1r4 −40r2

3 r2r5r6r1 +50r2
3 r2r5r7r6 −200r2

3 r2r5r7r1 +40r3r2r5r7r6r1

−46r3r2r5r6r1r4 +10r2
3 r2r5r6r4 +20r2

3 r2r5r1r4 +50r2
3 r2r5r7r4 +40r3r2r5r7r1r4 +80r3r2r5r7r6r4

+92r3r2r6r1r4 +40r3r2r7r1r4 +20r3r2r7r6r4 −20r2
3 r2r5 −46r3r2r1 −44r3r2r6 +22r3r2r4 +20r3r2r7

+44r3r2r5 −8r2r6r4 −4r2r5r4 +8r2r5r6 +20r2r6r1 +4r2r7r1 +2r2r7r6 −10r2r1r4 +2r2r7r4
−20r2r5r1 +4r2r5r7 −2r2r7r2

1 +14r2r2
1 r4 +28r2r5r2

1 −92r3r2r5r6r1 +80r3r2r5r7r1 −20r3r2r5r7r6

+46r3r2r5r1r4−20r3r2r5r7r4+50r2
3 r2r7r6r

2
1 −20r2

3 r2r6r
2
1 r4+50r2

3 r2r7r
2
1 r4+20r3r2r7r6r2

1 r4+20r2
3 r2r5r6r

2
1

+100r2
3 r2r5r7r

2
1 −20r3r2r5r7r6r2

1 +68r3r2r5r6r2
1 r4 −10r2

3 r2r5r
2
1 r4 −20r3r2r5r7r2

1 r4 −20r3r2r7r6r2
1

−136r3r2r6r2
1 r4 −20r3r2r7r2

1 r4 +136r3r2r5r6r2
1 −40r3r2r5r7r2

1 −68r3r2r5r2
1 r4 −50r2

3 r2r7r6r
2
1 r4

+10r2
3 r2r5r6r

2
1 r4 +50r2

3 r2r5r7r
2
1 r4 +80r3r2r5r7r6r2

1 r4 +50r2
3 r2r5r7r6r

2
1 −4r2

3 r4 +10r2
3 r7 −4r2

3 r6 +4r2
3 r5

−92r2r5r7r6r1r4 +4r2r7r6r1r4 −4r2r5r7r6r1 +10r2r5r6r1r4 −4r2r5r7r1r4 −4r2r7r1r4 −2r2r7r6r4
+20r2r5r6r1 −8r2r5r7r1 +2r2r5r7r6 −10r2r5r1r4 +2r2r5r7r4 +2r2r7r6r2

1 +28r2r6r2
1 r4 +2r2r7r2

1 r4

−28r2r5r6r2
1 +4r2r5r7r2

1 +14r2r5r2
1 r4 −2r2r7r6r2

1 r4 +2r2r5r7r6r2
1 −14r2r5r6r2

1 r4 +2r2r5r7r2
1 r4

+46r2r5r7r6r2
1 r4+20r2

3 r7r6r1+88r2
3 r6r1r4−20r2

3 r7r6r4−40r2
3 r7r1r4 +8r2

3 r5r6r1 −10r2
3 r5r7r6 +40r2

3 r5r7r1

+4r2
3 r5r6r4 +8r2

3 r5r1r4 +20r2
3 r5r7r4 −10r2

3 r7r6r
2
1 −44r2

3 r6r
2
1 r4 +20r2

3 r7r
2
1 r4 −4r2

3 r5r6r
2
1 −20r2

3 r5r7r
2
1

−4r2
3 r5r

2
1 r4 −4r2

3 r5r6 +8r2
3 r6r1 −10r2

3 r7r6 −20r2
3 r7r1 −44r2

3 r6r4 +8r2
3 r1r4 +20r2

3 r7r4 −4r2
3 r5r4 −8r2

3 r5r1

−20r2
3 r5r7 −4r2

3 r6r
2
1 +10r2

3 r7r
2
1 −4r2

3 r
2
1 r4 +4r2

3 r5r
2
1 −20r2

3 r7r6r
2
1 r4 +4r2

3 r5r6r
2
1 r4 −10r2

3 r5r7r6r
2
1 )−

(−1+2r5r6r4 −8r2r6r2
1 −4r6r4 −2r5r4 −2r5r6 +2r5r7r6r1r4 −4r1 −2r6 −2r4 +2r7 +2r5 +2r2 −4r2

1

+2r6r4r7r5r2 −2r7r6r1 −8r6r1 +2r7r1 −2r7r6 −8r1r4 −4r7r6r1r4 −2r5r7r6r1 +8r5r6r1r4 +4r5r7r1r4
+2r5r7r6r4 −16r6r1r4 +4r7r1r4 −4r7r6r4 −8r5r6r1 −4r5r7r1 −2r5r7r6 −8r5r1r4 +4r5r7r4 +4r7r4
+8r5r1 −4r5r7 +8r7r6r2

1 r4 +4r5r7r6r2
1 +8r5r6r2

1 r4 −8r5r7r2
1 r4 −8r6r2

1 −4r7r2
1 −8r2

1 r4 +8r5r2
1 +4r7r6r2

1

−16r6r2
1 r4 −8r7r2

1 r4 −8r5r6r2
1 +8r5r7r2

1 −8r5r2
1 r4 −4r5r7r6r2

1 r4 +2r2r1 +4r2r6 −2r2r4 −4r2r7 −4r2r5

−4r2r2
1 +2r2r5r6r4 −8r2r7r6r1 −4r2r6r1r4 −4r2r6r4 −2r2r5r4 +4r2r5r6 +4r2r6r1 +8r2r7r1 +4r2r7r6
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−2r2r1r4 +4r2r7r4 −4r2r5r1 +8r2r5r7 −4r2r7r2
1 +4r2r2

1 r4 +8r2r5r2
1 −4r2r5r7r6r1r4 +8r2r7r6r1r4

−8r2r5r7r6r1 +2r2r5r6r1r4 −8r2r5r7r1r4 −8r2r7r1r4 −4r2r7r6r4 +4r2r5r6r1 −16r2r5r7r1 +4r2r5r7r6
−2r2r5r1r4+4r2r5r7r4+4r2r7r6r2

1 +8r2r6r2
1 r4+4r2r7r2

1 r4 −8r2r5r6r2
1 +8r2r5r7r2

1 +4r2r5r2
1 r4 −4r2r7r6r2

1 r4

+4r2r5r7r6r2
1 −4r2r5r6r2

1 r4 +4r2r5r7r2
1 r4 +2r2r5r7r6r2

1 r4)(1+8r2
1 r3+4r2

1 r
2
3 −8r1r2

3 −4r1r3+2r6r4+4r1

−4r3 +4r2
1 +4r2

3 +4r3r6r1r4 +8r6r1r4 +4r3r6r4 −8r3r6r2
1 r4 +8r6r2

1 r4 −4r2
3 r6r1r4 +2r2

3 r6r
2
1 r4 +2r2

3 r6r4),

D1 = (r1r3 − r3 −2r1 −1)(r1r3 +2r3 −2r1 +2)(2r1r3 +7r3 +2r1 −2),

D2 = (4r1 +1)(2r1r3 +7r3 +2r1 −2)(2r2
1 r3 +2r2

1 −3r1r3 + r3 +6r1 +1)(r1r3 +2r3 −2r1 +2)(r1r3 − r3 −2r1 −1),

D3 = (4r1 +1)(2r1r3 +7r3 +2r1 −2)(2r2
1 r3 +2r2

1 −3r1r3 + r3 +6r1 +1)(r1r3 +2r3 −2r1 +2)(r1r3 − r3 −2r1 −1),

D4 = (4r1 +1)(2r1r3 +7r3 +2r1 −2)(2r2
1 r3 +2r2

1 −3r1r3 + r3 +6r1 +1)(r1r3 +2r3 −2r1 +2)(r1r3 − r3 −2r1 −1),

D5 = (4r1 +1)(2r1r3 +7r3 +2r1 −2)(2r2
1 r3 +2r2

1 −3r1r3 + r3 +6r1 +1)(r1r3 +2r3 −2r1 +2)(r1r3 − r3 −2r1 −1),

D6 = (r1r3 +2r3 −2r1 +2)(r1r3 − r3 −2r1 −1),

D7 = (r1 −1)4(r6 −1)2(r4 −1)2.

Appendix B. Gröbner Basis Obtained in the Second Stage

The following is the Gröbner basis V obtained in the second stage.

〈16r12
1 −12r11

1 −315r10
1 −270r9

1 +963r8
1 +1740r7

1 +1831r6
1 +1740r5

1 +963r4
1 −270r3

1 −315r2
1 −12r1 +16,

19688997290379300r2
2 + (13342220859532912r11

1 −9025798437480212r10
1 −263412163625611277r9

1

−244238969059074902r8
1 +787347579309412429r7

1 +1502638425104482204r6
1 +1620459490760642441r5

1

+1580415690672399176r4
1 +929244037863232397r3

1 −122716345173838558r2
1 −218508131675986453r1

−7449591529544452)r2 +4184386317878320r11
1 +7219809598397980r10

1 −91723431022094945r9
1

−272558822235280070r8
1 +108321338134086865r7

1 +1087176134426281540r6
1 +1487027967152728085r5

1

+1518422616224227760r4
1 +1295168154271813145r3

1 +480888700491118370r2
1 −268680005533325905r1

−127689352357977520,

1131975r3 −3697024r11
1 +4419904r10

1 +70949504r9
1 +30728974r8

1 −238941943r7
1 −298598858r6

1

−282189047r5
1 −260427802r4

1 −87152204r3
1 +121556561r2

1 +33278731r1 −10519741,

55465469280r6 + (24556192240r11
1 −121558064500r10

1 −404020369445r9
1 +1597919868110r8

1

+3190314059245r7
1 −3245079126700r6

1 −8000005406935r5
1 −9880935800300r4

1 −11272721707795r3
1

−8372694166130r2
1 −673290192565r1 +672404027500)r2 +88323416944r11

1 −194130043924r10
1

−1632898358669r9
1 +1000496774726r8

1 +7294051389253r7
1 +2106675007628r6

1 −2919497971183r5
1

−5019841976468r4
1 −9317109549931r3

1 −10291179288266r2
1 −1265131770061r1 +853220161876,

−55465469280r4 + (24556192240r11
1 −121558064500r10

1 −404020369445r9
1 +1597919868110r8

1

+3190314059245r7
1 −3245079126700r6

1 −8000005406935r5
1 −9880935800300r4

1 −11272721707795r3
1

−8372694166130r2
1 −673290192565r1 +672404027500)r2 +32218984864r11

1 −23724321784r10
1

−631776626414r9
1 −554533353544r8

1 +1875657472198r7
1 +3482653118708r6

1 +3900484651382r5
1

+3858148652452r4
1 +2341705761134r3

1 −184709675696r2
1 −449339959366r1 −70729884884,

1223262755325r5 +6137450188864r11
1 −6991418111824r10

1 −118092874249844r9
1 −57613170322234r8

1

+391421961044758r7
1 +514627779872963r6

1 +503533812975257r5
1 +474101125684372r4

1
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+186511604998229r3
1 −173987677844891r2

1 −51545756230966r1 +15367299773596,

19688997290379300r7 +19688997290379300r2 +13342220859532912r11
1 −9025798437480212r10

1

−263412163625611277r9
1 −244238969059074902r8

1 +787347579309412429r7
1 +1502638425104482204r6

1

+1620459490760642441r5
1 +1580415690672399176r4

1 +929244037863232397r3
1 −122716345173838558r2

1

−218508131675986453r1 −7449591529544452〉

Appendix C. Values of the Time Parameters

The following table shows values (to 50 decimal places) of time parameters
of the 19-gate sequence that makes a gate locally equivalent to the exact
CNOT.

t1 = 0.41089887975718144636523336288597624194632833958785 . . .

t2 = 0.20710666649395355654611419604502076932557162116304 . . .

t̄2 = 0.61576323853243438299853635074802330810574399122390 . . .

t3 = 0.27752594692148754979835485968172499669087169408382 . . .

t̄3 = 0.67082929327922853371730044242213587584965409778897 . . .

t4 = 0.64050195194064278992122222135915364572272517521372 . . .

t5 = 0.41471614361026407845944669412078743421039387278530 . . .

t̄5 = 0.84017093370645648134274736683463875195351138258104 . . .

t6 = 0.14765528017545878894148896649867378972197173397274 . . .

t7 = 0.81310821111630563803711838610580990574895573944832 . . .

t̄7 = 0.39776246248510275550567762561269578427232753957876 . . .
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