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Abstract
Approval voting allows electors to list any number of candidates and their final scores 
are obtained by summing the votes cast in their favor. Equal-and-even cumulative voting 
instead follows the One-person-one-vote principle by endowing each elector with a single 
vote that may be distributed evenly among several candidates. It corresponds to satisfaction 
approval voting, introduced by Brams and Kilgour (in: Fara et al (eds) Voting power and 
procedures. Essays in honor of Dan Fesenthal and Moshé Machover, Springer, Heidelberg, 
2014) as an extension of approval voting to a multiwinner election. It also corresponds to 
the concept of Shapley ranking, introduced by Ginsburgh and Zang (J Wine Econ 7:169–
180, 2012) as the Shapley value of a cooperative game with transferable utility. In the pre-
sent paper, we provide an axiomatic foundation for Shapley ranking and analyze the prop-
erties of the resulting social welfare function.

Keywords  Approval voting · Equal-and-even cumulative voting · Ranking game · Shapley 
value

JEL Classification  D71 · C71

Which candidate ought to be elected in a single-member constituency if all we take 
into account is the order in which each of the electors ranks the candidates?… At the 
very outset of the argument, we try to move from the is to the ought and to jump the 
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unbridgeable chasm between the universe of science and that of morals. (Black 1958, 
p. 55)

1  Introduction

Approval voting is a method that was studied formally in the 1970 s by Weber (1977) and 
Brams and Fishburn (1978).1 Given a set of candidates, electors have the possibility of list-
ing any number of candidates whom they consider to be “good for the job.” The method 
simply consists in assigning to each candidate a score equal to the number of electors who 
have listed that candidate.2 The winners are those with the largest scores. Beyond being a 
voting method, rational collective preferences are derived from approval voting as in Bor-
da’s (1781) method of marks and other scoring methods.

Approval voting has its supporters, starting with Brams and Fishburn, but also its oppo-
nents, i.e., Saari and van Newenhizen (1988).3 Approval voting not been implemented very 
often, except in some scientific societies such as the American Mathematical Society or the 
Institute of Electrical and Electronics Engineers. A few other exceptions exist, such as the 
election of the UN Secretary General.4 Several experiments have been conducted, in par-
ticular by Baujard and Igersheim (2010) following the 2002 and 2007 French presidential 
elections.

In what follows, we make a distinction between voting, ranking and ordering. Voting is 
the procedure by which electors submit ballots. Ranking aggregates the electors’ choices 
by assigning a score to each candidate.5 And a ranking leads to an ordering, which is the 
ordinal relation on the set of candidates induced by the ranking.

Under approval voting, the number of candidates an elector is allowed to list is not lim-
ited a priori and listing additional candidates imposes no direct “cost” on electors. If an 
elector adds a candidate to her ballot, it has no impact on the scores of the other candi-
dates. Furthermore, electors who list several candidates carry more weight. In that sense, 
approval voting violates the One-person-one-vote principle often emphasized by the advo-
cates of political equality. That principle is satisfied by equal-and-even cumulative voting 
(also called block approval voting) whereby an elector’s vote is divided evenly among the 
candidates she lists. For instance, if an elector lists three candidates, each gets 1/3 of a vote 
instead of 1. Hence, an elector’s vote weights less the larger the number of candidates on 
her ballot and electors have an incentive to limit the sizes of their ballots: Adding a can-
didate reduces the chances that those already present will be elected. If the objective of 
an elector is to see elected one of the candidates that she places high in her preferences, 
she will tend to submit a limited number of candidates among which she is comparatively 
indifferent. Cumulative voting typically is used in multiwinner elections when electors can 

1  See also Brams and Fishburn (1983/2007, 2005), Weber (1995), Brams (2008) and Laslier and Remzi 
Sanver (2010).
2  Convention: we use "she" for voters and "he" for candidates.
3  See the ensuing discussion in the issue of Public Choice where their paper was published.
4  See Brams and Fishburn (2005). Recently, the electoral system in the city of Fargo, North Dakota, was 
changed from plurality voting to approval voting. See www.elect​ionsc​ience​.org.
5  Ranking is cardinal and, in some contexts such as wine competitions, rankings matter.

http://www.electionscience.org
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spread a fixed number of votes—usually equal to the number of seats to be filled—over one 
or more candidates.6

Electors are assumed to have preferences over candidates. More precisely, we assume 
that each elector orders the candidates from the most preferred to the least preferred and 
draws a line somewhere to partition the set of candidates into two sublists, as if her prefer-
ences were dichotomous. A ballot reveals that that the candidates above the line are strictly 
preferred to those below it. Hence, two electors who order the candidates identically may 
well draw the line at different places. If an elector’s preferences are incomplete, the can-
didates whom she cannot order would just not appear on her ballot.7 However, even if 
approval voting is compatible with incomplete preferences, we maintain the assumption 
of completeness. Furthermore, we leave open the possibility of dichotomous preferences 
whereby electors are indifferent within and outside their ballots. Under the assumption of 
dichotomous preferences, Mongin and Maniquet (2015) prove that approval voting induces 
a non-dictatorial social welfare function that satisfies the Pareto criterion and independ-
ence of irrelevant alternatives (IIA). That result does not contradict Arrow’s impossibility 
theorem because assuming dichotomous preferences definitely restricts the domain of indi-
vidual preferences.8

The assumption of dichotomous preferences is, however, far too strong. The candidates 
listed by an elector are in some sense relatively “close” to each other, but assuming indif-
ference within and outside ballots is not plausible. That assumption is even less plausible 
for the candidates that an elector does not list. In the present paper, we assume only that 
electors strictly prefer the candidates they list to those they do not list, an assumption that 
is an integral part of the definition of a ballot. Notice that, under dichotomous preferences, 
approval voting is equivalent to Borda’s method (1781), which, for each elector, allocates 1 
to the candidates listed in her ballot and 0 to the others. The absence of information on 
electors’ preferences is a fundamental difficulty when electors are asked to name candi-
dates without ordering them. It is so for approval voting as well as for any other method 
that limits the number of candidates an elector can list, including plurality voting.

Equal-and-even cumulative voting corresponds to the concept of Shapley ranking, 
defined by Ginsburgh and Zang (2012) as the Shapley value of a transferable utility game 
derived from approval ballots. It also corresponds to the concept of satisfaction approval 
voting introduced by Brams and Kilgour (2014). Even if those scholars limit that aggrega-
tion method to multiwinner elections, nothing actually prevents applying it to single-win-
ner elections. In the present paper, we provide an axiomatic foundation for equal-and-even 
cumulative voting based on the one-person-one-vote principle. We then move from ranking 
to ordering and look at the properties of the induced social welfare function.

The paper is organized as follows. Approval and equal-and-even cumulative voting are 
introduced in Sect. 1 using the concept of a ballot profile that specifies, for each subset of 
candidates, the number of electors who support it. Ranking games associated with ballot 
profiles are introduced in Sect.  2. Their Shapley values are shown to coincide with the 
ranking derived from equal-and-even cumulative voting. The resulting “Shapley ranking” 
is then axiomatized in terms of ballot profiles by reference to Shapley’s axioms wherein 

6  For an overall analysis of multiwinner elections based on approval balloting, see Brams et al. (2019).
7  Alcantud and Laruelle (2014) study and characterize a voting rule that allows voters to divide candidates 
into three classes, approved, disapproved and indifferent, thereby allowing for incomplete preferences.
8  The reference is Arrow’s (1951) famous book. The 1963 edition reproduces the first edition and adds a 
chapter reviewing the developments in social choice theory since 1951.
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efficiency is translated into the one-man-one-vote principle. Section 3 looks at the proper-
ties of the orderings derived from approval and Shapley rankings, in a social choice per-
spective. The last section is devoted to concluding remarks.

2 � Approval, fractional, plurality and majority voting

Consider a set N of n candidates with n ≥ 2.9 There can be any number of electors. Elec-
tors have preferences over candidates: i ≻h j reads elector h prefers candidate i to candi-
date j and i ∼h j reads elector h is indifferent between candidates i and j . The weak prefer-
ence relation ≻

∼

h
 represents the preferences of elector h. Preferences are assumed to be 

rational: ≻
∼

h
 is a complete, transitive and reflexive binary relation (a complete preorder) 

over N. A preference profile specifies a preference ordering for each elector.

2.1 � Approval voting

Under approval voting, electors are asked to list the candidates of whom they approve. We 
denote by Nh ⊂ N the approval set or ballot of elector h, which is the set of candidates 
submitted by h. We assume that Nh ≠ ∅ for all h, but do not exclude Nh = N. The choice 
of elector h can be identified as an n-tuple qh ∈ {0, 1}n with qih = 1 if and only if i ∈ Nh. 
If M denotes the set of electors, a ballot profile can be arranged in a n × m matrix whose 
rows are attributed to candidates and columns to electors. Alternatively, a ballot profile can 
be written as a mapping � that associates to each (nonempty) subset S ⊂ N of candidates 
(there are 2n − 1 such subsets), the number of electors whose approval set coincides with 
that subset: �(S) = ||{h ∈ M||Nh = S }||. A one-to-one relation exists between ballot profiles 
and the matrix representation, knowing that the number of electors is obtained by summing 
the �(S). The set of admissible ballot profiles on a set N of candidates is given by

where ℕ = {0, 1, 2,…} denotes the set of nonnegative integers. Notice that the profile (0, 
0,…, 0) is excluded because electors are assumed to submit nonempty ballots.

Example 1  Consider the four-candidate situation described by the following ballot profile: 
�(1) = �(1, 2) = �(2, 3) = �(2, 3, 4) = 1, �(3, 4) = 2, and �(S) = 0 for all other subset 
S.10 Hence, we have six electors and their ballots are N1 = {1},N2 = {1, 2}, N3 = {2, 3}, 
N4 = N5 = {3, 4} and N6 = {2, 3, 4}. The associated matrix is given by

𝛱(N) =
{
𝜋 ∈ ℕ

2n−1∕0 || 𝜋(S) ≤ n for all S ⊂ N, S ≠ �
}
,

1 1 0 0 0 0
0 1 1 0 0 1
0 0 1 1 1 1
0 0 0 1 1 1

Q =

10  Braces are omitted in the absence of ambiguity.

9  Notation The cardinality of a finite set A is denoted |A|. Upper-case letters are used to denote finite sets 
and subsets, and the corresponding lower-case letters are used to denote the numbers of their elements: 
n = |N|, s = |S|, and so on.
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The approval score of candidate i is the number of electors who have listed that candidate

It is obtained by summing along each row of the representative matrix Q. In Example 1, the 
approval scores are given by (2, 3, 4, 3). It leads to the following ordering: 3 ≻ 2 ∼ 4 ≻ 1.

2.2 � Equal‑and‑even cumulative voting

Under equal-and-even cumulative voting, each of the candidates listed by elector h receives 
a fraction 1∕nh , where nh is the size of elector h’s ballot. The scores are obtained by sum-
ming the fractions allocated to each candidate

Equation (2) coincides with the concept of Shapley ranking introduced by Ginsburgh and 
Zang (2012) and with the concept of satisfaction approval voting introduced by Brams and 
Kilgour (2014).

Table 1 shows the scores obtained in Example 1. The ordering resulting from Shapley 
ranking is 3 ≻ 1 ≻ 2 ≻ 4. It places candidate 1 on top. Not surprisingly, it differs from the 
ordering 3 ≻ 2 ∼ 4 ≻ 1 that results from approval ranking. Both orderings obviously coin-
cide in the case of two candidates. Example 1 shows that they may not coincide beyond 
two candidates. The following example illustrates a situation wherein the two orderings do 
coincide.

Example 2  Consider a situation with three candidates and five electors whose approval sets 
are N1 = {1}, N2 = {1, 2}, N3 = {2, 3}, N4 = {1, 3} and N5 = {1, 2, 3}. The scores are 
given in Table 2. In both cases, candidate 1 comes in first, while the other two obtain the 
same score: 1 ≻ 2 ∼ 3.

(1)ARi(N,�) =
∑

S∶ i∈S

�(S) (i = 1, … , n).

(2)SRi(N,�) =
∑

S∶ i∈S

1

s
�(S) (i = 1,… , n).

Table 1   AR and NR scores in 
Example 1

1 2 3 4 5 6 AR SR

1 1 1 0 0 0 0 2 1.50
2 0 1 1 0 0 1 3 1.33
3 0 0 1 1 1 1 4 1.83
4 0 0 0 1 1 1 3 1.33

Table 2   AR and NR scores in 
Example 2

1 2 3 4 5 AR SR

1 1 1 0 1 1 4 2.33
2 0 1 1 0 1 3 1.33
3 0 0 1 1 1 3 1.33
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Notice that by normalizing the scores given by (2), we obtain the probabilities that a 
particular candidate is elected under the random dictatorship procedure.11 Each of the m 
electors is asked to identify a subset of candidates, knowing that an elector will first be 
chosen at random and that the winner will be chosen at random in her approval set. The 
resulting probabilities are then proportional to the scores

In Example 1 (see Table 1), the probabilities are given by (0.25, 0.22, 0.30, 0.22). In 
Example 2 (see Table 2), they are given by (0.47, 0.27, 0.27).

2.3 � Plurality and majority voting

A number of voting rules in which electors are allowed to submit only one candidate are 
special cases of approval voting. Those are the cases of plurality and majority voting. The 
two methods are well defined only in the absence of indifference in individual preferences. 
Each elector has then a unique most preferred candidate and candidates are ordered accord-
ing to their approval scores given by (1) or, equivalently, by (2). In plurality voting, the 
winners are the candidates with the largest approval score. In majority voting, the winner 
is the candidate with an approval score exceeding half the number of electors. The lat-
ter therefore is not a decisive method. The following example shows that a candidate who 
appears first in a majority of electors’ preferences may be defeated under approval voting 
and equal-and-even cumulative voting. It illustrates how voting by approval reveals some 
information on electors’ intensities of preferences.

Example 3  Consider a situation with four candidates and five electors whose preferences 
are given by 1 ≻1 3 ≻1 2 ≻1 4, 1 ≻2 2 ≻2 3 ≻2 4, 1 ≻3 2 ≻3 4 ≻3 3, 2 ≻4 3 ≻4 4 ≻4 1 
and 2 ≻5 4 ≻5 1 ≻5 3. The first candidate has a majority: he comes on top of 3 out of 5 
orderings.12 Now assume that the electors submit the following ballots: N1 = {1, 3}, 
N2 = {1, 2}, N3 = {1, 2, 4}, N4 = {2, 3} and N5 = {2, 4}. Table  3 shows the resulting 
scores. Candidate 2 gets the largest score in both cases.

When some electors are indifferent between candidates, plurality and majority voting 
are not well defined because some electors may have several most preferred candidates. 
If that is the case for an elector, she has to make a selection and we could assume that the 

Prob [i is elected] =
1

m

∑

h∶ i∈Nh

1

nh
=

1

m
SRi(N,�).

Table 3   AR and NR scores in 
Example 3

1 2 3 4 5 AR SR

1 1 1 1 0 0 3 1.33
2 0 1 1 1 1 4 1.83
3 1 0 0 1 0 2 1
4 0 0 1 0 1 2 0.83

12  That candidate is therefore also the unique Condorcet winner (see Sect. 4).

11  The terminology used by Bogolmania et al. (2005).
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candidate that she submits is drawn at random from among her top candidates. Denoting by 
Nh the subset of most preferred candidates of elector h, each one is assigned a probability 
equal to 1∕nh and the score of a candidate is then given by the sum of the probabilities that 
his name be submitted. In that case, plurality voting and equal-and-even cumulative voting 
give rise to the same result.

3 � Shapley ranking

3.1 � Ranking games

We first recall the definition of a ranking games introduced by Ginsburgh and Zang (2012). 
In our voting context, the players are the candidates. Given a ballot profile (N,�), we define 
the transferable utility game (N,w) whose characteristic function associates with each sub-
set S of candidates, the number of electors whose approval set is included in S

The term w(S) is the number of electors who are exclusively supporting some candidates 
in S. In particular, w(i) is the number of electors who have listed only candidate i and w(N) 
is the total number of electors. A ranking game’s solution provides a ranking of candidates 
by specifying for each of them a score equal to a fraction of the total number of electors. 
The characteristic function associated to Example 1 is given by

We denote by G(N) the set of all characteristic functions on a given set of N players. It 
can be identified to the vector space ℝ2n−1. In proving the uniqueness of his value, Shapley 
(1953) shows that the 2n − 1 unanimity games defined for all T ⊂ N by

form a basis of the vector space G(N): For any characteristic function v, there exists a 
unique collection (𝛼T ||T ⊂ N, T ≠ �) of 2n − 1 real numbers such that

The coefficients �T are known as the Harsanyi dividends (dividends for short) (see Har-
sanyi 1959). The following proposition follows immediately from (3) and (4).

Proposition 1  The dividends of the ranking game (N,w) associated with the ballot profile 
(N,�) coincide with the ballot profile: 𝛼S(N,w) = 𝜋(S) for all S ⊂ N.

(3)w(S) =
∑

T⊂S

𝜋(T) for all S ⊂ N.

w(1) = 1, w(2) = 0, w(3) = 0, w(4) = 0,

w(1, 2) = 2, w(1, 3) = 1, w(1, 4) = 1, w(2, 3) = 1, w(2, 4) = 0, w(3, 4) = 1,

w(1, 2, 3) = 3, w(1, 2, 4) = 2, w(1, 3, 4) = 2, w(2, 3, 4) = 3,

w(1, 2, 3, 4) = 5.

uT (S) =

{
1 if T ⊂ S

0 otherwise.

(4)v(S) =
∑

T⊂N

𝛼T (N, v) uT (S) =
∑

T⊂S

𝛼T (N, v) for all S ⊂ N.
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Hence, because (4) is invertible, a one-to-one relation exists between a ranking game 
and its ballot profile. The subset RG(N) ⊂ G(N) of all ranking games on a set N generated 
by the set of ballot profiles �(N) forms a remarkable class of games. The characteristic 
functions defining ranking games are monotonic (increasing), convex (thereby superaddi-
tive) and take values in ℕ . They are positive in the sense that their dividends all are non-
negative.13 Furthermore, the set RG(N) is closed under addition: starting from any two bal-
lot profiles (N,��) and (N,���) on a common set of candidates, and their associated ranking 
games (N, v�) and (N, v��), the ranking game (N, v� + v��) is associated with the ballot profile 
(N,�� + ���).14

3.2 � The Shapley value of a ranking game

Ginsburgh and Zang (2012) prove that the Shapley value of a ranking game coincides with 
equal-and-even cumulative voting as defined by (2); hence, the term “Shapley ranking”.

Proposition 2  The Shapley ranking associated with a ballot profile (N,�) is the Shapley 
value of the associated ranking games (N,w) ∶SRi(N,�) = SVi(N,w), i = 1,… , n.

Proof  Following Harsanyi (1959), the Shapley value of a game (N, v) is given by the uni-
form distribution of its dividends

The identity then follows from Proposition 1.� □

3.3 � Axiomatization of Shapley ranking

For a given set N, we denote by P(N) the set of permutations of N. For a given subset 
S ⊂ N, pS denotes the image of S under the permutation p ∈ P(N). For a given set function 
v on N, the function pv is defined by pv(pS) = v(S) for all S ⊂ N. The following axioms are 
the translations of Shapley’s axioms in terms of ballot profiles. They apply to the ranking 
rules � ∶ �(N) → ℝ

n defined on the set of ballot profiles.
One-person-one-vote (Efficiency) The scores add-up to the number of electors:

Neutrality �(Anonymity) If candidates’ names are permuted, scores are permuted 
accordingly:

SVi(N, v) =
∑

T∶ i∈T

1

t
�T (N, v) (i = 1,… , n).

∑

i∈N

𝜑i(N,𝜋) =
∑

S⊂N

𝜋(S).

For all p ∈ P(N) and i ∈ N, �pi(N, p�) = �i(N,�).

13  Positive games form a particular subclass of convex games on which the set of asymmetric val-
ues obtained by considering all distributions of dividends (the "Harsanyi set") coincides with the set of 
weighted Shapley values and the core. See Dehez (2017) for details.
14  It is assumed implicitly that the sets of voters are disjoint.
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Null candidate	� (Null player) Candidates appearing on no ballot get a zero score: 

Additivity	� The score associated with a sum of ballot profiles on a com-
mon set of candidates is equal the sum of the scores associated 
with each ballot profile: For any two ballot profiles �′ and �′′ on N, 
�(N,�� + ���) = �(N,��) + �(N,���).

Additivity makes sense here because the set �(N) of all possible ballot profiles is 
closed under addition. The four axioms are natural requirements and characterize Shapley 
ranking.

Proposition 3  Shapley ranking is the unique ranking rule defined on �(N) that satisfies 
One-person-one-vote, Neutrality, Null candidate and Additivity.

Proof  Shapley ranking obviously satisfies the four axioms. Now, consider a ranking rule 
φ satisfying all four axioms. Any ballot profile π on N can be decomposed as a sum of 
elementary ballot profiles 𝜋 =

∑
T⊂N 𝜋T , where

By the Null candidate axiom, we have:

Combining the One-person-one-vote and the Neutrality axioms, we have

We then obtain (3) by using Additivity. � □

It is easily seen that approval ranking obtains by replacing the One-person-one-
vote axiom by an axiom specifying that the scores add-up to the number of votes 
(One-person-many-votes).

4 � From ranking to ordering

Approval and Shapley orderings are derived from approval and Shapley rankings. They 
generally differ, as shown in Example 1. They coincide in the two extreme voting situations 
when either nh = 1 for all h or nh = n for all h. In the first situation, analogous to plurality 
voting, ARi = SRi for all i. In the second situation, ARi = m and SRi = m∕n for all i, where 
m is the number of electors.

Referring to the underlying individual preferences, approval and Shapley orderings are 
two social welfare functions that assign collective preferences to individual preferences. 
What are their properties and how do they compare with one another? Not surprisingly, we 
will see that little can be said outside the case of dichotomous preferences.

𝜋(S) = 0 for all S ⊂ N such that i ∈ S ⇒ 𝜑i(N,𝜋) = 0.

�T (S) = �(T) if S = T ,

= 0 if S ≠ T .

�(N, �T ) = 0 for all i ∉ T .

�(N, �T ) =
�(T)

t
for all i ∈ T .
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4.1 � Individual preferences

Consider the following three possible assumptions on individual preferences.

A1	� i ∈ Nh and j ∉ Nh implies i ≻h j.

A2	� i, j ∈ Nh implies i ∼h j.

A3	� i, j ∈ N�Nh implies i ∼h j.

A1 is part of the definition of approval voting. The other two assumptions are less 
natural and far too restrictive, especially A3. The three assumptions together character-
ize dichotomous preferences.

4.2 � From individual to collective preferences

The validity of four properties will be considered, Pareto, Independence of irrelevant 
alternatives, Condorcet and Monotonicity, on the basis of the approval sets (N1,… ,Nm) 
submitted by electors.

The Pareto principle requires that unanimity be reflected in collective preferences. 
Here is a formulation that allows electors to be indifferent between candidates.

Pareto principle	� If candidate i is preferred to candidate j by all electors, then j cannot be 
collectively preferred to i

Under dichotomous preferences, candidate i is preferred to candidate j by all elec-
tors if and only if i ∈ Nh and j ∉ Nh for all h ∈ M. Clearly, approval and Shapley ranking 
both satisfy the Pareto principle under dichotomous preferences. It remains true assum-
ing only A1.

Proposition  4  Under assumption A1, both approval and Shapley orderings satisfy the 
Pareto principle.

Proof  Consider two candidates i and j such that i ≻h j for all h ∈ M. For each elector h, 
three cases define a partition in three subsets of the set of electors.

(a)	 i ∈ Nh and j ∉ Nh → h ∈ M1,

(b)	 i, j ∈ Nh → h ∈ M2,

(c)	 i, j ∉ Nh → h ∈ M�(M1 ∪M2).

The difference in approval scores is then equal to m1 ≥ 0. Nothing excludes a situation 
wherein M1 is empty. The difference in Shapley scores is non-negative as well. Indeed, 
referring to the representative matrix Q that describes electors’ ballots, we have

where bh =
∑

l∈N

qhl > 0 for all h ∈ M by assumption. � □

SRi − SRj =
∑

h∈M1

qhi

bh
,
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The axiom of independence of irrelevant alternatives (IIA for short) was introduced 
by Arrow (1951). It may be considered as a natural requirement, although it generally is 
not satisfied in the absence of restrictions on individual preferences. Consider two pref-
erence profiles with a common set of electors, on a common set of candidates, and two 
candidates i and j.

IIA	� If electors have the same preferences regarding i and j in both profiles, the collective 
preferences regarding i and j derived from the two profiles must be identical

Arrow’s impossibility theorem states that, without restrictions on preferences (axiom 
of Unrestricted domain), dictatorship is the only social welfare function that satisfies the 
Pareto principle and IIA. It is easy to show that, under dichotomous preferences, approval 
voting satisfies IIA.15 Indeed, consider two ballot profiles (N�

1
,… ,N�

m
) and (N��

1
,… ,N��

m
), 

along with the associated representative matrices Q′ and Q′′ . If electors have the same pref-
erences regarding i and j, the rows i and j of the matrices Q′ and Q′′ are identical and there-
fore AR�

i
= AR��

i
 and AR�

j
= AR��

j
. Shapley ranking does not satisfy IIA, whether preferences 

are dichotomous or not, because of the strong interdependence that characterizes it. That is 
confirmed by the following example.

Example 4  Consider two ballot profiles on a set of three candidates and five electors, rep-
resented by the matrices Q′ and Q′′ . Assume that the electors have the same preferences 
regarding both candidates.

In Q′ candidate 2 has a higher Shapley score than candidate 1. The order is reversed in Q′′.

The Condorcet principle often is considered to be a voting property. A candidate is a 
Condorcet winner if he never loses in duels (Condorcet 1785). No Condorcet winner may 
emerge, but if such a candidate exists, one could argue that he should be elected.

Condorcet principle	� The set of Condorcet winners, if non-empty, should be on top of 
the collective preferences.

Few aggregation methods satisfy that principle. If individual preferences were known 
(like in Borda’s count), one could first check whether a Condorcet winner exists and even-
tually elect him. If preferences are assumed to be dichotomous, the result of a duel between 
two candidates depends only on their approval scores. Hence, a candidate is a Condorcet 
winner if he has the highest approval score.16 Shapley ranking does not satisfy the Con-
dorcet principle, as shown in Example 1 wherein candidates 2 and 3 are Condorcet winners 

Q′ =
1 1 1 0 0
0 0 1 1 1
1 1 1 0 0

1 1 1 0 0
0 0 1 1 1
0 0 1 1 1

Q′′ =

15  Acknowledged by Brams and Fishburn (2007, p. 137) and confirmed by Mongin and Maniquet (2015).
16  Theorem 3.1 in Brams and Fishburn (2007, p. 38).
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but neither is elected under Shapley ranking. Example 3 confirms that, outside dichoto-
mous preferences, approval and Shapley rankings both fail to satisfy the Condorcet princi-
ple. However, both rankings are exempt from cycles.17

What happens to collective preferences when the preferences of a single elector change? 
Answering that question is the object of the following axiom.

Monotonicity	� Consider a preference profile such that candidate i is collectively preferred 
to j. If an elector who prefers j to i changes his mind in favor of candidate 
i, candidate i must remain collectively preferred to candidate j.

Proposition 5  Under assumption A1, both approval ordering and Shapley ordering sat-
isfy Monotonicity.

Proof  Assume that i ≻ j while j ≻k i for some k ∈ M. There are three possible cases.

(a)	 j ∈ Nk and i ∉ Nk,

(b)	 i, j ∈ Nk,

(c)	 i, j ∉ Nk.

Assume that elector k changes his mind and now prefers i to j. We denote by N′
k
 his 

modified approval set. In (a), we have three possible cases.

	(a1)	 N�
k
= Nk�j,

	(a2)	 N�
k
= Nk ∪ i,

	(a3)	 N�
k
= (Nk ∪ i)�j.

In (b), two cases are possible.

	(b1)	 N�
k
= Nk�j,

	(b2)	 N�
k
= Nk.

In (c), two cases also are possible.

	(c1)	 N�
k
= Nk ∪ i,

	(c2)	 N�
k
= Nk.

Consider, first, approval voting. Initially, we have ARi > ARj. In cases (b2) and (c2), ARi 
and ARj remain unchanged. In cases (a1) and (b1), ARi is unaffected while ARj decreases 
by 1. In cases (a2) and (c1), ARj is unaffected while ARi increases by 1. In case (a3), ARi 
increases by 1 and ARj decreases by 1. Hence, AR′

i
> AR′

j
. Consider now Shapley rank-

ing. Initially, we have SRi > SRj. In cases (b2) and (c2), SRi and SRj remain unchanged. 

17  Cycles are possible if more than two grades are employed, giving rise to what Brams and Potthoff (2015) 
call the "paradox of grading systems", which is comparable to the Condorcet paradox.
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In cases (a1), SRi is unaffected while SRj decreases by 1∕nk. In case (a2), SRj decreases 
by 1∕nk(1 + nk) while SRi increases by 1∕(1 + nk). In case (b1), SRj decreases by 1∕nk 
while SRi increases by 1∕nk(nk − 1). In case (c1), SRj is unaffected while SRi increases 
by 1∕(1 + nk). In case (a3), SRi increases by 1∕nk and SRj decreases by 1∕nk. Hence, 
SR′

i
> SR′

j
.� □

5 � Concluding remarks

Approval voting has its advantages and drawbacks like any other preference aggrega-
tion method, although most of its advantages cannot be formalized. The same conclusion 
applies to equal-and-even cumulative voting. However, equal-and-even cumulative voting 
may be preferable to approval voting because under the former, electors have an incen-
tive to limit the number of candidates they decide to retain. Furthermore, if an elector lists 
several candidates, it is likely that the candidates retained will be “close” to each other 
in terms of preferences, in which assuming that electors are indifferent between the can-
didates listed in their ballots becomes more plausible. It would be interesting to conduct 
experiments within approval balloting in order to evaluate the effect of fractional votes.
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