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Abstract
Preference approval voting (PAV) and fallback voting (FV) are two voting rules that 
combine approval and preferences, first introduced by Brams and Sanver (in: Brams, 
Gehrlein and Roberts (eds) The mathematics of preference, choice and order, Springer, 
Berlin, 2009). Under PAV, voters rank the candidates and indicate which ones they 
approve of; with FV, they rank only those candidates they approve of. In this paper, we 
further develop the work of Brams and Sanver (2009) by exploring some other normative 
properties of FV and PAV. We show among other things that FV and PAV satisfy and fail 
the same criteria; they possess two properties that AV does not: Pareto optimality and 
the fact of always electing the absolute Condorcet winner when he exists. To provide a 
practical comparison, we evaluate the probabilities of satisfying the Condorcet majority 
criteria for three-candidate elections and a considerably large electorate, examining FV and 
PAV alongside other voting rules. Our findings indicate that PAV outperforms the Borda 
rule in this regard. Furthermore, we observe that in terms of agreement, FV and PAV align 
more closely with scoring rules than with approval voting. Our analysis is performed under 
the impartial anonymous culture assumption.

Keywords  Approval voting · Rankings · Condorcet · Properties · Impartial and anonymous 
culture

JEL Classification  D71 · D72

1  Introduction

When it comes to single-winner elections, the literature and practical applications primarily 
revolve around two major categories of voting rules. These can be broadly classified as 
scoring rules based on rankings and rules based on evaluation or approval. Scoring rules 
(SCR) typically require voters to rank the candidates, either all of them or a subset. Based 
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on these rankings, candidates receive points according to their positions. The candidate 
with the highest total score, as determined by the rule in question, is declared the winner. 
Among the most well-known SCR are the plurality rule (PR), the negative plurality rule 
(NPR), and the Borda rule (BR).1 Approval voting (AV), popularized by Brams and 
Fishburn (1978), has gained significant popularity: this rule simplifies the voting process 
by allowing voters to express their approval for the candidates they find acceptable. 
Under AV, each voter has the freedom to approve as many candidates as they desire. The 
candidate(s) who receive the highest number of approvals are declared the winner(s). AV 
has garnered attention as a viable alternative to SCR in various contexts; its simplicity and 
intuitive nature have contributed to its appeal among both scholars and practitioners. As a 
result, numerous organizations have adopted AV for their decision-making processes (see 
Regenwetter & Tsetlin, 2004).

Numerous studies have extensively analyzed the merits and limitations of both SCR and 
AV. Prominent works, such as those by Felsenthal (2012) and the comprehensive Handbook 
of Approval Voting edited by Laslier and Sanver (2010), delve into these voting rules and 
offer insights into their strengths and weaknesses. The objective of such analyses is to 
provide valuable information and insights to the public and decision-makers, facilitating 
informed discussions and considerations regarding the selection or implementation of an 
appropriate voting rule in the context of electoral reform. Through rigorous analysis and 
empirical evidence, they aim to inform public opinion and provide decision-makers with 
valuable guidance in choosing the “best" voting rule suited to their specific needs and 
goals.

Norris (1997) points out, following a long tradition of analysis of the influence (real or 
supposed) of voting systems on political systems, that an electoral reform is never trivial; 
because, depending on the society in which it is implemented, it can lead to unstable 
political systems, result in strong political polarization, give the role of kingmaker to 
certain groups, or favor certain types of candidates. Indeed, any electoral reform should be 
driven by well-defined objectives and necessitate thoughtful deliberations regarding both 
its goals and the normative criteria that the chosen voting rule should meet. In addition, it 
is crucial that the voting rule implemented is simple and easily understandable for voters. A 
voting system that is complex or difficult to understand may discourage voter participation 
and undermine the legitimacy of the electoral process. Simplicity and transparency in 
the voting rule help ensure that voters can easily grasp the mechanics of the system, have 
confidence in the process, and make informed choices. Unfortunately, no clear consensus 
seems to emerge in the literature on the possible superiority of one rule over the others. 
Arguments in favor of different voting rules are diverse and numerous, reflecting the 
complexity and multifaceted nature of the topic. Given this lack of consensus, one potential 
solution is to seek a compromise between the families of voting rules. This is the choice 
that Brams and Sanver (2009) and Sanver (2010) seem to have made.

1  Scoring rules play a significant role in various sports disciplines, such as figure skating, diving, and gym-
nastics competitions. These rules are often variants of the weighted and/or truncated Borda rule and are 
designed to establish rankings and determine winners based on a fair and balanced evaluation of partici-
pants’ performances. In the realm of sports, scoring rules serve as a vast and largely untapped resource, 
offering numerous remarkable and significant examples of their application.
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Brams and Sanver (2009) and Sanver (2010) introduced two voting rules reconciling 
ranking-based decisions with approval-based decisions2: Preference approval voting 
(PAV) and fallback voting (FV). Under PAV, voters rank all the running candidates and 
distinguish the ones they approve of from those they disapprove of. If there is no more 
than one alternative with the majority of approvals (greater than half of the number of 
voters), PAV picks the AV winner; when more than one candidate is approved by more 
than half of the electorate, PAV picks the one who is preferred by the majority among 
them; in case of a majority cycle among these candidates, it picks the one with the highest 
number of approvals among them. Under FV, voters first indicate all the candidates they 
approve of (this can range from no candidates to all), and then they rank only these 
candidates; each level of rankings (of the approved candidates) is considered, and if at a 
given level a majority of voters agree on one highest-ranked candidate, this candidate is the 
FV winner.3 The procedures implemented under PAV or FV to determine the winner are 
defined in such a way as to satisfy both the principle of the “most approved” and that of the 
“most preferred.” However, the above informal definitions of PAV and FV do not appear 
to take into account situations where ties may arise; in fact, there is no reference made to 
any tie-breaking rules. Further discussion on this point will be provided in Sect. 2. Formal 
definitions of PAV and FV are provided later.

Brams and Sanver (2009) have highlighted several desirable properties and drawbacks 
of FV and PAV. They showed among other things that FV, PAV, and AV may all give 
different winners for the same profile; a unanimously approved candidate may not be an 
FV or a PAV winner; a least-approved candidate may be an FV or PAV winner; a PAV 
winner may be different from the winners under BR; FV and PAV may fail to pick the 
Condorcet winner when he exists. Given the limited number of properties considered, the 
analysis of Brams and Sanver (2009) does not allow a clear judgement on the superiority or 
not of PAV and FV compared to AV or SCR. It is striking to note that since PAV and FV 
were introduced, almost no work has addressed these rules, contrary to the case for AV or 
SCR.4 In this paper, our objective is to conduct a comprehensive analysis of the properties 
of PAV and FV in order to gain deeper insights into these voting rules. Our aim is to draw 
meaningful conclusions about the strengths and limitations of PAV and FV based on our 
analysis. Can we say that these rules are a “good” compromise between AV and SCR? Are 
they better? If the answer is yes, then the choice of PAV or FV as a replacement for SCR 
or AV would then be justified, and these rules would therefore be recommendable for real-
world use.

To achieve our goal, this paper is structured into two phases. The first phase focuses on 
extending the analysis of FV and PAV based on the groundwork laid by Brams and Sanver 
(2009). We delve into additional properties of FV and PAV, exploring their performance 
in relation to other desirable properties commonly used in evaluating voting rules. Many 
of these properties have been extensively studied in the normative evaluation of SCR and 
AV. On this basis, we believe that it will henceforth be easier to decide on a comparison 
between PAV, FV, and these rules. It is fair to say that we cannot here review, in an 

2  Notice that the first formal introduction of this framework in terms of ordinal versus cardinal preferences 
is made in Sanver (2010).
3  Notice that FV is called “Majoritarian Approval Compromise” in Sanver (2010), and it is an adaptation of 
the majoritarian compromise rule of Sertel (1986) or Sertel and Yilmaz (1999).
4  Kamwa (2019) is the only paper to our knowledge that has paid particular attention at least to PAV; 
Kamwa (2019) investigated the propensity of PAV to elect the Condorcet winner or the Condorcet loser.
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exhaustive way, all the normative properties encountered in the literature. The properties 
on which we base our study are the following: the Condorcet principle, social acceptability, 
efficient compromise, Pareto optimality, cancellation, reinforcement, homogeneity, clone 
independence, and the independence criterion. When these criteria are satisfied, they 
guarantee a certain consistency between individual preferences and the collective choice. 
Each of these criteria will be presented in detail later. Before delving into our analysis, it is 
important to provide a brief overview of some of the properties we will be discussing. The 
Condorcet principle allows us, on the one hand, to ensure that when a Condorcet winner (a 
candidate preferred to any other candidate by more than half of the voters) exists, then that 
candidate is elected; on the other hand, it allows us to avoid the election of the Condorcet 
loser (a candidate to whom more than half of the voters prefer any other candidate) when 
he exists. Social acceptability suggests that a candidate should be elected when the number 
of voters who rank him among the half of the candidates they prefer is at least as large as 
the number of voters who rank him in the least preferred half. The efficient compromise 
principle advocates the election of candidate(s) receiving the highest quantity of support at 
some efficient level of quality, the quality of support being defined in terms of a candidate’s 
rank in the order of voters’ preferences. As we will see later, the non-satisfaction of some of 
these properties is presented in the literature as unacceptable for a democratic voting rule. 
It follows that the choice of a voting rule is consequential. We show among other things 
that FV and PAV are Pareto optimal, and that they always elect the absolute Condorcet 
winner when such a candidate exists5; and we determine the conditions under which these 
rules satisfy the reinforcement criterion, and under which they are not vulnerable to the 
no-show paradox. From our analysis, it appears that FV and PAV satisfy and respect some 
of the properties that AV fails.

A great deal of work has been done in recent years on the probability of AV electing the 
Condorcet winner (or the Condorcet loser) when he exists. In this sense, these studies have 
made notable comparisons between AV and the three most popular SCR (PR, NPR, and 
BR). We can quote in this respect the works of Diss et al. (2010), El Ouafdi et al. (2020), 
Gehrlein and Lepelley (1998), Gehrlein and Lepelley (2015), and Gehrlein et al. (2016). 
The second part of this paper will lead in a similar direction. This will provide us with 
the opportunity to conduct a comparative evaluation of AV, FV, PAV, and SCR. First, for 
voting situations with three candidates and an electorate tending to infinity, we evaluate the 
probabilities of agreement between AV, FV, and PAV; this analysis is extended to the three 
scoring rules PR, NPR, and BR. We are also interested in the probabilities of satisfaction 
or violation of the Condorcet criteria. One advantage that FV and PAV have over AV is 
their reliance on the principle of “most preferred” candidates. This advantage becomes 
particularly evident when it comes to electing the Condorcet winner, should one exist. It 
will therefore be necessary to be aware of the amplitude of this advantage. To do so, our 
calculations adopt the impartial and anonymous culture assumption. This assumption will 
be defined later. Our computation analysis teaches us that for three-candidate elections, the 
combination of approvals and rankings in FV and PAV brings them closer to SCR in terms 
of agreement, as opposed to AV; furthermore, they perform better in terms of compliance 
with the Condorcet criteria than some SCR.

5  An absolute Condorcet winner is a candidate ranked first by more than half of the voters.
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The rest of the paper is organized as follows: Sect. 2 is devoted to basic definitions. 
Section 3 presents our results on the properties of FV and PAV. We provide our proba-
bilistic results in Sect. 4. Section 5 concludes.

2 � Notation and definitions

Consider a set of n ( n ≥ 2 ) non-abstaining individuals N = {1, 2,… , i,… , n} who vote 
sincerely on C = {a, b, c,… ,m} a set of m ( m ≥ 3 ) candidates. It is assumed that the 
rankings provided by the voters on C are asymmetric, meaning that there are no ties in 
the rankings. Furthermore, we assume that the approvals of the voters are monotonic 
with respect to their rankings. This means that if a voter approves a and ranks b ahead 
of a, this implies that he also approves b. For example, the ranking a ≻ b ≻ c (or sim-
ply abc ) means that a is ranked ahead of b which is ahead of c, and a and b are both 
approved while c is disapproved.

As voters’ inputs are both rankings and approvals, a voting situation is therefore a �-
tuple � = (n1, n2,… , nt,… , n�) that indicates the total number nt of voters for each of 

the � rankings on C such that 
�∑
t=1

nt = n ; given the assumptions made above, � = (m + 1)! . 

Given � , we denote by nab(�) (or simply nab ) the number of voters who rank a before b. 
Candidate a is majority-preferred to b if nab > nba . We say that candidate a is the Con-
dorcet winner if nab > nba ∀b ∈ C ⧵ {a} ; candidate a is the Condorcet loser if 
nab < nba ∀b ∈ C⧵{a} . A candidate a is an absolute Condorcet winner (resp. an absolute 
Condorcet loser) if he is ranked first (resp. last) by more than half of the voters.

Given the rankings and approvals of the voters, we denote by Sl(a,�) or simply Sl(a) 
the total number of approvals of candidate a when rankings of level l are considered 
( l = 1, 2,… ,m ); we say that candidate a is majority-approved at level l if Sl(a) > n

2
.

Let us now define each of the voting rules under consideration here. 

Approval voting (AV):	

�Under this rule, voters can vote for (approve of) as many candidates as they wish. We 
denote by AV(a,�) the total number of approvals for candidate a given � . Candidate a is 
the AV winner if AV(a,𝜋) > AV(b,𝜋) ∀b ∈ C⧵{a} . Notice that AV(a,�) = Sm(a).

Preference approval voting (PAV):	

�According to Brams and Sanver (2009), PAV is determined by two rules and proceeds as 
follows:

 

Rule 1: The PAV winner is the AV winner if 

a.	 no candidate receives a majority of approval votes (i.e., is approved by more than 
half of the electorate);
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b.	 exactly one candidate receives a majority of approval votes.

Rule 2: In the case that two or more candidates receive a majority of approval votes, 

a.	 the PAV winner is the one among these candidates who is preferred by a majority 
to every other majority-approved candidate.

b.	 In the case of a cycle among the majority-approved candidates, then the AV winner 
among them is the PAV winner.

Fallback voting (FV):	� Following Brams and Sanver (2009), FV proceeds as follows:

 

1.	 Voters indicate all candidates of whom they approve, who may range from one candidate 
(since we only consider non- abstaining voters) to all candidates. Voters rank only those 
candidates of whom they approve.

2.	 The highest-ranked candidate of all voters is considered. If a majority of voters agree 
on one highest-ranked candidate, this candidate is the FV winner. The procedure stops, 
and we call this candidate a level 1 winner.

3.	 If there is no level 1 winner, the next-highest-ranked candidate of all voters is 
considered.6 If a majority of voters agree on one candidate as either their highest- or 
their next-highest-ranked candidate, this candidate is the FV winner. If more than one 
candidate receives majority approval, then the candidate with the largest majority is the 
FV winner. The procedure stops, and we call this candidate a level 2 winner.

4.	 If there is no level 2 winner, the voters descend—one level at a time—to lower and lower 
ranks of approved candidates, stopping when, for the first time, one or more candidates 
are approved of by a majority of voters, or no more candidates are ranked. If exactly 
one candidate receives majority approval, this candidate is the FV winner. If more than 
one candidate receives majority approval, then the candidate with the largest majority 
is the FV winner. If the descent reaches the lowest rank of all voters and no candidate 
is approved of by a majority of voters, the candidate with the most approval is the FV 
winner.

It is worth noting that the definitions of PAV and FV that we have just presented do not 
explicitly address situations where ties occur. This is especially true in cases where the 
number of voters is even. In such situations, it becomes necessary to describe a method for 
resolving ties. Various tie-breaking methods can be considered, including the random tie-
breaking method suggested by Sanver (2010). However, there may be several issues asso-
ciated with the use of a tie-breaking rule. For the same situation, different tie-breaking 
rules can lead to different results. The use of a tie-breaking rule can result in the violation 
of certain normative properties; or it may lack transparency, making it difficult for vot-
ers and stakeholders to comprehend and evaluate the decision-making process which can 
undermine the legitimacy and acceptance of the outcome. Then, the use of a tie-breaking 
rule should be carefully evaluated, taking into account its impact on normative properties, 

6  Notice that we stop going down once we reach the approval line for a voter that may be placed differently 
given different voters.
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necessity, subjectivity, potential manipulation, and transparency. In the context of this 
paper, it is not necessary to explore in a particular way the cases where ties can occur.

Since the second part of the paper will have to include the three most popular scoring 
rules, let us define them at the outset here. 

Plurality rule (PR):	

�This rule picks the candidate who is the most ranked at the top. We denote by PR(a,�) the 
plurality score of candidate a. Notice that PR(a,�) = S1(a) . Candidate a is the PR winner 
if PR(a,𝜋) > PR(b,𝜋) ∀b ∈ C⧵{a}.

Negative plurality rule (NPR):	�

Under this rule, the winner is determined based on the candidate who receives the few-
est last-place rankings from the voters. We denote by NPR(a,�) the number of last 
places (the negative plurality score) of candidate a; this candidate is the NPR winner if 
NPR(a,𝜋) < NPR(b,𝜋) ∀b ∈ C⧵{a}.

Borda rule (BR):	

�BR gives K − t points to a candidate each time she is ranked tth; BR(a,�) , the Borda 
score of a candidate, is the sum of the points received. Candidate a is the BR winner if 
BR(a,𝜋) > BR(b,𝜋) ∀b ∈ C⧵{a}.

In the context of a single-winner election, it is possible for multiple candidates to obtain 
the same score under AV, PR, NPR, or BR. In such situations, a tie-break rule becomes 
necessary to determine the winner among the candidates with equal scores. In this paper, 
the setting is such that we will not need to use a tie-break rule.

We can now review the properties of FV and PAV.

3 � Normative properties of FV and PAV

As previously mentioned, Sanver (2010) and Brams and Sanver (2009) have identified and 
analyzed several properties of FV and PAV. They showed that these rules are monotonic; 
more precisely, they are approval-monotonic and rank-monotonic. A voting rule is 
approval-monotonic (resp. rank-monotonic) if a class of voters, by approving of a new 
candidate (resp. by raising a candidate in their ranking)—without changing their approval 
of other candidates—never hurts that candidate and may help the candidate get elected. In 
this section, we will review additional properties that FV and PAV may either satisfy or fail 
to satisfy. By examining these properties, we aim to gain a comprehensive understanding 
of the behavior and performance of FV and PAV as voting rules. This analysis will provide 
insights into their advantages and limitations in comparison to other voting systems.

3.1 � Condorcet principle

We know that AV may fail to pick the (absolute) Condorcet winner when he exists (see 
Felsenthal, 2012). According to Brams and Sanver (2009), FV and PAV may fail to elect 
the Condorcet winner when he exists; through Propositions 1 and 2, we refine this result.
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Proposition 1  When AV selects the Condorcet winner, this candidate is also the PAV win-
ner, but the reverse is not always true.

Proof  By definition, PAV always elects the AV winner under Rule 1; this may not be the 
case under Rule 2. So, for the proof, we only need to focus on Rule 2. Assume that candi-
date a is both the Condorcet winner and the AV winner. Let us also assume that candidate 
b ( b ≠ a ) is the PAV winner under Rule 2; this means that (i) AV(b,𝜋) > n

2
> AV(a,𝜋) or 

(ii) AV(a,𝜋) > n

2
 and AV(b,𝜋) > n

2
 . It is obvious that (i) clearly contradicts that a is the 

AV winner. By definition, b cannot win under (ii) since nab > nba , so a wins. Thus, if AV 
selects the Condorcet winner, this is also the case for PAV. Let us exhibit a profile to show 
that the reverse is not always true. Consider the following profile with three candidates and 
11 voters:

With this profile, it easy to see that b is the AV winner, while a is both the Condorcet 
winner and the PAV winner. 	�  ◻

Proposition 2  FV and PAV always elect the absolute Condorcet winner when he exists.

Proof  Assume that candidate a is the absolute Condorcet winner. As he is ranked first by 
more than half of the voters, AV(a,𝜋) > n

2
 and nab > nba for all b ∈ C⧵{a} . Under PAV, if 

a is the only one to be majority-approved, he is obviously elected; if there are more can-
didates majority-approved, a is elected since he is the Condorcet winner. So, PAV always 
elects the absolute Condorcet winner. Since a is the absolute Condorcet winner we get 
S1(a) >

n

2
 : by definition, he is the FV winner. So, FV always elects the absolute Condorcet 

winner. 	�  ◻

The fact is that when there is an absolute Condorcet winner, this candidate is the 
winner under FV, PAV, and PR. As noted further in the paper, FV and PAV exhibit 
insensitivity to certain paradoxes in domains where an absolute Condorcet winner 
exists. The story is quite different on the domain where there is an (absolute) Condorcet 
loser. We know that AV can elect the (absolute) Condorcet loser (see Felsenthal, 2012). 
We also know from Kamwa (2019) that PAV may pick the Condorcet loser when he 
exists. To our knowledge, nothing is known concerning FV. Propositions 3 tells us more 
on this.

Proposition 3  FV and PAV may elect the (absolute) Condorcet loser when he exists. When 
PAV elects the (absolute) Condorcet loser, this candidate is also the AV winner but the 
reverse is not true. When FV elects the absolute Condorcet loser, this candidate is also the 
AV winner, but the reverse is not always true.

Proof  Consider the following profile with three candidates and 11 voters.

With this profile it is easy to see that a is the absolute Condorcet loser and that he is the 
AV winner, the FV winner, and the PAV winner. So, FV and PAV may elect the (absolute) 
Condorcet loser when he exists.

5 ∶ a ≻ b ≻ c 5 ∶ b ≻ a ≻ c 1 ∶ c ≻ a ≻ b

5 ∶ a ≻ b ≻ c 3 ∶ b ≻ c ≻ a 3 ∶ c ≻ b ≻ a
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By definition, PAV can elect a (absolute) Condorcet loser only under Rule 1; as Rule 1 
of PAV is equivalent to AV, it follows that for a given profile, if PAV elects the (absolute) 
Condorcet loser, he is also the AV winner. In the following profile, a is both the absolute 
Condorcet loser and the AV winner but b is the PAV winner.

Assume that candidate a is the absolute Condorcet loser; it follows that Sl(a) < n

2
 for 

1 ≤ l ≤ m − 1 . Candidate a cannot be the FV winner on this range. He can only be elected 
at l = m ; if so, this means that if he receives the highest score of AV, then he is also the AV 
winner. The above profile is sufficient to show that the reverse is not true since a is both the 
absolute Condorcet loser and the AV winner, while c is the FV winner. 	�  ◻

3.2 � Efficient compromise

The efficient compromise axiom was introduced by Özkal-Sanver and Sanver (2004) as 
a trade-off between the quantity and quality of support that a candidate may receive; the 
quantity refers to the number of voters supporting a candidate, and the quality of support 
is defined in terms of a candidate’s rank in the order of voters’ preferences. According to 
Merlin et al. (2019), for any profile, the efficient compromises are candidates receiving the 
highest quantity of support at some efficient level of quality. A voting rule is said to satisfy 
the efficient compromise axiom if and only if it always picks efficient compromises. Fol-
lowing Özkal-Sanver and Sanver (2004), the plurality rule meets the efficient compromise; 
this is also the case for the q-approval fallback bargaining7 for any q ∈ {1, 2,… , n} , while 
the Borda rule and all the Condorcet consistent rules do not. What is more, Merlin et al. 
(2019) showed that if the set of efficient compromises contains only one candidate, all the 
scoring rules will pick this candidate. Proposition 4 tells us that AV and PAV may fail 
the efficient compromise axiom except on the domain where there is an absolute majority 
winner.

Proposition 4  FV, PAV, and AV do not satisfy the efficient compromise axiom. FV and PAV 
always satisfy the efficient compromise axiom over the domain where there is an absolute 
Condorcet winner.

Proof  To show that FV, PAV, and AV do not meet the efficient compromise axiom, let us 
consider the following profile8 with four candidates {a, b, c, d} and seven voters;

With this profile, the reader can check that {a, c, d} is the set of efficient compromises, 
while b is the winner under AV, FV, and PAV.

5 ∶ a ≻ b ≻ c 3 ∶ a ≻ c ≻ b 5 ∶ b ≻ c ≻ a 4 ∶ c ≻ b ≻ a

1 ∶ a ≻ b ≻ d ≻ c 2 ∶ a ≻ c ≻ d ≻ b 2 ∶ b ≻ c ≻ d ≻ a

1 ∶ c ≻ b ≻ d ≻ a 1 ∶ d ≻ c ≻ b ≻ a

7  q-Approval fallback bargaining winners are the candidates receiving the support of q voters at the highest 
possible quality.
8  This profile is adapted from Özkal-Sanver and Sanver (2004).
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Notice that if an absolute Condorcet winner exists, he is also an efficient compromise. 
As previously mentioned, when an absolute Condorcet winner exists, both FV and PAV are 
equivalent to PR. Given that PR satisfies the efficient compromise axiom, it will select the 
absolute Condorcet winner, just like FV and PAV. 	�  ◻

3.3 � Social (un)acceptability

In the search for a certain consensus around a candidate, Mahajne and Volij (2018) 
have introduced the concept of social acceptability. They say that a candidate is socially 
acceptable if the number of voters who rank him among their most preferred half of 
the candidates is at least as large as the number of voters who rank him among the least 
preferred half. Mahajne and Volij (2018) showed that there always exist at least one socially 
acceptable candidate in any profile; and they show that there exists a unique scoring rule 
that always elects such a candidate, the half accepted-half rejected rule (HAHR).9 In 
contrast to a socially acceptable candidate, a candidate is said to be socially unacceptable if 
the number of individuals who rank him among their least preferred half of the candidates 
is at least as large as the number of voters who rank him among the most preferred half.

Proposition 5  AV, FV, and PAV may not select a socially acceptable candidate, and they 
may select a socially unacceptable candidate. Following Proposition 2, within the domain 
where an absolute Condorcet winner exists, FV and PAV always select a socially accept-
able candidate and never select a socially unacceptable candidate.

Proof  Consider the following profile with three candidates and six voters.

In this profile, a is a socially acceptable candidate, while b is socially unacceptable, and b 
is the winner under AV, FV, and PAV.

It is obvious that when he exists, an absolute Condorcet winner is also a socially accept-
able candidate. By Proposition 2, FV and PAV always select this candidate. Such a candi-
date cannot be socially unacceptable; he is still elected in the presence of a socially unac-
ceptable candidate. But this may not be the case for AV: to see this, just add a voter with 
a ≻ b ≻ c ; it follows that a is the absolute majority winner and therefore socially accept-
able, while the AV winner is b. 	�  ◻

3.4 � Cancellation property

Before going further, let us raise a point about PAV. By definition, Rule 2 of PAV relies 
on pairwise comparisons to decide the winner; but what if all the majority duels between 
the majority-approved candidates end up in tie? In such a case, should all candidates be 
declared elected, or only the one(s) with the highest AV score? This situation does not 
seem to have been taken into account by Brams and Sanver (2009). In such a scenario, 

2 ∶ a ≻ c ≻ b 1 ∶ a ≻ b ≻ c 1 ∶ b ≻ a ≻ c 2 ∶ c ≻ b ≻ a

9  For m even, the HAHR is equivalent to the m
2
-approval rule.
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not choosing all the candidates involved implies a violation of the cancellation criterion. 
The cancellation condition requires that when all the majority comparisons end up in a 
tie, all the candidates should be selected (Young, 1974). Admittedly, it is a bit difficult to 
apply the cancellation property to AV, because this rule does not fundamentally depend on 
rankings. Proposition 6 tells us that FV and PAV fail the cancellation criterion and that this 
also the case for AV when it is based on rankings.

Proposition 6  AV, FV, and PAV do not meet the cancellation property.

Proof  Consider the following profile with three candidates and four voters.

We can see in this profile that all the pairwise comparisons end up in ties, while candidate 
b is the winner of AV, FV, and PAV. So, AV, FV, and PAV fail the cancellation property.	
� ◻

3.5 � Pareto optimality

In a given voting situation, candidate a Pareto dominates candidate b if all the voters 
strictly prefer a to b. A candidate is said to be Pareto-optimal if there is no other candidate 
that dominates him. According to Felsenthal (2012), the election of a candidate a is not 
tolerable when there is another candidate b that all voters rank before him. Felsenthal 
(2012) drives the point home by arguing that a voting rule that can elect a Pareto-dominated 
candidate should be disqualified no matter how low the frequency. A voting rule meets 
the Pareto criterion if for all voting profiles it never elects a Pareto-dominated candidate. 
According to Felsenthal (2012), AV may elect a Pareto-dominated candidate. Proposition 7 
tells us that this is not the case for FV and PAV.

Proposition 7  FV and PAV meet the Pareto criterion.

Proof  Given � , assume that a is the PAV winner and that he is Pareto-dominated by b. 
As b Pareto-dominates a, if a voter approves a, this is also the case for b; it follows that 
AV(b,�) ≥ AV(a,�) , and b is majority-preferred to a since nba = n . If a wins under Rule 1i 
of PAV, this means that AV(b,𝜋) < AV(a,𝜋) <

n

2
 which contradicts AV(b,�) ≥ AV(a,�) . 

If a wins under Rule 1ii of PAV, this leads to AV(a,𝜋) > n

2
 and AV(b,𝜋) < n

2
 which contra-

dicts AV(b,�) ≥ AV(a,�) . If a wins under Rule 2 of PAV, the following three cases can be 
considered: (i) AV(a,𝜋) > n

2
 , AV(b,𝜋) > n

2
 , and nab > nba , or (ii) AV(a,𝜋) > n

2
> AV(b,𝜋) , 

AV(c,𝜋) >
n

2
 , and nac > nca for c ∈ C⧵{a, b} , or (iii)AV(a,𝜋) > AV(b,𝜋) >

n

2
 . It turns out 

that (i) contradicts nba = n while (ii) and (iii) contradict AV(b,�) ≥ AV(a,�) . Thus, b can-
not win: PAV meets the Pareto criterion.

Given � , assume that a is the FV winner and that he is Pareto-dominated by b. By 
definition, as b Pareto-dominates a, we get S1(b) > S1(a) , and Sl(b) ≥ Sl(a) for all l > 1 . 
That candidate a wins at a level l implies that n

2
> Sl(a) > Sl(b) or Sl(a) > n

2
> Sl(b) or 

Sl(a) > Sl(b) >
n

2
 ; these conditions all contradict that Sl(b) ≥ Sl(a) . So, b cannot be the 

winner: FV never elects a Pareto-dominated candidate. 	�  ◻

2 ∶ a ≻ b ≻ c 2 ∶ c ≻ b ≻ a
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3.6 � The reinforcement condition

According to the reinforcement condition10 (Myerson, 1995), when an electorate is divided 
in two disjoint groups of voters N1 ( |N1| = n1 ) and N2 ( |N2| = n2 ) such that N1 ∩ N2 = � 
and N1 ∪ N2 = N ( |N| = n1 + n2 = n ), and the winner is the same for each group, this out-
come will remain unchanged when both groups of voters are merged. It is known that AV, 
PR, NPR, and BR meet the reinforcement condition (see Felsenthal, 2012). Proposition 
8 tells us that FV and PAV do not meet the reinforcement condition, and it characterizes 
when this is (not) the case.

Proposition 8  Assume that an electorate is divided in two disjoint groups of voters N1 and 
N2 such that the winner is the same for each group.

•	 Considering that PAV is defined by four rules (Rule 1i, Rule 1ii, Rule 2i, and Rule 2ii), 
it always meets the reinforcement criterion if the winner in each of the two groups of 
voters is determined by Rule 1i or Rule 1ii; this is also the case when the winner is 
determined in one group by Rule 1i and in the other group by Rule 1ii. In the other 
cases, PAV may fail the reinforcement condition.

•	 FV meets the reinforcement condition if the winner in each group is determined at the 
same level of rankings. In the other cases, it may fail the reinforcement condition.

Proof  See Appendix. 	�  ◻

3.7 � Homogeneity

Given the voting outcome on a voting profile, if duplicating this profile � times ( 𝜆 > 1 , 
� ∈ ℕ ) changes the result, we say that the homogeneity property is not satisfied. The viola-
tion of the homogeneity property is a major challenge for collective decision rules (Nurmi, 
2004). It is obvious that AV is homogeneous since duplicating a population also duplicates 
the approvals in the same magnitude. Proposition 9 tells us the same thing concerning FV 
and PAV.

Proposition 9  FV and PAV are homogeneous.

Proof  Suppose we duplicate a profile � , � times. On the resulting profile, given a candidate 
x, we have Sl(x, ��) = �Sl(x,�) , AV(x, ��) = �AV(x,�) , and nxy(��) = �nxy(�) . It then fol-
lows that if a candidate wins under FV at level l in � , he also wins at the same level in �� ; 
we reach the same conclusion with PAV. Thus, duplicating a profile does not change the 
outcome under FV and PAV. 	�  ◻

10  This condition is also known as the separability axiom in Smith (1973) or the consistency axiom in 
Young (1975).
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3.8 � The no‑show paradox and the truncation paradox

The no-show paradox describes a situation under which some voters may do better to 
abstain than to vote since abstaining may result in the victory of a more preferable or desir-
able candidate (Doron & Kronick, 1977; Fishburn & Brams, 1983). The plurality rule, the 
Borda rule, and approval voting are among the few voting rules not vulnerable to the no-
show paradox (Felsenthal, 2012). It is known that the vulnerability of a voting rule to the 
no-show paradox leads to its vulnerability to the truncation paradox, but the reverse is not 
always true (Nurmi, 1987). The truncation paradox occurs when some voters may reach 
a more preferred outcome by submitting a sincere but incomplete ranking (Fishburn & 
Brams, 1983, 1984). According to Brams (1982), AV is sensitive to the truncation paradox; 
this is also the case for NPR and BR but not for PR.11 Proposition 10 characterizes the vul-
nerability of FV and PAV to the no-show paradox.

Proposition 10  PAV is vulnerable to the no-show paradox only when the winner is deter-
mined by Rule 2i. FV is not vulnerable to the no-show paradox only when the winner is 
determined at level l = 1 or l = m . Thus, FV and PAV are vulnerable to the truncation 
paradox.

Proof  See Appendix. 	�  ◻

3.9 � Independence of clones

Following Tideman (1987), a proper subset S containing two or more candidates is a set 
of clones if no voter ranks any candidate outside of S as either tied with any element of S 
or between any two elements of S. A voting rule is said to be independent of clones if and 
only if the following two conditions are met when clones are on the ballot: 

1.	 A candidate that is a member of a set of clones wins if and only if some member of that 
set of clones wins after a member of the set is eliminated from the ballot.

2.	 A candidate that is not a member of a set of clones wins if and only if that candidate 
wins after any clone is eliminated from the ballot.

Tideman (1987) shows that AV is not generally independent of clones. Nonetheless, he 
points out that applying the concept of clones to AV is somewhat problematic because 
clones are defined in terms of voters’ rankings. This problem does not arise with FV and 
PAV, which are defined in terms of rankings. As Tideman (1987) points out, when talking 
about clones in an approval setting, it is obvious that if a voter approves a candidate a and 
not his clone b, that voter will approve b if a withdraws; based on this, he showed that AV 
is not independent of clones. Since there are situations in which FV or PAV coincide with 
AV, it follows that in these situations FV and PAV may be vulnerable to cloning.

Proposition 11  FV and PAV are not independent of clones. Nonetheless, they are inde-
pendent of clones on the domain where there is an absolute Condorcet winner.

11  For more details on the truncation paradox and its occurrence under the scoring rules, we refer to 
Kamwa (2022) and Kamwa and Moyouwou (2021).
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Proof  To show that FV and PAV are not independent of clones, let us consider the follow-
ing profile:

In this profile, candidate a is the AV, FV, and PAV winner. Candidates b and c are clones; 
if one of them withdraws, the other becomes the winner for each rule given that if a voter 
approves candidate b and not his clone c, that voter will approve c if b withdraws. So, FV 
and PAV are not independent of clones.

Now, let us assume that there is absolute Condorcet winner, say candidate a; following 
Proposition 2, this candidate is elected by both FV and PAV. The withdrawal of one or 
more candidates (clones) does not change candidate a’s status as the absolute Condorcet 
winner; Proposition 2 applies and a remains the winner. Thus, over the domain where there 
is an absolute Condorcet winner, FV and PAV are independent of clones. 	�  ◻

3.10 � Independence criterion and spoiler effect

According to Sanver (2010), a social choice satisfies the independence criterion if and only 
if it does not admit any spoiler; a spoiler is a candidate x ∉ C such that its presence as an 
alternative can change the social choice without x being chosen. Sanver (2010) showed that 
under FV, for any number of voters, there may be a spoiler who is approved by only one 
voter; under PAV, a candidate is a spoiler only if he is socially qualified as good.

Proposition 12  (Sanver, 2010) AV satisfies the independence criterion while PAV and FV 
fail it.

4 ∶ a ≻ b ≻ c 3 ∶ b ≻ c ≻ a 2 ∶ c ≻ b ≻ a

Table 1   Normative properties of 
the rules

 Criteria Rules

AV FV PAV PR NPR BR

Condorcet winner No No No No No No
Absolute Condorcet winner No Yes Yes Yes No No
Condorcet loser No No No No No Yes
Absolute Condorcet loser No No No No Yes Yes
Pareto optimality No Yes Yes Yes Yes Yes
Efficient compromise No No No Yes No No
Social acceptability No No No No No No
Social unacceptability No No No No No No
Cancellation No No No No No Yes
Reinforcement Yes No No Yes Yes Yes
Homogeneity Yes Yes Yes Yes Yes Yes
No-show Yes No No Yes Yes Yes
Truncation No No No Yes No No
Monotonicity Yes Yes Yes Yes Yes Yes
Independent of clones No No No No No No
Independence criterion Yes No No No No No
Spoiler effect No No No No No No
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The independence criterion as introduced by Sanver (2010) obviously reminds us of the 
spoiler effect even though these two concepts differ in their definitions. In single-winner 
elections, the spoiler effect occurs if the removal of a non-winning candidate (called a 
spoiler) changes the election result (Kaminski, 2018; Miller, 2017): a spoiler turns a win-
ner into a non-winner and a non-winner into a winner. The independence criterion assumes 
that the spoiler is a new candidate (introduced without any chance of winning), while the 
classical conception of the spoiler assumes that it is an element of the original set of candi-
dates. It is therefore obvious that a conjunction of Propositions 11 and 12 leads to Proposi-
tion 13.

Proposition 13  AV, PAV, and FV are sensitive to the spoiler effect.

We are now going to summarize all the above results in Table 1. In this table, we recap 
our findings about PAV, AV, and FV, as well as those of Brams and Sanver (2009) and 
Sanver (2010); besides FV and PAV, we include PR, NPR, and BR. The fact that these 
rules satisfy or do not satisfy one of the criteria retained here comes from results of the 
literature (see Nurmi, 1987; 1999; Felsenthal, 2012). In Table 1, a “Yes” means that the 
voting rule meets the supposed criterion12 and a “No” means it does not.

On the basis of the normative criteria used in our analysis, it appears that FV and PAV 
satisfy and fail the same criteria; they possess two properties that AV does not: Pareto opti-
mality and the fact of always electing the absolute Condorcet winner when he exists. AV, 
for its part, meets two criteria that FV and PAV do not: reinforcement and non-vulnerabil-
ity to the no-show paradox. Approval-based rules, compared to score-based rules, satisfy 
fewer criteria. Another way to compare these sets of rules would be to check the frequen-
cies for the criteria they violate. This is what we try to do in the next section, with particu-
lar attention to the Condorcet criteria.

4 � Computational analysis

Our aim in this section is to evaluate, for voting situations with three candidates and elec-
torates tending to infinity, the probabilities of some voting events. We have chosen to only 
present here the main messages that stand out from our calculations, while relegating the 

Table 2   Limiting probabilities of agreement

FV PAV AV PR NPR BR

FV 1 0.7474874 0.7314156 0.6603448 0.7077614 0.7714232
PAV 0.7474874 1 0.6714614 0.7993055 0.6556436 0.8661731
AV 0.7314156 0.6714614 1 0.6032491 0.5779744 0.6428802
PR 0.6603448 0.7993055 0.6032491 1 0.5301230 0.7946785
NPR 0.7077614 0.6556436 0.5779744 0.5301230 1 0.7197796
BR 0.7714232 0.8661731 0.6428802 0.7946785 0.7197796 1

12  This can also mean that the voting rule is not vulnerable to the voting paradox.
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details of our calculation approach to Appendix  3.13 So, we formally define, for three-
candidate elections, the preferences and voting rules in Appendix  3.1. The impartial 
and anonymous culture assumption that we assume for our computations is presented in 
Appendix 3.2.

In our calculations, we focus on the following voting events, already described above:

•	 the agreement between the rules;
•	 FV and PAV may pick the least-approved candidate;
•	 FV or PAV may not pick a unanimously approved candidate;
•	 the satisfaction (resp. the violation) of the Condorcet winner criterion (resp. the 

Condorcet loser criterion).

We extend our analysis to the three popular scoring rules (PR, NPR, and BR) and consider 
comparisons with FV and PAV. This extension is justified by the fact that we have pointed 
out above that, in some configurations, FV is very close to PR.

Concerning the agreement between the rules under consideration, Table 2 summarizes 
the probabilities we obtained.

It turns out that among the rules under consideration, BR is the one with the highest 
probability of agreement with each of the other rules. In at least 66% of the cases, FV 
agrees with each of the other rules, and it tends to agree more with PAV ( 74.75% ) than 
with AV ( 73.14% ), and more with NPR ( 70.77% ) than with PR ( 66.03% ). PAV tends to 
more agree with PR ( 79.93% ) than with AV ( 67.15% ) or with NPR ( 65.56% ). Not surpris-
ingly, AV tends to agree more with FV and PAV than with scoring rules. Regarding scor-
ing rules, PR and BR tend to agree the most with PAV. The general observation derived 
from Table  2 suggests that the combination of approvals and rankings in FV and PAV 
tends to align them more closely with scoring rules rather than AV, particularly in terms of 
agreement.

Brams and Sanver (2009) showed that for the same preference profile, AV, FV, and PAV 
can elect completely different candidates. From our computations, we found that for the 
same voting profile, PAV, AV, and FV elect the same winner in about 58.86% of cases; they 
therefore diverge in about 41.13% of cases.

When it comes to the election of a least-approved candidate, this occurs in 8.07% 
of cases under PAV while it occurs in 4.95% of cases under FV. FV would therefore be 
almost half as likely to elect a least-approved candidate than PAV. This result would tend 

Table 3   Voting rules and the 
limiting probabilities of the 
Condorcet principle

CE(R) CL(R) ACE(R) ACL(R)

AV 0.6461261 0.0898578 0.8099504 0.0293452
FV 0.7600535 0.0300712 1 0.0001114
PAV 0.9973310 0.0001028 1 0.0000249
PR 0.8326151 0.0340336 1 0.0139566
NPR 0.6803188 0.0359394 0.7303018 0
BR 0.9044277 0 0.9944123 0

13  For reasons of space, we cannot present the detailed calculations here. These calculation details are 
available upon request.
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to confirm the fact that in terms of agreement, AV coincides more with FV than PAV. 
Another point of dissonance between FV, PAV, and AV appears when FV and PAV do not 
elect a unanimously approved candidate. We found that in almost 18.89% of the cases, PAV 
may not elect a unanimously approved candidate, while this is the case in only 8.58% of the 
cases for FV.

According to Ju (2010) and Xu (2010), when voters have dichotomous preferences, AV 
always elects the Condorcet winner when he exists. This is not always the case when vot-
ers have rather strict preferences or when indifference is allowed, as shown by Diss et al. 
(2010), Gehrlein and Lepelley (1998), Gehrlein and Lepelley (2015), and Kamwa (2019). 
Considering three-candidate elections with a certain degree of indifference under the 
extended impartial culture condition,14 Diss et al. (2010) and Gehrlein and Lepelley (2015) 
conclude that AV is more likely to elect the Condorcet winner than both PR and NPR; 
BR performs better than AV. Gehrlein and Lepelley (2015) and El Ouafdi et  al. (2020) 
reach a quite similar conclusion when considering the extended impartial anonymous cul-
ture condition.15 When it comes to electing the absolute Condorcet winner when he exists, 
El Ouafdi et al. (2020) show in their framework that AV does less well than BR but better 
than NPR.16

Almost nothing is known about the propensity of FV and PAV to elect the Condorcet 
winner (resp. the Condorcet loser) when he exists. Kamwa (2019) investigates the limit-
ing Condorcet efficiency of PAV in three-candidate elections while assuming the extended 
impartial culture condition; he finds that PAV tends to perform better than AV. Considering 
the framework developed in this paper, we compute the Condorcet efficiency of AV, FV, 
PAV, PR, NPR, and BR and their propensity to elect the absolute Condorcet winner when 
he exists. We do the same job for the election of the Condorcet loser and of the absolute 
Condorcet loser. Our results are summarized in Table 3. In this table, we denote by CE(R) 
(resp. CL(R) ) the Condorcet efficiency (resp. the probability of electing the Condorcet 
loser) given the voting rule R; and we define ACE(R) and ACL(R) similarly.

It emerges that PAV is the best-performing rule in terms of Condorcet efficiency; it is 
followed by BR. FV performs better than AV but worse than PR. Interestingly, within our 
framework, AV emerges as the rule with the lowest Condorcet efficiency, indicating that it 
performs worse than scoring rules in this context. The fact that AV performs worse than 
PR and NPR here contrasts with what Diss et  al. (2010), Gehrlein and Lepelley (2015), 
and El Ouafdi et al. (2020) achieve in their different settings. As for electing the absolute 
Condorcet winner when he exists, AV performs worse than BR but better than NPR. This 
conclusion is in agreement with what El Ouafdi et al. (2020) obtain in their setting.

Table 3 also tells us that in our analytical framework, AV is the rule most likely to elect 
the Condorcet loser when he exists; it does less well than PR and NPR. This result con-
trasts with what El Ouafdi et al. (2020) or Gehrlein et al. (2016) achieve in their respective 
frameworks. With a limiting probability of nearly 0.01% , PAV performs significantly better 
than FV whose probability is raised to nearly 3% . Regarding the election of an absolute 

14  Under the impartial culture condition (Guilbaud, 1952) it is assumed that each voter chooses his prefer-
ence (randomly and independently) on the basis of a uniform probability distribution across all strict orders. 
The extended impartial culture condition allows dichotomous preferences with complete indifference 
between two or more candidates.
15  The extended anonymous impartial culture condition allows dichotomous preferences with complete 
indifference between two or more candidates.
16  Recall that PR always elects the absolute Condorcet winner when he exists.
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Condorcet loser, our results show that among our rules, AV is the most likely to elect such 
a candidate; PAV performs better than FV which performs better than PR.

To refine the comparisons, we may assess more closely how each of the probabilities in 
Table 3 reacts to the proportion � =

n1+n2+n3+n4+n5+n6

n
 of voters who approve only one can-

didate. When � = 1 , AV and PR are equivalent. For some values of � , we report in Table 4 
the probabilities CE(R, �) , ACE(R, �) , CL(R, �) , and ACL(R, �) as functions of �.

Table 4 demonstrates that the probabilities vary depending on the value of � . We note 
that for � = 1 , CE(AV , 1) = CE(FV , 1) = CE(PAV , 1) = CE(PR, 1) , and ACE(AV , 1) = 1 . In 
the scenario where the electorate consists solely of voters who approve exactly one can-
didate, PR, AV, PAV, and FV exhibit identical performance according to the (absolute) 
Condorcet winner criterion. PAV appears to surpass all other rules in terms of Condorcet 
efficiency for 0 ≤ 𝛼 < 3∕4 ; for 3∕4 ≤ � ≤ 1 , BR dominates over other rules. PR tends to 
dominate FV for 0 ≤ 𝛼 < 1∕2 , while we get the reverse for 1∕2 ≤ � ≤ 1 . PR dominates AV 
for all � ; AV is also dominated by NPR for 0 ≤ 𝛼 < 1∕2 . As for electing the absolute Con-
dorcet winner, AV tends to dominate NPR for � ≥ 1∕3 , and it dominates BR for � ≥ 2∕3.

Table 4   Some computed values of CE(R, �) , ACE(R, �) , CL(R, �) , and ACL(R, �)

Rules �

0 1/4 1/3 1/2 2/3 3/4 1

CE(R, �) AV 0.5384051 0.5916563 0.6396992 0.7544142 0.8361545 0.8590698 0.8814815
FV 0.7818569 0.7379713 0.7497197 0.8356119 0.8517430 0.8648282 0.8814815
PAV 1 0.9999867 0.9998151 0.9911858 0.9297356 0.8965582 0.8814815
PR 0.8484781 0.8330283 0.8276168 0.8376708 0.8620404 0.8713166 0.8814815
NPR 0.6639015 0.6798728 0.6855510 0.6750562 0.6493909 0.6397497 0.6296296
BR 0.9061312 0.9045864 0.9037684 0.9050865 0.9089313 0.9101536 0.9111111

ACE(R, �) AV 0.5482718 0.7196296 0.8260673 0.9647654 0.9961465 0.9989699 1
FV 1 1 1 1 1 1 1
PAV 1 1 1 1 1 1 1
PR 1 1 1 1 1 1 1
NPR 0.6786731 0.7309078 0.7398935 0.7234537 0.6791482 0.6578623 0.6080247
BR 0.9856676 0.9946450 0.9948858 0.9941102 0.9911774 0.9877319 0.9629629

CL(R, �) AV 0.1291352 0.1080288 0.0907788 0.0552262 0.0360703 0.0322064 0.0296296
FV 0.0266157 0.0314631 0.0306498 0.0533053 0.0315597 0.0315432 0.0296296
PAV 0 0.0000000 0.0000000 0.0000345 0.0122605 0.0265217 0.0296296
PR 0.0328691 0.0338361 0.0347429 0.0333069 0.0299841 0.0293066 0.0296296
NPR 0.0348903 0.0357271 0.0365456 0.0352852 0.0324935 0.0318894 0.0314815
BR 0 0 0 0 0 0 0

ACL(R, �) AV 0.0506465 0.0380844 0.0294946 0.0135855 0.0091007 0.0104586 0.0246913
FV 0 0 0 0 0.0065876 0.0101787 0.0246912
PAV 0 0 0 0 0.0025317 0.0089947 0.0246913
PR 0.0191904 0.0136628 0.0145583 0.0134981 0.0116721 0.0124432 0.0246913
NPR 0 0 0 0 0 0 0
BR 0 0 0 0 0 0 0
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For any value of � , NPR appears to be the rule most likely to elect the Condorcet loser. 
It appears that CL(AV , �) decreases with � while CL(PAV , �) increases with � . CL(FV , �) 
tends to increase for � , going from 0 to reach its maximum at � = 1∕2 , then decreases. 
CL(PR, �) and CL(NPR, �) tend to grow for 0 ≤ 𝛼 < 1∕2 , then to decrease for 1∕2 ≤ 𝛼 < 1 . 
For � = 1 , we find that AV, PR, FV, and PAV have the same probability to elect the Con-
dorcet loser. For 0 ≤ � ≤ 1∕2 , AV appears to be the rule most likely to elect an absolute 
Condorcet loser; over this interval, ACL(AV , �) tends to decrease with � . We also note that 
for 0 ≤ � ≤ 1∕2 , FV and PAV never elect an absolute Condorcet loser. For 1∕2 < 𝛼 < 1 , 
PR is the most likely to elect an absolute Condorcet loser; it is followed by AV, while PAV 
performs better than FV. For � = 1 , AV, FV, PAV, and PR have the same probability (about 
2.47% ) of electing the absolute Condorcet loser.

5 � Concluding remarks

The first objective of this paper was to further develop the analysis of Brams and Sanver 
(2009) regarding the normative properties of FV and PAV. This is how we managed to show 
that FV and PAV are Pareto optimal as they never elect a Pareto-dominated candidate; FV 
and PAV are also homogeneous; FV and PAV always elect the absolute Condorcet winner 
when he exists; and that on the domain where there is an absolute Condorcet winner, these 
rules always elect a socially acceptable candidate, they never elect a socially unacceptable 
candidate, and they are resistant to manipulation by clones. Nonetheless, these rules do not 
meet the cancellation property or the reinforcement criterion, and they are vulnerable to 
the no-show paradox and to the truncation paradox. We managed to find some conditions 
under which these rules always meet the reinforcement criterion or are not sensitive to 
the no-show paradox. It turns out that FV and PAV satisfy and fail the same criteria; they 
possess two properties that AV does not: Pareto optimality and the fact of always electing 
the absolute Condorcet winner when he exists. AV, for its part, meets two criteria that FV 
and PAV do not: the reinforcement criterion and non-vulnerability to the no-show paradox.

Even if, by definition, there is a certain advantage of FV and PAV over AV regarding 
the respect of the Condorcet majority criteria, we wanted to measure the extent of this 
advantage. Thus, for voting situations with three candidates, we calculated the probabilities 
that these rules would elect the (absolute) Condorcet winner or the (absolute) Condorcet 
loser. Our analysis shows that in terms of the election of the Condorcet winner, PAV 
performs better than BR which dominates FV. When it comes to electing the absolute 
Condorcet winner, PAV and FV dominate BR, AV, and PR. To prevent the election of an 
(absolute) Condorcet loser, FV and PAV perform better than AV and PR.

Our analysis shows that FV and PAV tend to deliver on the promise of being rules that 
could reconcile the advocates of score rules with those of approval voting. FV and PAV 
share the simplicity that characterizes AV, yet with scoring rules they share the constraint 
of ranking candidates, which can be a daunting task when there is a large number of 
candidates.
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Appendices

Appendix 1: Proof of Proposition 8

Assume that an electorate is divided into two disjoint groups of voters N1 ( |N1| = n1 ) and 
N2 ( |N2| = n2 ) such that N1 ∩ N2 = � and N1 ∪ N2 = N ( |N| = n1 + n2 = n).

PAV and the reinforcement criterion

We know that AV is equivalent to Rule 1 of PAV; since AV meets the reinforcement condi-
tion, it follows that PAV meets the reinforcement condition if the winner in each group is 
elected by Rule 1i or 1ii. To complete the proof, let us show that this is no longer the case 
in the other configurations. So, consider the following profiles:

Profile 1 Profile 2 Profile 3

1 ∶ a ≻ b ≻ c 1 ∶ a ≻ b ≻ c; 2 ∶ a ≻ c ≻ b; 2 ∶ a ≻ b ≻ c; 2 ∶ c ≻ a ≻ b;
3 ∶ b ≻ a ≻ c 1 ∶ c ≻ a ≻ b; 2 ∶ c ≻ b ≻ a; 1 ∶ b ≻ c ≻ a; 1 ∶ b ≻ c ≻ a

2 ∶ c ≻ b ≻ a 1 ∶ b ≻ c ≻ a;

Profile 4 Profile 5 Profile 6 Profile 7

1 ∶ a ≻ c ≻ b 1 ∶ a ≻ c ≻ b 2 ∶ a ≻ b ≻ c; 2 ∶ a ≻ c ≻ b; 1 ∶ b ≻ a ≻ c;
1 ∶ b ≻ c ≻ a 1 ∶ b ≻ a ≻ c 1 ∶ b ≻ c ≻ a; 2 ∶ b ≻ a ≻ c; 1 ∶ b ≻ c ≻ a

2 ∶ c ≻ a ≻ b 1 ∶ c ≻ a ≻ b 1 ∶ b ≻ c ≻ a; 3 ∶ c ≻ b ≻ a

2 ∶ c ≻ a ≻ b;

 It is easy to check that a is elected in each of the seven profiles: through Rule 1ii in Profile 
1, through Rule 2i in Profiles 2, 4, and 5, through Rule 2ii in Profiles 3, 6, and 7. When 
Profiles 1 and 2 are merged, b wins; this is also the case when Profiles 1 and 3 are merged. 
When Profiles 2 and 3 or Profiles 4 and 5 or Profiles 6 and 7 are merged, c wins. It follows 
from the profiles above that if a candidate wins with Rule 1 (1i or 1ii) in one group of 
voters and with Rule 2 (2i or 2ii) in another group, he may not win when both groups are 
merged. We reach the same conclusion if a candidate wins with Rule 2i in one group of 
voters and with Rule 2ii in an other group, or when a candidate wins through Rule 2i (resp. 
2ii) in both groups of voters.

We can give a summary that reflects whether or not the criterion is met as follows: 

 N2

Rule 1i Rule 1ii Rule 2i Rule 2ii

N1 Rule 1i Yes Yes No No
Rule 1ii Yes Yes No No
Rule 2i No No No No
Rule 2ii No No No No

 Thus, PAV always meets the criterion if the winner in each of the two groups of voters 
is determined by Rule 1i or Rule 1ii or both. In the other cases, PAV may fail the 
reinforcement condition.
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FV and the reinforcement criterion

Assume that candidate a is the FV winner at level l in both groups N1 and N2 . Let us denote 
by Sl

j
(a) the l-level score of a in group j ( j = 1, 2 ). We distinguish two cases: 

(i)	� at l, a is the only majority-approved candidate in each group. This means for 
all other candidate b, we get Sl

1
(a) >

n1

2
≥ Sl

1
(b) and Sl

2
(a) >

n2

2
≥ Sl

2
(b) . Con-

sider the profile obtained when both populations are merged and assume that 
b wins at a given level r. It is obvious that we get a contradiction for r ≥ l since 
Sl
1
(a) + Sl

2
(a) >

n

2
≥ Sl

1
(b) + Sl

2
(b) . Since it is assumed that a is the only major-

ity-approved candidate in each group at l, it follows that for all r < l , we get 
Sr
j
(a) ≤

nj

2
< Sl

j
(a) and Sr

j
(b) ≤ Sl

j
(b) ≤

nj

2
 . Therefore, when both groups are merged, 

it is impossible at level r for b to be majority-approved or to score more than a. So, if 
a is the only majority-approved candidate in each group at a given level l, he remains 
elected when both groups are merged.

(ii)	� At l, a has the greatest score among the majority-approved candidates in each group. 
This means that Sl

1
(a) > Sl

1
(b) >

n1

2
≥ Sl

1
(c) and Sl

2
(a) > Sl

2
(b) >

n2

2
≥ Sl

2
(c) . What we 

have in (i) implies that c can never win when the two groups merge.

 To complete the proof, let us use some profiles to show that when the same FV winner 
is determined in two groups at two different levels, he may not remain elected when both 
groups merge. 

Profile 1 Profile 2

2 ∶ a ≻ b ≻ c 1 ∶ a ≻ b ≻ c; 1 ∶ b ≻ c ≻ a;
1 ∶ a ≻ b ≻ c 2 ∶ a ≻ b ≻ c; 1 ∶ c ≻ b ≻ a;
2 ∶ b ≻ c ≻ a 2 ∶ b ≻ a ≻ c;

 In Profile 1, a wins at the first level since S1(a) = 3 , S1(b) = 2 , and S1(c) = 0 ; he also 
wins with Profile 2 at level 2 since S1(a) = S1(b) = 3 , S1(c) = 1 , S2(a) = 5 , S2(b) = 4 , and 
S2(c) = 1 . When both profiles are merged, b wins since S1(a) = 6 , S1(b) = 5 , S1(c) = 1 , 
S2(a) = 8 , S2(b) = 18 , and S2(c) = 1 . So, FV may fail the reinforcement criterion when the 
winner in both groups is elected at two different levels of preferences.

Appendix 2: Proof of Proposition 10

PAV is vulnerable to the No‑Show paradox only when the winner is determined by Rule 
2i

It is known that AV is not vulnerable to the No-Show paradox (see Felsenthal, 2012); as 
Rule 1 of PAV is equivalent to AV, it follows that under Rule 1, PAV is not vulnerable to 
the No-Show paradox.

Consider a voting situation where candidate a is PAV winner. Assume a group of � 
voters ( � ≥ 1 ) who decide to not show up in order to favor a more preferred candidate 
b. Obviously, if these voters do not approve of candidate a in the original profile, the 
maneuver is futile. Suppose now that these voters approve candidate a in the original 
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profile. When they abstain, the AV score of each candidate they approved decreases by 
� . Let us discuss each of the possible configurations.

Consider the configuration where candidate a was the winner under Rule 2i. First, 
let us assume that b was not among the majority-approved candidates ( AV(b,𝜋) < n

2
 ) 

and that he wins after abstention. After abstention, AV(b,𝜋) − 𝛽 <
n−𝛽

2
 ; b cannot win if 

AV(a,𝜋) − 𝛽 >
n−𝛽

2
 ; if AV(b,𝜋) − 𝛽 <

n−𝛽

2
 , b wins if AV(b,𝜋) − 𝛽 > AV(a,𝜋) − 𝛽 which 

is equivalent to AV(b,𝜋) > AV(a,𝜋) : this contradicts AV(a,𝜋) > n

2
 . So, it not possi-

ble to favor b. Let us now assume that b was among the majority-approved candidates 
( AV(b,𝜋) > n

2
 ) and that he wins after abstention. It is obvious after abstention that b 

cannot win if AV(a,𝜋) − 𝛽 >
n−𝛽

2
 . After abstention, if AV(a,𝜋) − 𝛽 <

n−𝛽

2
 ,  two cases are  

possible:

•	 If AV(a,𝜋) > AV(b,𝜋) , it is not possible to favor b; let us show how. Given 
AV(a,𝜋) > AV(b,𝜋) , if AV(b,𝜋) − 𝛽 >

n−𝛽

2
 and b wins, this means that 

AV(b,𝜋) > AV(a,𝜋) ; we get a contradiction. For AV(b,𝜋) − 𝛽 <
n−𝛽

2
 , b wins if 

AV(b,𝜋) − 𝛽 > AV(a,𝜋) − 𝛽 which is tantamount to AV(b,𝜋) > AV(a,𝜋) : we get a 
contradiction.

•	 If AV(a,𝜋) < AV(b,𝜋):

–	 It is possible to favor b since it is possible to get AV(b,𝜋) − 𝛽 >
n−𝛽

2
 such that b 

wins as illustrated by the following profile with three candidates and 19 voters. 

 In this profile, AV(a,�) = 10 , AV(b,�) = 13 , and AV(c,�) = 5 . Candidates a and b 
are majority-approved, and a wins since nab = 10 > nba = 9 . Assume that the three 
voters with b ≻ a ≻ c abstain. In the new profile �′ with 16 voters, the scores are 
AV(a,��) = 7 , AV(b,��) = 10 , and AV(c,��) = 5 : b wins since he is now the only 
majority-approved candidate.

–	 It is possible to favor b since it is possible to get AV(b,𝜋) − 𝛽 <
n−𝛽

2
 such that b 

wins, as illustrated by the following profile with three candidates and 18 voters. 

 In this profile, AV(a,�) = 10 , AV(b,�) = 11 , and AV(c,�) = 6 . Candidates a and 
b are majority-approved, and a wins since nab = 11 > nba = 7 . Assume that the four 
voters with b ≻ a ≻ c abstain. In the new profile �′ with 14 voters, the scores are 
AV(a,��) = 6 , AV(b,��) = 7 , and AV(c,��) = 6 : no candidate is majority-approved, 
then b wins since he gets the highest AV score.

1 ∶ a ≻ b ≻ c 6 ∶ b ≻ a ≻ c 3 ∶ c ≻ a ≻ b

4 ∶ a ≻ b ≻ c 3 ∶ b ≻ a ≻ c 2 ∶ c ≻ a ≻ b

1 ∶ a ≻ b ≻ c 3 ∶ b ≻ a ≻ c 5 ∶ c ≻ a ≻ b

4 ∶ a ≻ b ≻ c 4 ∶ b ≻ a ≻ c 1 ∶ c ≻ a ≻ b

Table 5   The 18 types of rankings 
and approvals on C = {a, b, c} a ≻ b ≻ c (n1) a ≻ b ≻ c (n7) a ≻ b ≻ c (n13)

a ≻ c ≻ b (n2) a ≻ c ≻ b (n8) a ≻ c ≻ b (n14)

b ≻ a ≻ c (n3) b ≻ a ≻ c (n9) b ≻ a ≻ c (n15)

b ≻ c ≻ a (n4) b ≻ c ≻ a (n10) b ≻ c ≻ a (n16)

c ≻ a ≻ b (n5) c ≻ a ≻ b (n11) c ≻ a ≻ b (n17)

c ≻ b ≻ a (n6) c ≻ b ≻ a (n12) c ≻ b ≻ a (n18)
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Consider now the configuration where candidate a was the winner under Rule 2ii. If 
b was not among the majority-approved candidates, the same reasoning as above 
applies, and b cannot win after abstention. Let us assume that b was among the major-
ity-approved candidates; as a wins, this means that he has the greatest AV scores 
among the majority-approved candidates ( AV(a,𝜋) > AV(b,𝜋) ). Candidate b may 
win after abstention if the new scores are such that n−𝛽

2
< AV(a,𝜋) − 𝛽 < AV(b,𝜋) − 𝛽 

or AV(a,𝜋) − 𝛽 <
n−𝛽

2
< AV(b,𝜋) − 𝛽 ; in each case, these conditions lead to 

AV(a,𝜋) < AV(b,𝜋) , which is a contradiction. Thus, PAV is vulnerable to the No-Show 
paradox only when the winner is determined by Rule 2i.

FV is not vulnerable to the No‑Show paradox only when the winner is determined 
at level l = 1 or l = m

When the FV winner is determined at l = 1 , any abstention of voters who do not rank this 
winner first does not affect the approval of the level l = 1 . So, for l = 1 , the No-Show paradox 
never occurs.

Let us assume that a is the FV winner at level l = m and that a group of � voters try 
to favor a more preferred candidate b by abstaining. Assume at l = m that a is the only 
majority-approved candidate, which means that Sm(a) > n

2
> Sm(b) ; after abstention, we 

may get (i) Sm(a) − 𝛽 >
n

2
 and Sm(b) − 𝛽 <

n

2
 or (ii)Sm(a) − 𝛽 <

n

2
 and Sm(b) − 𝛽 <

n

2
 . Can-

didate a remains the winner under (i); candidate b wins under (ii) if Sm(a) − 𝛽 < Sm(b) − 𝛽 
which is equivalent to Sm(a) < Sm(b) : this contradicts that a was the only majority-
approved candidate. Let us now assume that a and b are among the majority-approved 
candidates; since a wins, this means that Sm(a) > Sm(b) >

n

2
 . After truncation, we can get 

Sm(a) − 𝛽 > Sm(b) − 𝛽 >
n

2
 or n

2
> Sm(a) − 𝛽 > Sm(b) − 𝛽 ; in each case, b cannot be the 

winner. It follows that FV is not sensitive to the No-Show paradox when the winner is 
determined at level l = 1 or l = m.

Now, let us assume that a is the FV winner at level l ( l ≠ 1,m ) and consider the follow-
ing profile with 12 voters and three candidates.

With this profile, no candidate wins at l = 1 since S1(a) = S1(c) = 3 and S1(b) = 6 ; at l = 2 , 
S2(a) = 8 , S2(b) = 7 , and S2(c) = 4 , candidate a wins. Assume that the four voters with 
b ≻ a ≻ c abstain. In the new profile, we get S1(a) = S1(c) = 3 , S1(b) = 2 at l = 1 , and no 
one wins; S2(a) = S2(c) = 4 and S2(b) = 3 , and no one wins. At l = 3 , S3(a) = S3(c) = 4 
and S3(b) = 5 , and b wins; by abstaining, the four voters have favored b, who is preferred to 
a. Thus, FV is vulnerable to the No-Show paradox when the winner is determined at level 
of approval l ≠ 1 and l ≠ m.

Since the vulnerability of a voting rule to the No-Show paradox leads to its vulnerability 
to the truncation paradox, FV and PAV would therefore be vulnerable to the truncation 
paradox. Preference truncation is efficient under FV and PAV only if it consists, as shown 
by Brams and Sanver (2009), in a contraction of the set of approved candidates.

2 ∶ a ≻ b ≻ c; 1 ∶ a ≻ c ≻ b;

4 ∶ b ≻ a ≻ c; 2 ∶ b ≻ c ≻ a;

1 ∶ c ≻ a ≻ b; 1 ∶ c ≻ b ≻ a;

1 ∶ c ≻ b ≻ a;
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Appendix 3: Details of the computational analysis

Preferences and the rules in three‑candidate elections

We need to present the rankings and approvals in the particular case of three candidates. 
For the sake of simplicity, we rule out the possibilities of approving nothing; so, given his 
ranking, a voter may approve at least one candidate and at most all the running candidates. 
So, given C = {a, b, c} , the 18 possible types of preferences on C are reported in Table 5. 
Then, a voting situation is the 18-tuple � = (n1, n2,… , nt,… , n18) such that 

∑18

t=1
nt = n.

Given the labels of Table 5, the approval scores Sl(.) at level l are provided in Table 6; 
with three candidates, l varies from 1 to 3.

Notice that S3(a) = AV(a,�) . Candidate a is the AV winner if the conditions described 
by Eq. 1 are met.

Recall that S1(.) = PR(.,�) . We provide in Table 7 the scores of the candidates under NPR 
and BR.17

Given � , if candidate a is the FV winner, the following scenarios are possible:

•	 Candidate a is the only majority-approved candidate at l = 1 ; this is fully described by 
Eq 2.

•	 No one wins at l = 1 , and a is the only candidate majority-approved at l = 2 . In this 
case, we get Eq 3.

•	 No one wins at l = 1 , and a with b (or c) are majority-approved at l = 2 ; a gets more 
approvals than b (or c) at this stage. This situation is characterized by Eq 4 or Eq 5.

•	 No one wins at l = 1 , and a, b, and c are majority-approved at l = 2 . At this stage, a gets 
more approvals than b and c. In this case, we get Eq 6.

•	 There is no winner at both l = 1 and l = 2 , and a is the only candidate who is majority-
approved at l = 3 . This situation is characterized by Eq 7.

•	 There is no winner at l = 1 and l = 2 : a with b (or c) are majority-approved at l = 3 . In this 
case, we get Eq. 8 or Eq 9.

•	 No candidate is majority-approved at l = 1, 2 , but they are all majority-approved at l = 3 ; 
a gets more approvals than b and c. This situation is characterized by Eq 10.

•	 No candidate is majority-approved at l = 1, 2, 3 , and a gets more approvals than b and c. 
This situation is characterized by Eq. 11.

(1)
{

S3(a) > S3(b)

S3(a) > S3(c)

(2)

⎧⎪⎨⎪⎩

S1(a) >
n

2

S1(b) <
n

2

S1(c) <
n

2

17  With three candidates, the Borda rule gives 2 to a candidate each times he is ranked first, 1 point when 
he is second, and 0 when he is ranked last.
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(3)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(a) >
n

2

S2(b) <
n

2

S2(c) <
n

2

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(b) >
n

2

S2(c) <
n

2

S2(a) > S2(b)

(5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(b) <
n

2

S2(c) >
n

2

S2(a) > S2(c)

(6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(b) >
n

2

S2(c) >
n

2

S2(a) > S2(b)

S2(a) > S2(c)

(7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(a) <
n

2

S2(b) <
n

2

S2(c) <
n

2

S3(a) >
n

2

S3(b) <
n

2

S3(c) <
n

2
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(8)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(a) <
n

2

S2(b) <
n

2

S2(c) <
n

2

S3(b) >
n

2

S3(c) <
n

2

S3(a) > S3(b)

(9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(a) <
n

2

S2(b) <
n

2

S2(c) <
n

2

S3(b) <
n

2

S3(c) >
n

2

S3(a) > S3(c)

(10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(a) <
n

2

S2(b) <
n

2

S2(c) <
n

2

S3(a) >
n

2

S3(a) > S3(b)

S3(a) > S3(c)

(11)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1(a) <
n

2

S1(b) <
n

2

S1(c) <
n

2

S2(a) <
n

2

S2(b) <
n

2

S2(c) <
n

2

S3(a) <
n

2

S3(a) > S3(b)

S3(a) > S3(c)
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If we assume that candidate a is the PAV winner, the following five scenarios are possible:

•	 No candidate gets a majority of approvals, and a gets the highest number of approvals; this 
is fully described by Eq. 12.

•	 Only a gets a majority of approvals; in this case, we get Eq. 13.
•	 Candidates a and b (or c) get a majority of approvals, and a is majority-preferred to b (or 

to c); this leads to Eq. 14 (or Eq. 15).
•	 All three candidates get a majority of approvals, and a majority dominates b and c; this is 

described by Eq. 16.
•	 All three candidates get a majority of approvals, there is a majority cycle, and a gets the 

highest number of approvals; we thus get Eq. 17 or 18.

(12)

⎧⎪⎨⎪⎩

S3(a) <
n

2

S3(a) > S3(b)

S3(a) > S3(c)

(13)

⎧⎪⎨⎪⎩

S3(a) >
n

2

S3(b) <
n

2

S3(c) <
n

2

(14)

⎧⎪⎪⎨⎪⎪⎩

S3(a) >
n

2

S3(b) >
n

2

S3(c) <
n

2

nab > nba

(15)

⎧⎪⎪⎨⎪⎪⎩

S3(a) >
n

2

S3(b) <
n

2

S3(c) >
n

2

nac > nca

(16)

⎧⎪⎪⎨⎪⎪⎩

S3(a) >
n

2

S3(b) >
n

2

S3(c) >
n

2

nab > nba
nac > nca
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The impartial and anonymous culture assumption

When computing the likelihood of voting events, the impartial and anonymous culture 
(IAC) assumption introduced by Kuga and Nagatani (1974) and Gehrlein and Fishburn 
(1976) is one of the most widely used assumptions in social choice theory literature. Under 
this assumption, all voting situations are equally likely to be observed; it follows that 
the probability of a given event is calculated according to the ratio between the number 
of voting situations in which the event occurs and the total number of possible voting 
situations. For a given voting event, the number of voting situations can be reduced to the 
solutions of a finite system of linear constraints with rational coefficients. The appropriate 
mathematical tools to find these solutions are the Ehrhart polynomials.

For a non-exhaustive overview of these techniques and algorithms, we refer to the recent 
books by Diss and Merlin (2021) and Gehrlein and Lepelley (2011), Gehrlein and Lepelley 
(2017). As in this paper we deal with situations where the number of voters tends to infin-
ity, finding the limiting probabilities under IAC is reduced to the computation of volumes 
of convex polytopes (Bruns & Söger, 2015; Schürmann, 2013). For our computations, we 
use the software Normaliz (Bruns & Ichim, 2021; Bruns et al., 2019),18 It should be noted 
that the calculations are relatively simple to implement under Normaliz because it is suf-
ficient to enter the conditions describing an event, and the algorithm returns the volume of 
the corresponding polytope which is the probability of this event.

Agreement between the rules

First of all, let us look at situations where two rules coincide. Let us take the case where 
FV and AV agree on candidate a as the winner. We denote by P(AV = FV = a) the limiting 
probability of this event. This probability is in fact equal to a sum of volumes of polytopes 

(17)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

S3(a) > S3(b)

S3(a) > S3(c)

S3(b) >
n

2

S3(c) >
n

2

nab > nba
nbc > ncb
nca > nac

(18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S3(a) > S3(b)

S3(a) > S3(c)

S3(b) >
n

2

S3(c) >
n

2

nba > nab
nac > nca
ncb > nbc

18  For more on Normaliz, we refer the reader to the paper of Bruns and Söger (2015) or the website dedi-
cated to this algorithm: https://​www.​norma​liz.​uni-​osnab​rueck.​de.

https://www.normaliz.uni-osnabrueck.de
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to take into account the different scenarios that can occur under FV as described above. For 
example, the case where the winner of AV is the same as the winner of FV at level l = 1 is 
described by the inequalities of Eq. 1 and 2; we denote this volume obtained by V1∩2(�) . In 
a similar way, we determine the volumes V1∩j(�) for j = 3, 4,… , 11 . Thus, we obtain

We can therefore deduce P(FV = AV) , the probability of agreement between AV and FV, 
as follows

Note that the calculation of (FV = PAV = a) requires us to review 7 × 10 = 70 possible 
configurations; among these configurations, only 29 are possible because of the incom-
patibilities between the conditions. Proceeding in a similar way and including the scoring 
rules in our analysis, we obtain

We summarize our results in Table 2.
Using the same approach as above, we were able to determine P(FV = AV = PAV) , the 

limiting probability that AV, FV, and PAV agree on the same profile.

FV and PAV may pick the least‑approved candidate

Let us now look at the cases where FV and PAV can elect the least-approved candidate. Let us 
assume on � that candidate a is the least approved; this leads to Eq. 19.

P(AV = FV = a) =

11∑
j=2

V1∩j(�)

=
3864518350115

15850845241344

P(FV = AV) = 3P(FV = AV = a) =
3864518350115

5283615080448

P(FV =PAV) =
20645280898898557

28682781685383168
; P(PAV = AV) =

405549109

603979776
;

P(FV =PR) =
858426742033860211

1299967445355724800
; P(PAV = PR) =

15393646886073191531

19258776968232960000
;

P(FV =NPR) =
29078653154282273

41085390865563648
; P(PAV = NPR) =

3367171932047414983

5135673858195456000
;

P(FV =BR) =
356641532074024159

462316319539200000
; P(PAV = BR) =

2966266305301241

3424565329920000
;

P(AV =PR) =
590913882103

979552051200
; P(AV = BR) =

23515466951

36578304000
;

P(AV =NPR) =
5661560137

9795520512
; P(NPR = BR) =

20645280898898557

28682781685383168
;

P(PR =BR) =
54057569

68024448
; P(PR = NPR) =

4615849949

8707129344
;

P(FV = AV = PAV) =
38878305102793

66045188505600
≈ 0.5886621870
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As pointed out by Brams and Sanver (2009), a least-approved candidate may be a PAV 
winner under Rule 2i; in our framework, this event is fully characterized by the inequalities 
of Eq. 15 and 19. We then need to compute the volume V15∩19(�) that we multiply by 3 to 
find P(PAV = LAV) , the limiting probability that PAV elects the least-approved candidate 
as follows:

So, it is thus in nearly 8.07% of cases that PAV can lead to the election of the least-
approved candidate. What about FV? Since at level l = m , Sl(.) is equal to the AV score, 
it is obvious that FV cannot elect the least-approved candidate at this level. It follows then 
that with three candidates, FV can elect the least-approved candidate only at l = 1 or l = 2 ; 
this corresponds to Eq. 2 to 6. Thus, P(FV = LAV) , the limiting probability that FV elects 
the least-approved candidate, is computed as follows:

A unanimously approved candidate may not win under FV or PAV

As Brams and Sanver (2009) note, there may be times when FV and PAV do not elect a 
unanimously approved candidate. This marks another point of dissonance between these 
rules and AV. By definition, this can only occur with PAV under Rule 2i. Let us assume on 
C = {a, b, c} that b is unanimously approved. In our framework, this is tantamount to

If b and c are both unanimously approved, we get

Given Eq.  20, situations where a is the PAV winner while b (resp. c) is unanimously 
approved occur when Eq. 14 or 16 (resp. Equation 15 or 16) hold. The case where both 
b and c are unanimously approved while a is the PAV winner can only occur if Eq.  16 
holds. Then, P(PAV ≠ Uap) , the limiting probability that PAV fails to elect a unanimously 
approved candidate, is computed as follows:

(19)
{

S3(a) < S3(b)

S3(a) < S3(c)

P(PAV = LAV) = 3V15∩19(�) =
6095207

75497472
≈ 0.0807339

P(FV = LAV) =3

(
6∑
j=2

V19∩j(�)

)

=
262005663203

5283615080448
≈ 0.04958833

(20)n1 + n2 + n5 + n6 + n8 + n11 = 0

(21)n10 + n12 + n13 + n14 + n15 + n16 + n17 + n18 = n

P(PAV ≠ Uap) =3

[
2

(
V20∩14(�) + V20∩16(�)

)
− V21∩16(�)

]

=3

[
2

(
5

512
+

313

4096

)
−

7

64

]

=
387

2048
≈ 0.1889648
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19  We notice that there is an incompatibility between Eq. 20: (or Eq. 21) and the conditions of Eq. 3. So, 
with these conditions, FV does not fail to pick a unanimously approved candidate.

FV may fail to pick a unanimously approved candidate when Eq. 2 or 4 or 5 or 6 holds. 
Then, P(FV ≠ Uap) , the limiting probability that FV fails to elect a unanimously approved 
candidate, is computed as follows:19

From the above, we note that in almost 18.89% of the cases, PAV may not elect a unani-
mously approved candidate, while this is the case in only 8.58% of the cases for FV.

The election of the Condorcet winner

Recall that candidate a is the Condorcet winner if he is majority-preferred to both b and c; 
using our notation, this is equivalent to Eq. 22.

Using the conditions of Eq. 22, Normaliz gives us the probability P(a = CW) that a is the 
winner of Condorcet over �.

In the same way, we determined the probability that a is the absolute Condorcet winner 
(i.e., S1(a) > n

2
):

We therefore deduce P(CW) , the existence probability of the Condorcet winner, and 
P(ACW) , that of the absolute Condorcet winner:

To determine CE(R) the Condorcet efficiency of a given rule R, the methodology is the fol-
lowing: we determine the volume of the polytope describing the situation in which a is the 

P(FV ≠ Uap) =3

(
2

6∑
j=2

V20∩j(�) −

6∑
j=2

V21∩j(�)

)

=3

[
2

(
67

2048
+ 0 +

2573

262144
+

3

2048
+

36212845

1719926784

)

−

(
1

16
+ 0 +

9

2048
+

9

2048
+

5635

186624

)]

=
12304397

143327232
≈ 0.08584828

(22)
{

nab > nba
nac > nca

P(a = CW) =
20129

65536

P(a = ACW) =
4701

65536

P(CW) =3P(a = CW) =
60387

65536
≈ 0.9214325

P(ACW) =3P(a = ACW) =
14103

65536
≈ 0.2151947
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Condorcet winner and the winner of R; this volume will then be divided by P(a = CW) to 
obtain the desired probability. This procedure allows us to obtain

Proceeding as in the case of the Condorcet efficiency, we determine ACE(R) , the probabil-
ity that the rule R elects the absolute Condorcet winner when he exists. It is known that PR 
always elects the absolute Condorcet winner when he exists. Following Proposition 2, this 
is also the case for FV and PAV; so ACE(PR) = ACE(FV) = ACE(PAV) = 1 . For the other 
rules, we get

The second and fourth columns of Table  3 allow a better visualization of the results 
obtained in terms of (absolute) Condorcet efficiency.

To refine the comparisons, we assess how each of the above probabilities reacts to the 
proportion � =

n1+n2+n3+n4+n5+n6

n
 of voters who approve only one candidate. For some values 

of � , we report in Table 4 the probabilities CE(R, �) , ACE(R, �) , CL(R, �) , and ACL(R, �) as 
functions of �.

The election of the Condorcet loser

Let us assume on C = {a, b, c} that a is the Condorcet loser (resp. the absolute Condorcet 
loser); using the labels of Table 5, this is equivalent to Eq. 23 (resp. Equation 24).

For our voting situations with three candidates, P(CL) , the existence probability of 
the Condorcet loser and P(ACL) that of the absolute Condorcet loser, are as follows: 
P(CL) = P(CW) and P(ACL) = P(ACW).

We know from Proposition 3 that FV and PAV may elect the (absolute) Condorcet loser 
when he exists. When a voting rule may elect a Condorcet loser (resp. an absolute Con-
dorcet loser), it is said to be vulnerable to the Borda paradox (resp. to the absolute majority 
loser paradox). By definition, an (absolute) Condorcet loser, when he exists, can never be 
elected under Rule 2 of PAV; this can only be the case under Rule 1. With FV, the Con-
dorcet loser cannot be elected at level l = 1 , and the absolute Condorcet loser can only 
be elected at level l = 3 . We follow the same methodology as for the Condorcet winner 

CE(AV) =
7491383

11594304
; CE(PAV) =

69380155

226492416
;

CE(FV) =
77089920161

330225942528
; CE(BR) =

39814829

44022123
;

CE(PR) =
8906796973

10697375889
; CE(NPR) =

14904579328717

21908225820672
;

ACE(AV) =
13158985

16246656
; ACE(NPR) =

700614205919

959348790144
; ACE(BR) =

10223639

10281087
;

(23)
{

nab < nba
nac < nca

(24)NPR(a,𝜋) >
n

2
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20  The computation details are available upon request.

efficiency to determine CL(.) (resp. ACL(.)) , the limiting probability of electing the Con-
dorcet loser (resp. the absolute Condorcet loser) when he exists. From our computations, 
we get20:

We were willing, as we did in the previous section, to refine our findings based on � , the 
proportion of voters who approve of exactly one candidate. The probabilities CL(R, �) and 
ACL(R, �) that we obtained in this regard are provided in Table 4.
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