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Abstract
We propose a simple yet new formula for estimating national seat shares and quantifying 
seat biases in elections employing the Jefferson–D’Hondt (JDH) method for seat alloca-
tion. It is based solely on the national vote shares and fixed parameters of the given elec-
toral system. The proposed formula clarifies the relationship between seat bias on the one 
hand, and the number of parties and the number of districts on the other. We demonstrate 
that the formula provides a good estimate of seat allocations in real-life elections even in 
the case of minor violations of the underlying assumptions. With that aim in mind, we 
have tested it for all nine EU countries that employ the JDH method in parliamentary elec-
tions. Moreover, we discuss the applications of the formula for modeling the effects of vote 
swings, coalition formation and breakup, spoiler effects, electoral engineering, artificial 
thresholds and political gerrymandering. By not requiring district-level vote shares, our 
formula simplifies electoral simulations using the JDH method.
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1  Introduction

The Jefferson–D’Hondt method is one of the most popular ways for allocating parliamen-
tary seats to party lists in proportional representation electoral systems (Colomer 2004; 
Bormann and Golder 2013; Carey 2017).1 Originally devised in 1792 by Thomas Jefferson 
to apportion seats in the US House of Representatives among the states (Jefferson 1792),2 it 
was later reinvented by a Belgian mathematician and lawyer D’Hondt (1882, 1885) for use 
in parliamentary elections, though it is unclear whether D’Hondt actually knew of Jeffer-
son’s work on the subject.3 It is used to allocate all or nearly all parliamentary seats in Tur-
key, Spain, Argentina, Poland, Peru, Chile, the Netherlands, Belgium, the Czech Republic, 
Israel, Switzerland, Paraguay, Serbia, Finland, Croatia, Albania, Macedonia, East Timor, 
Fiji, Montenegro, Luxembourg, Suriname, Cape Verde, São Tome and Príncipe, Aruba and 
Greenland.4 It also is employed as a part of a mixed system or as a tier within the multi-
tiered seat allocation procedures in Japan, the Dominican Republic, Austria, Denmark, Ice-
land and the Faroe Islands. In addition, most EU member states use the method to allocate 
seats in the European Parliament elections (Poptcheva 2016).

Jefferson–D’Hondt method’s bias in favor of larger parties is well known (see, e.g., 
Humphreys 1911; Huntington 1921, 1928, 1931; Morse et  al. 1948; Rae 1967; Taagep-
era and Laakso 1980; Lijphart 1990; Benoit 2000; Balinski and Young 2001; Marshall 
et  al. 2002; Pukelsheim 2014, 2017). Its magnitude has been estimated by, among oth-
ers, Sainte-Laguë (1910), Pólya (1918a, b, 1919a, b), Schuster et  al. (2003), Drton and 
Schwingenschlögl (2005), Pukelsheim (2014), and Janson (2014). However, though ear-
lier research focused on a single-district scenario, the majority of countries employing the 
Jefferson–D’Hondt method allocate seats within each of their multiple electoral districts 
separately. In those countries, the political effects of the advantage provided by the Jeffer-
son–D’Hondt method to larger parties can be assessed only on a national scale.5

The Jefferson–D’Hondt method requires the vote shares of all parties in all districts to be 
known in order to obtain nationwide seat allocation results, and therefore cannot be applied 
if district-level results are unavailable, as in the case of national polls, or nonexistent, as in 
the case of counterfactuals. In this article, we propose a new formula for estimating those 

1  Authors focusing on apportionment methods sometimes refer to the Jefferson–D’Hondt method as the 
method of greatest divisors (Huntington 1921, 1928, 1931), the method of highest averages (Carstairs 1980, 
pp. 17–19), or the method of rejected fractions (Chafee 1929). In Switzerland it is known as the Hagen-
bach-Bischoff method (Szpiro 2010, p. 204), after the Swiss physicist Hagenbach-Bischoff (1888, 1905), 
who developed and popularized an alternative but equivalent formulation for the method, and in Israel as 
the Bader-Ofer system after two members of the Knesset who proposed it in 1975: Yohanan Bader, an emi-
nent alumnus of the authors’ Alma Mater, and Avraham Ofer.
2  The equivalency of the Jefferson and D’Hondt proposals has been noted in passing by James (1897,  
p. 36), but to the best of our knowledge, Balinski and Young (1978a) are the first modern authors to recog-
nize that fact.
3  Other authors rediscovered the Jefferson method independently prior to D’Hondt (see Mora 2013, p. 6 for 
details), but did not obtain wider recognition. The origins of D’Hondt’s rediscovery and the spread of his 
idea that led to its practical application are discussed in greater detail by Dančišin (2013).
4  Countries are sorted degressively according to population.
5  Pukelsheim (2017, p. 133) noted that seat biases depend on the number of districts, but did not provide 
an explicit formula. He primarily has been concerned with an expected seat bias for the k-th largest party, 
rather than making it a function of a party vote share. Unless one assumes that the distribution of party vote 
shares on the probability simplex is so concentrated that the order of parties is the same in every district (an 
assumption that is empirically unjustified), a simple summation of the expected biases over districts will not 
produce a nationwide seat bias.
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results solely from the nationwide electoral results and two fixed parameters: assembly size 
and the number of electoral districts. The estimated number of seats for the i-th party ( si ) is 
given by the “pot and ladle” formula:

where pi is the share of votes cast for that party (normalized after removing non-relevant 
parties), s is the total number of seats, c is the number of districts, and n is the number of 
“relevant” parties (see Sect.  2.2; note that it is a function of the vector of national vote 
shares and not an independent parameter). The formula is exact if the three underlying 
assumptions discussed also in Sect. 2.2 are fully satisfied, and it provides an approximation 
if they are satisfied only approximately, as is usually the case in real-life elections.

We can think of the formula in terms of a potluck metaphor. First, all relevant parties 
receive their proportional shares, pis . Each party also provides an identical contribution 
to the common bounty pot ( c∕2 , or half a seat per district). Then the pot is divided among 
the parties with the size of the bounty being proportional to each party’s ladle, namely its 
renormalized vote share ( pi).6 Thus, small parties are disadvantaged, since they contribute 
more than they get back from the pot, while large parties receive a bonus. The formula 
makes clear that the size of the bonus depends not only on the size of the ladle, but also on 
the size of the bounty pot ( cn∕2 ). That is, in fact, the basic mechanism the formula reveals: 
the bonus created by the Jefferson–D’Hondt system is a function of both the number of 
districts and of the number of parties.

We illustrate the working of the formula with the results of the most recent Polish gen-
eral election (Table 1), showing how the bonus helped the winning party in attaining the 
majority.

Scholars traditionally have thought of electoral systems in terms of seat shares (
qi := si∕s

)
 , which are more suitable for international comparisons. The seat share for-

mula, obtained by transforming the “pot and ladle” formula above, is more conveniently 
expressed in terms of the mean district magnitude (m := s∕c):7

(1)si = pi ⋅ s + pi ⋅
cn

2
−

c

2
,

(2)qi =
(
1 +

n

2m

)
pi −

1

2m
.

Table 1   The “pot and ladle” 
formula as applied to the Polish 
general election of 2015

Notation pi is the normalized vote share of the i-th party, si is the 
estimated seat count of the i-th party, s is the number of seats to be 
allocated, c is the number of districts, and n is the number of relevant 
parties

Party pis −c∕2 pi(cn∕2) si Actual seats

PiS 207.29 − 20.5 46.29 233.08 235
PO 132.88 − 20.5 29.67 142.06 138
K’15 48.60 − 20.5 10.85 38.95 42
N 41.93 − 20.5 9.36 30.79 28
PSL 28.30 − 20.5 6.32 14.12 16

6  See Janson (2014, Remark 3.9) for a similar heuristic when c = 1.
7  For another alternative form of (2), see (5).
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The difference between the seat share and the vote share is the bias for the i-th party 
( Δi := qi − pi ), given by the following seat bias formula:

Since the sign of the bias is determined by the difference between the party’s vote share 
and the mean vote share ( 1∕n ), it is evident that a party gains or loses from the Jeffer-
son–D’Hondt method depending on its vote share being above or below the mean. The 
system is neutral (i.e., Δi = 0 ) only towards those parties for which pi = 1∕n.

We discuss the mathematical background of the formula in a separate article (Flis et al. 
2019). In the present article, we focus on the formula’s empirical accuracy and on its 
applications. The first application is primarily predictive. The Jefferson–D’Hondt method 
requires that district-level results be known, and as all divisor methods can be sensitive to 
small variations in vote shares, those results have to be known exactly. By contrast, our for-
mula provides a surprisingly good prediction of the nationwide seat allocation (with accu-
racy within 1.5% of the national seat total for more than 94.2% of parties in the nine coun-
tries for which data are analyzed), while requiring that only aggregate party vote shares be 
known. Hence, it can be used to model seat allocation accurately on the basis of opinion 
polls, exit polls and preliminary election results, when aggregate vote shares usually are all 
that is known.8

Second, because the “pot and ladle” formula does not depend on the precise vote shares 
of other parties, it can be used to model the effects of vote swings, political strategies (e.g., 
party consolidation or fragmentation) and electoral engineering (such as changing the 
number of districts or introducing statutory thresholds) on particular or hypothetical parties 
without involving complicated models of voter preference distributions.

Third, by providing a functional form of the relation between seats and votes, the for-
mula explains the magnitude of the seat bias in terms of two explanatory variables: the 
number of relevant parties and the district magnitude. Such dependence cannot easily be 
seen when the Jefferson–D’Hondt apportionment algorithm is stated in its original form. 
While an empirical connection between the seat bias and the district magnitude has been 
recognized before, this article provides a firm theoretical basis for its existence.

Fourth, the model can also be applied to detect gerrymandering in electoral systems 
employing the Jefferson–D’Hondt method. In fact, it generalizes and extends the McGhee-
Stephanopoulos efficiency gap test (McGhee 2014; Stephanopoulos and McGhee 2015), 
currently one of the most prominent methods for detecting gerrymandering in two-party 
first-past-the-post (FPTP) systems, in three aspects: it allows for relaxation of a restric-
tive assumption that voter turnout is equal across all districts and it permits the test to be 
extended to multiparty systems, as well as to systems with multimember districts.

In Sect. 2, we discuss the basic features and assumptions of the proposed formula and 
demonstrate how it fits into the earlier relevant literature. In Sect. 3, we analyze actual elec-
tion data from nine European countries to demonstrate that the formula provides reason-
ably accurate estimates of actual seat allocations and, moreover, is quite robust to minor 
violations of the assumptions. In Sect.  4 we discuss how the formula can be applied to 

(3)Δi =
n

2m

(
pi −

1

n

)
.

8  For earlier attempts to estimate seat allocations on the basis of nationwide polls, see, e.g., Pavia and 
García-Cárceles (2016) and Udina and Delicado (2005). Those prior works attempt to fit a statistical model 
to data (a task heavily reliant on overt and latent distributional assumptions), while we derive a theoretical 
model directly from the Jefferson–D’Hondt method and use the empirical data only for test purposes.
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analyze electoral coalitions, spoiler effects, and electoral engineering. In Sect. 5 we briefly 
discuss future research directions, such as the formula’s application in detecting gerryman-
dering, and potential further corrective adjustments.

2 � Basic features and assumptions

2.1 � An overview of the Jefferson–D’Hondt method and of the literature on seat 
bias

Two formulations of the Jefferson–D’Hondt seat allocation method are commonly used. 
The one first proposed by D’Hondt (1882) closely tracked an earlier proposal by Jeffer-
son (1792) for apportioning seats among the states in the US House of Representatives. It 
called for finding a divisor D such that if each party (or state) were to be allocated as many 
seats as its number of votes (or population) divided by D , rounded down to the nearest inte-
ger, then no seats would remain unallocated. The fraction of a seat that is discarded when 
rounding down is called a rounding residual. It is easy to demonstrate that in almost all 
cases9 infinitely many such divisors exist and all yield the same distribution of seats. When 
dealing with vote shares rather than counts, it is convenient to replace the divisor D by  
a multiplier L := v∕D , where v is the number of all the votes cast.

An alternative formulation of the Jefferson–D’Hondt method was first introduced by 
D’Hondt himself (1885) and is far more popular among legislators and political scien-
tists.10 Let s be the number of seats to be allocated within a given district and vi be the num-
ber of votes cast for the i-th party ( i = 1,… , n ) in that district. We define a k-th quotient for 
the i-th party as vi∕k for k = 1, 2,… . Let qs be the s-th highest quotient overall, i.e., across 
all parties. The number of seats si allocated to the i-th party is then defined as the number 
of quotients for the i-th party larger than or equal to qs (if qs+1 = qs , an electoral tie occurs). 
It is well known that both formulations are equivalent (see Equer 1911, for an early proof).

Analytic formulae for the relationship between single-district seat bias and a party’s 
vote share have been developed independently by Bochsler (2010), Janson (2014) and 
Pukelsheim (2014, 2017). While appearing identical to each other and matching our seat 
bias formula (3) for c = 1 , they address different problems and employ different assump-
tions. Pukelsheim’s and Janson’s results are asymptotic, guaranteed to be correct only as 
the district magnitude approaches infinity. Bochsler instead assumes that the rounding 
residuals are distributed uniformly on (0, 1) , which in general also is true only asymptoti-
cally (Pukelsheim 2017, Sect. 6.10). Such assumptions impose significant limitations, as 
real-life district magnitudes are not only finite, but quite small (typically between three and 
15 seats). In contrast, our formula relies also on averaging across districts, and the errors 
decrease with (m

√
c)−1 (Flis et al. 2019).

9  The set of exceptional cases, which amount to an electoral tie (as some extrinsic rule has to be applied to 
allocate the last seat or seats), is of Lebesgue measure zero.
10  For instance, all EU countries employing the Jefferson–D’Hondt method for legislative elections except 
for Luxembourg include this formulation in their electoral legislation.
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2.2 � Assumptions

The “pot and ladle” formula can be proven to produce exact results under three assump-
tions discussed informally in this subsection. If those assumptions are not satisfied, errors 
occur. However, the formula remains robust against minor violations in the sense of pro-
viding approximately correct results.

It is clear that the “pot and ladle” formula cannot be applied to every party, because for 
sufficiently small parties the resulting number of seats turns out to be negative. That result 
reveals that a threshold exists below which a party always obtains zero seats, a conclusion 
well in accord with prior works by D’Hondt (1883), Rokkan (1968), Rae et  al. (1971), 
Lijphart and Gibberd (1977) and Palomares and Ramírez (2003) on the existence of a natu-
ral threshold. Only those parties with vote shares above the maximum of the natural thresh-
old and any applicable statutory threshold are here considered relevant. By transforming 
formula (2), we obtain our estimate of the natural threshold:

Our estimate of the natural threshold depends on the number of relevant parties, but 
the condition of relevance also depends on the threshold. Such circular dependency can 
be resolved by using an iterative algorithm for determining the number of relevant parties. 
First, we sort all parties in descending order according to their original (non-renormalized) 
vote share. Then we start with the largest party ( n = 1 ) and continue to add others, accord-
ing to the sort order, as long as the condition pn > tn is satisfied for the n-th party.11 Note 
that in each step, pn is defined as the share of votes for the n-th party among votes cast for 
the n largest parties.12

For example, let us consider the Portuguese general election of 2015. There were 
230 seats to be allocated and 22 districts (giving the mean district magnitude of about 
m = 10.45 ). In the first step of the algorithm, the set of relevant parties consists only of the 
largest party, PàF (Portugal Ahead). Then we continue to add parties as detailed in Table 2.

(4)t ∶= tn =
1

2m + n
.

Table 2   Identification of relevant parties in the Portuguese general election of 2015

Notation pi is the normalized vote share of the i-th relevant party

Party Threshold 
( tn ) (%)

Normalization con-
stant p

1
+⋯ + pn

PàF Socialist BE PCP-PEV PAN
Votes 2,074,345 1,747,730 550,945 445,901 75,170

Step ( n) p
1
 (%) p

2
 (%) p

3
 (%) p

4
 (%) p

5
 (%)

1 4.56 2,074,345 100.00
2 4.37 3,822,075 54.27 45.73
3 4.18 4,373,020 47.44 39.97 12.60
4 4.01 4,818,921 43.05 36.27 11.43 9.25
5 3.86 4,894,091 42.38 35.71 11.26 9.11 1.54

11  For a formal proof that the above algorithm identifies all relevant parties correctly, an interested reader is 
referred to Flis et al. (2019, Sect. 7).
12  Thus, the first party always qualifies (as p1 equals 1 in the first step).
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It can be seen that for n = 1,… , 4 , the normalized vote share pn is larger than the natu-
ral threshold tn , but the inequality no longer holds for n = 5 , as p5 ≈ 1.54% < 3.86% ≈ t5 . 
Hence, only the first four parties can be considered relevant in the sense defined above. 
Next, applying the “pot and ladle” formula we obtain the results presented in Table 3.

With the concept of party relevance explained, we can proceed to state our three 
assumptions:

A1	 There exists such a selection of a multiplier for each district that for every relevant party 
(a) the rounding residuals average to 1/2 over all districts, and (b) the multipliers are not 
correlated with normalized party vote shares;13

A2	 Normalized party vote shares average to national vote shares over all districts;14

A3	 Non-relevant parties get no seats.

Assumption A1 is fundamental to the working of the formula, but at the same time, 
highly technical in nature. As we discuss in Flis et al. (2019, Sect. 4), it can be justified 
partially under the probabilistic model of elections based on certain assumptions concern-
ing the distribution of party vote shares.

Assumption A2 is fairly intuitive and we would expect it to be satisfied approximately in 
most real-life elections. A major violation of A2 likely would be indicative of some form of 
gerrymandering. Minor violations may occur in countries, such as Spain, where the largest 
electoral districts are in urban areas and a significant urban–rural divide exists in politics, 
or when one party’s vote share is correlated with turnout at the level of the electoral district 
or with the aggregate support for non-relevant parties.

Assumption A3 can be violated in two instances:

(1)	 If the electoral support of some parties is tightly concentrated in a small number of dis-
tricts, while their nationwide vote shares are insufficient for those parties to be included 
in the set of relevant parties. In the most extreme case, some parties are regional (e.g., 
represent a national or ethnic minority) and register party lists only in a single region, 
where they are relevant. That problem may be solved by employing a regional correc-
tion, described in detail in “Appendix 1”.

(2)	 If the variances in district magnitude cause large variances in natural thresholds such 
that those parties too small to qualify for seat allocation in an average-sized district 

Table 3   Seat allocation in the 
Portuguese general election of 
2015

Party PàF Socialist BE PCP-PEV PAN

Vote share ( pi) 43.05% 36.27% 11.43% 9.25% 0%
Seat share ( si) 106.95 88.37 20.33 14.35 0
Actual seats 107 86 19 17 1
Error − 0.05 2.37 1.33 − 2.65 − 1

13  It can be noted that if A1 is satisfied, the multiplier averaged over districts equals the average unbiased 
multiplier (m + n/2) considered by Gfeller (1890), Joachim (1917) and Happacher and Pukelsheim (1996, 
2000).
14  This is equivalent to the assumption that normalized party vote shares are not correlated with district 
size measured by the sum of votes cast for relevant parties.
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nevertheless gain seats in the larger ones. For instance, in Portugal the average dis-
trict magnitude is about 10.45 seats, but (as of the 2015 election) 47 seats have been 
allocated in the Lisbon district and 39 seats in the Porto district. Accordingly, outside 
the two the natural threshold with four relevant parties equals approximately 10.87%, 
while in Lisbon it is more than five times smaller—just roughly 2.04%. For a recent 
discussion of this effect, see Barceló and Muraoka (2018).

2.3 � Determinants of the seat bias

As can be seen from the seat share formula (2), the seat share of each relevant party 
depends on only three variables: its vote share, the mean district magnitude, and the num-
ber of relevant parties. It should be noted that the relationship is affine, but not linear, sug-
gesting that the Jefferson–D’Hondt method should not be regarded as strictly proportional. 
However, do note that (2) can be expressed in an equivalent form:

which demonstrates that the seat shares are proportional but to the over-the-threshold vote 
shares.

Of the three variables named above, the mean district magnitude is, strictly speaking, 
the only parameter of the formula, being fixed in advance by electoral rules. In seven of 
the nine countries discussed in Sect. 3, the mean district magnitude varies between 10 and 
16. The exceptions are the Netherlands (with a single 150-seat district) and Spain (with 
m = 6.73 , one of the lowest in Europe, see Baldini and Pappalardo 2009, pp. 67–69).

When the formula is applied to estimate seat allocations, the number of relevant parties 
is not a parameter, but instead is obtained from nationwide electoral results using the pro-
cedure described in Sect. 2.2. However, when the formula is used to analyze counterfactu-
als, and only one party’s vote share is fixed, the number of relevant parties can be treated as 
a parameter, albeit a constrained one: fixing a number of relevant parties limits the feasible 
values of the vote share and, vice versa, fixing a vote share limits the feasible numbers of 
relevant parties.15 As expected, for the countries under consideration the number of rel-
evant parties correlates with the mean district magnitude.16

Some of the relationships revealed by the seat bias formula (3) are well known to 
students of electoral systems. For instance, there is nothing new about the finding of 
the negative effects of small districts on small parties, as the same follows from the 
well-known micromega rule (“the large prefer the small and the small prefer the large”; 
see Colomer 2004) and already has been well established by Rae (1967), Taagepera 
and Laakso (1980), Taagepera (1986) and Taagepera and Shugart (1989). Nevertheless, 

(5)qi =
1

2mt

(
pi − t

)
,

15  As each relevant party must cross the natural threshold defined in (4), and their vote shares must sum up 
to 1, when we fix m and n, pi can vary only between t and (2m + 1)t, where t is the natural threshold defined 
in (4). Conversely, with m and pi fixed, n must lie between 1∕pi − 2m and (2m + 1)∕pi − 2m.
16  The number of relevant parties for use in counterfactual models can be based on earlier elections, polls, 
or statistical models connecting it with exogenous parameters (such as the seat-product model proposed by 
Shugart and Taagepera 2017a, b; see also Taagepera 2007; Li and Shugart 2016; Shugart and Taagepera 
2017a, b). In the latter case, care should be taken to use a model providing an expected number of parties 
under the condition that a party of a given size exists, rather than just the absolute (unconditional) expecta-
tion.
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note that under the Jefferson–D’Hondt method this effect is magnified compared to 
other apportionment rules, as the negative seat bias arises in addition to the exclusion-
ary effect of the small district magnitude documented by Lijphart and Gibberd (1977).

The effect of the number of parties on the magnitude of the seat bias appears to have 
escaped the attention of many electoral scholars. It demonstrates, however, an important 
self-correcting aspect of electoral systems based on the Jefferson–D’Hondt method: as 
the number of parties increases, so does the bias of the largest party, at least partially 
alleviating difficulties in government formation caused by legislative fragmentation.

To illustrate the relationships revealed by the formula, on Figs. 1 and 2 we plot the 
seat biases for two hypothetical parties with a normalized vote share of, respectively, 
40% and 10%—as they vary depending on the number of parties (from two to nine) and 
the district magnitude; on Fig. 3 we plot the bias as a function of the vote share when 
the number of parties is either four or eight and the mean district magnitude is either 
three or sixteen.

Number of relevant parties
2 3 4 5 6 7 8 9

5 10 15 20 25 30
5
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Fig. 1   Seat bias of a party with a normalized vote share of 40% as a function of mean district magnitude
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Fig. 2   Seat bias of a party with a normalized vote share of 10% as a function of district magnitude
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3 � Empirical test

As noted above, the Jefferson–D’Hondt method is commonly used worldwide. Owing to 
data availability constraints, we restrict our empirical test to those cases that meet the fol-
lowing criteria:

(1)	 Post-1945 national lower house elections in EU member states…
(2)	 … with a single-tiered electoral system and mostly multi-member districts…
(3)	 … where the Jefferson–D’Hondt method continues to apply as of March 2019.

Eight countries satisfy those criteria: Belgium, the Czech Republic, Finland, Luxem-
bourg, the Netherlands, Poland, Portugal and Spain. We also include Croatia, although it 
does not fully satisfy criterion (3): it uses FPTP to allocate seats in special districts set 
aside for ethnic minorities. Since the number of those minority seats is relatively small 
(six out of about 150) and elections for those seats are held at different dates, consequently 
we shall omit them from our calculations. We do not include pre-2014 Belgian elections, 
as the overlap of the Walloon and Flemish regions in the Brussels–Halle–Vilvoorde district 
prevents the use of the regional correction, which is otherwise necessary (see “Appendix 1”). 
For Finland, we omit elections prior to 2003 because of the lack of data on apparentments, 
i.e., formal electoral alliances, at the district level. For Poland, we omit the 1993 and 1997 
elections owing to the use of the second electoral tier (the national list).

Table 4 sets forth the general parameters of the electoral systems of our countries of 
interest.

In seven of those nine countries at least some regional parties have won seats, such as the 
Convergence and Union (CiU), the Republican Left of Catalonia (ERC), the Basque National-
ist Party (EAJ/PNV), and many others in Spain; the Swedish People’s Party (SFP/RKP) in 
Finland; the Croatian Democratic Alliance of Slavonia and Baranja (HDSSB) and the Istrian 
Democratic Party (IDS) in Croatia; the German Minority (MN) in Poland; the Independent 
Democratic Association of Macau in Portugal in 1975; or the Party of Independents of the 
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Fig. 3   Seat bias ( Δ ) as a function of vote share ( p ) for specified electoral parameters ( m , n)
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East in Luxembourg in 1945. In Belgium, all relevant parties have been regional. Accordingly, 
in those cases we employ the regional correction.

The results of the empirical test confirm that our formula does indeed work as expected 
and is robust against minor violations of its assumptions. As seen in Fig. 4, showing the kernel 
density estimate of the distribution of party errors (i.e., the differences between actual and 
estimated seat shares for a given party), in more than 94.2% of the cases the error is within 
the (−1.5%, 1.5%) interval. That result is explained by the fact that under typical conditions 
encountered in real-life elections, the errors introduced at different stages of approximation 
tend largely to cancel each other out, thereby making the overall error quite small.

To measure the aggregate error per election, we use the total variation distance between 
actual and estimated seat share vectors (which is equivalent, up to a constant, to the �1 (taxi-
cab) metric; see Deza and Deza 2014, p. 260):

where sact
i

 is the number of seats awarded to the i-th party under the actual allocation. The 
intuition behind (6) is that it corresponds to the share of misallocated seats. Again, the 

(6)� :=
1

2s

n∑

i=1

||s
act
i

− si
||,

Table 4   General parameters of electoral systems of the test country dataset

Country Earliest elec-
tion included

Number of 
elections

Number of seats (s) Number of 
districts (c)

Number of relevant 
parties (n)

National Regional

Belgium 2014 1 150 11 0 14
Croatia 2000 6 143–146 11 4–7 0–2
Czech Republic 2002 5 200 14 4–9 0
Finland 2003 4 200 13–15 6–7 2
Luxembourg 1945 17 26–64 2–4 3–7 0–1
Netherlands 1948 21 100–150 1 7–14 0
Poland 2005 4 460 41 4–6 1
Portugal 1975 15 230–263 22–25 3–5 0–2
Spain 1977 13 350 52 2–5 4–9

Fig. 4   Kernel density estimate of 
the distribution of party errors. 
Bandwidth fitted by least squares 
cross-validation
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results are promising, as only in five out of 86 elections were more than 4% of all seats 
misallocated.17 Compared to the leading alternative formula, the modified cube law for 
proportional elections (Taagepera 1986), our formula is more accurate in 82 of 86 cases. 
The detailed error values for each election can be found in “Appendix 2”.

4 � Political applications

4.1 � Advantages of the formula for modeling political counterfactuals

Until now, we primarily have investigated the simplest case for our formula: allocating 
seats on the basis of the nationwide vote totals, when the results for all parties are known. 
But as was noted in Sect. 2.3, one of the main features of the formula consists in the fact 
that we do not need that much information. Hence, we can employ the formula to analyze 
various counterfactuals, such as vote swings, party splits and mergers, changes in the num-
ber of districts, or the introduction of statutory thresholds.

Of course, it is theoretically possible to investigate such counterfactuals even without 
the “pot and ladle” formula. That is, however, a taxing undertaking that can be accom-
plished only at the cost of many arbitrary or oversimplifying assumptions. First, one needs 
to translate aggregate results into district-level results, a task requiring one to model the 
distribution of district-level election results. As attested by the voluminous literature on 
partisan bias, that is a difficult problem in and of itself, especially if the voting patterns 
are not stable over time (see, e.g., Gudgin and Taylor 1979; Katz and King 1999; Linzer 
2012; Calvo and Rodden 2015). It also is mathematically challenging, as one has to gen-
erate a random matrix with constraints on both rows and columns. If the counterfactual 
situation involves changes in party vote shares, one then needs to translate those changes 
into district-level vote swings. Again, even in the simplest case of a two-party system, the 
swing patterns are quite complex (Blau 2001). While none of those difficulties are insur-
mountable, solving them is complicated and time-consuming. Moreover, it is difficult to 
distinguish the true effects of the counterfactual of interest from artifacts arising from the 
technical assumptions introduced along the way. The proposed formula avoids those tech-
nical differences. At the cost of a relatively small approximation error, it enables one to 
model the generic effects of counterfactuals in a simpler and more transparent manner.

4.2 � Changes in the structure of the party system: mergers and splits

It is well known that the Jefferson–D’Hondt system encourages coalitions (cf. Balinski and 
Young 1978b; Bochsler 2010). The seat bias formula (3) facilitates an easy assessment of 
the theoretical merger bonus, i.e., the difference between the estimated bias Δi,j of the coa-
lition of parties i and j and the sum of the estimated biases of the individual parties Δi + Δj 
under the assumption that the vote shares of all other parties remain constant:

17  Three of those five cases are the Spanish elections of 1977, 1979 and 2015, when significant correlations 
are observed between the vote shares of the left-wing parties (PSOE and PCE in 1977 and 1979, Podemos 
in 2015) and district size. The fourth case is the Luxembourg election of 1948, which was held in only two 
districts. The last one is the Luxembourg election of 2018, when deviations from assumption A1 happened, 
resulting from a coincidence of low probability events (very narrow margins of victory) in two out of four 
districts (i.e., 50%), which would be highly improbable in countries with more districts.
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Janson  2014, Theorem  8.1, provides an analogous asymptotic formula for c = 1 and 
s → ∞ . Note that the merger bonus does not depend on the number of third parties, but 
only on their total vote share, and that it is negatively related to the sum of the coalition 
parties’ vote shares. Also note that while the coalition, taken together, always benefits and 
never loses from a merger, it does not necessarily follow that each member thereof will 
have adequate incentives to join: that will depend on how the seats are allocated within the 
coalition (see Kaminski 2001; Leutgäb and Pukelsheim 2009; Janson 2014; Karpov 2015).

Of course, the seat bias formula is by itself not sufficient for assessing the exact effects 
of coalition formation, since a coalition may alienate each party’s fringe electorate or 
attract additional voters owing to the bandwagon effect. Kaminski (2001) demonstrates that 
additivity of voter support is infrequent. However, our formula provides an initial estimate 
of the merger bonus and its derivative with respect to vote share changes.

Formula (7) can easily be transformed to model the reverse case: a breakup of a party 
or a coalition. Again, as long as all successor parties are relevant, the sum of the successor 
parties’ seat shares remains invariant with respect to the distribution of their vote shares. 
It also can be noted that the gains from the breakup of a party or coalition accrue to every 
competing party in proportion to its normalized vote share.

Another change in the structure of the party system that can be modeled is the appear-
ance of spoiler parties. With the “pot and ladle” formula, the counterfactual estimates of 
election results without the spoiler and under various assumptions about the transfer of 
the spoiler’s votes can be conducted very easily, while performing district-level simula-
tions would be very complex. For such an application of our formula to the study of spoiler 
effects in the Polish parliamentary elections of 1993 and 2015, see Kaminski (2018).

Of course, while all parties seek to maximize their vote shares, most elections—and 
especially those in parliamentary systems—are still primarily about winning the legisla-
tive majority. The seat share formula (2) can be transformed to yield, for any combination 
of parameters m (the mean district magnitude) and n (the number of relevant parties), the 
minimum vote share pMaj that translates to at least half of the total number of seats:

where t is the natural threshold defined in (4). This is illustrated in Fig. 5 by a contour plot.

4.3 � Electoral engineering and reform

Political strategies involve not only changes in party identities but also electoral engineer-
ing. In proportional systems, such engineering usually takes the form of changes in the 
seat allocation method, statutory thresholds, or the number (and, consequently, the magni-
tude) of electoral districts (Kaminski 2002). In the former case, the “pot and ladle” formula 
can be used to model a change in the seat allocation method in countries that already use 
another form of proportional representation, as well as to provide a first approximation of 
the consequences of the introduction of the Jefferson–D’Hondt method in countries that 
employ an altogether different electoral system. Such an approximation especially could 
be useful if the electoral system change were a subject of major public discussion akin to 

(7)Δi,j −
(
Δi + Δj

)
=

1 −
(
pi + pj

)

2m
.

(8)pMaj =
1 + 1∕m

2 + n∕m
= (m + 1)t,
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the ones held in New Zealand and the United Kingdom before the electoral reform referen-
dums in those countries.

In the case of the smaller adjustments, and assuming that the Jefferson–D’Hondt method 
is used for seat allocation, the “pot and ladle” formula can be applied to estimate the effects 
of the change in electoral rules, again subject to a possible correction for secondary effects 
(such as induced coalition formation among the opposition or changes in the distribution of 
vote shares). For instance, from the “pot and ladle” formula we can calculate the number of 
districts that need to be added for the i-th party ( pi > 1∕n , i = 1,… , n ) to gain a single seat:

Somewhat counterintuitively, �1
i
 does not depend on the initial number of districts c . 

Moreover, it follows from (9) that �1
i
 has a singularity at 1∕n , which is not surprising, since 

no bias exists for mean-sized parties, so they will gain no seats no matter how many dis-
tricts are added (as long as the number of relevant parties remains unchanged). Of course, 
in practice the interval wherein no change in seats is possible is wider, as the number of 
districts that can be added is bounded by the total number of seats. Note that for small par-
ties, pi < 1∕n , �1

i
 is negative, as they lose rather than gain seats when districts are added. 

The dependence of �1
i
 on pi is plotted on Fig. 6.

Statutory (artificial) vote thresholds are another device of electoral engineering. Unlike 
the natural thresholds, see Sect. 2.2, they (if greater than the latter) give rise to discontinui-
ties in the seats-votes curves of all parties.18 Such discontinuities easily can be quantified. 

(9)�
1

i
∶=

⌈
2

pin − 1

⌉

.

Fig. 5   The minimum share of 
votes necessary for a party to 
obtain at least half of the total 
number of seats as a function of 
the number of relevant parties 
and the mean district magnitude. 
Midpoints of country code loca-
tions correspond to the value of 
the two parameters in the most 
recent election
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18  Four out of the nine countries discussed in Sect. 3 employ national statutory thresholds. In the Nether-
lands, it equals the Hare quota (1/150), while in Croatia, the Czech Republic and Poland—5%. In the latter 
two countries coalition thresholds are also in place (8% in Poland and 5% times the number of member par-
ties in the Czech Republic).
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Let 𝜏 > t be the statutory threshold, n − 1 parties be certain to clear it and only the n-th 
party be uncertain. Note that it is not necessary for the n-th party to be the smallest one—
because of different thresholds for different types of electoral competitors, it is possible 
for one competitor to fail to clear its threshold, while other smaller competitors manage to 
clear their own.19 Then, the i-th party’s ( i = 1,… , n − 1 ) seat share gain arising from the n-th 
party’s failure to clear the threshold is:

where t is given by (4). Note that for � = t (i.e., the artificial threshold equaling the natural 
threshold), Ti = 0 , and the discontinuity disappears. Further corollaries to this result are 
explored in “Appendix 3”, and Figs. 7 and 8 illustrate the dependence of Ti on �. 

With that result, we can answer another question of interest to political strategists. Let us 
consider two blocs of parties: A and B , with, respectively, nA and nB parties and aggregate vote 
shares pA and pB ; a single swing party C hovers over the statutory threshold and there are no 
other relevant parties. Who would benefit from C ’s failure to clear the threshold? If the benefit 
was to be measured by the number of seats acquired, the answer would be simple: it follows 
from (10) (which is additive) that the block with the larger aggregate vote share would capture 
a greater number of seats vacated by C . However, if the benefit is to be measured by captur-
ing the legislative majority, the problem becomes a little less trivial. If C were to fail to clear 
the statutory threshold, bloc A would be able to govern if and only if its benefit in seat shares 
exceeds the additional seat share needed to form the majority, i.e., if, by (10) and (2),

(10)Ti =
pi
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Fig. 6   The number of districts �1
i
 that need to be added (to some initial number of districts c ) for the i-th 

party to gain a single seat, depending on its vote share pi and the number of relevant parties n

19  For instance, in Poland in 2015 the United Left coalition failed to clear the coalition threshold of 8% 
with a vote share of 7.55%, while the Polish People’s Party qualified for seats with a smaller vote share of 
5.13%.
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As shown in “Appendix 3”, the requirement is equivalent to

Accordingly, a beneficiary of a swing party’s failure to clear the artificial threshold 
depends not only on the size of the two contending blocks, but also on their degree of 
consolidation.

(11)
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Fig. 7   Absolute seat share gains from a single competitor’s failure to clear statutory threshold (estimated for 
m = 10 and n = 5 , where t = 1∕25)
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Fig. 8   Relative seat share gains from a single competitor’s failure to clear the statutory threshold (estimated 
for m = 10 and n = 5 , where t = 1∕25 ). The dotted lines represent the lower and the upper bound given by, 
respectively, (20)—a straight line and (21)—a fragment of hyperbola
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5 � Future research directions

Potential future research directions for which the “pot and ladle” formula likely is to be 
useful have not escaped our notice. Some of those involve adjustments of the formula to 
deal with modifications of the Jefferson–D’Hondt method, such as multi-tiered seat alloca-
tion, or with major deviations from our assumptions. Others involve applications of the 
formula to the theoretical study of seats-votes relationships. In that field, we note that the 
formula can be used to generalize the McGhee-Stephanopoulos efficiency gap test for ger-
rymandering. Also, in a two-party case the analysis of the relationship between the ratio of 
the seat shares and the ratio of the vote shares yields a functional relation that approaches 
Taagepera’s (1986) generalized cube law for proportional systems, but with Euler’s number 
e ≈ 2.71 instead of number 3 as the base of the exponent (for proof, see Flis et al. 2019, 
Sect.  8). Two of the above-mentioned future directions are discussed in greater depth 
below.

5.1 � Corrective adjustments

As noted in Sect. 3, the “pot and ladle” formula is fairly robust against minor violations 
of the underlying assumptions. Nevertheless, in some cases the violations are of such  
a magnitude that the approximation produced by the formula is subject to a substantial 
error (see fn. 17). To avoid that, it is possible to devise corrective adjustments to the for-
mula that improve the quality of approximation, albeit at the cost of greater complexity. 
We do not attempt to do so in the present article, as in virtually all cases such adjustments 
would require additional information as to the spatial distribution of each party’s vote (e.g., 
the covariance of the district-level normalized vote shares and district size) that neither 
is known before the election nor is commonly reported as a part of nationwide election 
results or electoral polls. The regional correction described in “Appendix 1” is an excep-
tion here, but only because it deals with an extreme example of a distributional anomaly 
where regional parties do not even compete in some districts.

Of course, in some cases it might be possible to infer such additional information from 
historical patterns or demographic data. One example of an ad hoc correction to the “pot 
and ladle” formula that uses such an approach is a recent work by Evci and Kaminski 
(2019), who have developed just such a correction to deal with the distributional anoma-
lies of the Turkish party system (wherein the Kurdish HDP party shares many features of  
a regional party, with its support being very concentrated in southeastern Turkey, but regis-
ters candidate lists in the whole country, thereby ruling out the application of our regional 
correction). We believe, however, that such inference from historical patterns requires con-
siderable caution, as many parameters of interest are quite volatile and can change not only 
with major political realignments, but even with ordinary electoral swings. For instance, 
consider the Polish elections of 2007 and 2011, which were characterized by significant 
correlations between the turnout and the support for each of the two major parties (positive 
for the winning PO and negative for the losing PiS). However, in 2015 those correlations 
virtually disappeared. Besides, inference from historical patterns of vote distributions is 
of course impossible for new parties, which is an especially significant drawback at a time 
when party systems in many countries are in a state of flux.
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5.2 � Extension of the efficiency gap test

The FPTP electoral system used in more than 60 countries (ACE Project 2019), including 
the United States, the United Kingdom and most of the Commonwealth, can be thought 
of as a limiting case of the Jefferson–D’Hondt system (or other divisor methods). Let us, 
therefore, apply our formula to such a system, m = 1 , with only two relevant parties, i.e., 
n = 2 . We get from (2):

Note that the natural threshold becomes equal to 1∕(2m + n) = 1∕4 . Some of the 
assumptions underlying the “pot and ladle” formula also can be simplified in this case: A2 
is equivalent to the requirement that the normalized vote shares of both relevant parties be 
uncorrelated with the number of votes they receive together, and A1 is equivalent to the 
assumption that both parties’ shares of wasted votes, defined as the excess of the normal-
ized vote share over 1∕2 for the winning party and the entire normalized vote share for the 
losing party and, thus, equivalent to the half of our rounding residuals, are equal. Note, that 
the same condition was postulated by the McGhee–Stephanopoulos efficiency gap standard 
(Stephanopoulos and McGhee 2015), currently one of the most popular tests for the exist-
ence of partisan gerrymandering. Moreover, our “pot and ladle” formula for single-mem-
ber districts, (13), is equivalent to their seats-votes formula. It also implies that the restric-
tive McGhee–Stephanopoulos assumption that the sum of normalized vote shares of both 
relevant parties is constant across districts can be relaxed by requiring only an absence of 
correlation with party vote shares (as we mention above), thus providing a generalization 
of the efficiency gap test.

Several attempts have been made to extend the efficiency gap test to multi-party elec-
tions (McGhee 2017; Stephanopoulos and McGhee 2018; Tapp 2018; Veomett 2018). The 
main issue arises from the difficulties of providing a natural extension of the definition of 
wasted votes when multiple parties are competing. We propose that defining wasted votes 
in terms of rounding residuals provides just such a natural extension, applicable not only to 
multi-party elections, but also to multi-member districts (Flis et al. 2019, Sect. 7).

6 � Conclusion

The “pot and ladle” formula presented in this article has a number of both practical and 
theoretical applications. First, it facilitates the easy translation of vote shares into seat num-
bers, which constitute a natural complement of opinion and exit poll results. In such cases, 
aggregate national vote shares usually are all that is known. Their disaggregation into dis-
trict-level results can be done only by means of complex and volatile election demographic 
models. In addition, such models are especially unreliable for new parties, whose territorial 
support patterns cannot be inferred from earlier elections. Our formula provides a simple 
alternative that relies only on aggregate results and on the numbers of seats and districts, 
and yet provides a high degree of accuracy.

Second, the “pot and ladle” formula enables researchers and practitioners to simulate 
counterfactual election results without relying on restrictive assumptions about the territo-
rial distribution of party votes, making it a useful tool for evaluating political strategies and 
what-if scenarios as well as for assessing the effects of electoral engineering. The formula 

(13)qi = 2pi −
1

2
.



219Public Choice (2020) 182:201–227	

1 3

can be used to quantify for each party the expected consequences of electoral reforms that 
involve changes in the mean district magnitude and the statutory vote threshold. The pres-
entation by one of the authors of this article (J.F.) of such results during the 2017 public 
debate on local electoral reform in Poland contributed to the governing party’s decision to 
withdraw the controversial proposal to shrink the districts.

Thirdly, we explain how the seat bias under the Jefferson–D’Hondt method depends on 
the mean district magnitude and the number of parties. While the relationship of the bias to 
district magnitude, captured by the micromega rule, is well known to students of electoral 
systems, the relationship of the bias to the number of parties has been somewhat underap-
preciated outside of purely theoretical studies on election bias. We demonstrate how, and 
under what conditions, those two strands of electoral system research can be combined to 
form a complete picture of the conditions determining the magnitude of the seat bias.

Finally, the “pot and ladle” formula provides a consistent normative criterion for the 
absence of ‘skewness’ in the Jefferson–D’Hondt variant of proportional voting system. If 
the election results deviate significantly from the formula, then it must be ‘skewed’, either 
as a result of some unnatural correlations (possibly, though not necessarily, caused by 
malapportionment or gerrymandering), or due to some random numerical artifacts of the 
system.
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Appendix 1: Regional correction

As noted in connection with assumption A3, regional parties pose a significant problem 
in applying the “pot and ladle” formula, as all of their votes are concentrated in a limited 
number of districts. Accordingly, their nationwide vote shares are a poor approximation of 
their actual level of support in those districts. If exact regional vote shares are known, for 
instance, because separate regional polls are held (as is usually the case in Spain), the prob-
lem can be avoided by applying the “pot and ladle” formula for each region independently 
and then summing over all regions. However, even if no such data are available, seat allo-
cations still can be estimated on the basis of the nationwide distribution of votes, provided 
that it is known before the election which parties contest which districts and that certain 
additional assumptions hold.

Let a party that contests fewer than all districts be a regional party, and let other parties 
be national parties. Let the set of districts contested by a given regional party be a region. 
We will treat the set of districts with no regional parties as another single region. Using 
those terms, we can express the assumptions for the regional correction as follows:

http://creativecommons.org/licenses/by/4.0/
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R1	 There is no partial overlap between any regions;
R2	 The voters-to-seats ratio does not vary between regions;
R3	 The relative size of the national parties (i.e., the ratios of their respective vote shares) 

does not vary between regions.

Of those, assumptions R1 and R2 sound natural (although R1 can be quite restrictive—
for instance, it prevents the regional correction from being applied in Belgium prior to 
2014, as the Flemish and Walloon regions overlapped in the Brussels–Halle–Vilvoorde dis-
trict). R3 is less obvious, but the effects of its violations tend to cancel each other out on 
the national scale.

If the votes of a regional party i are concentrated entirely in a single region r (per R1) 
then, by R2, we can express its regional vote share as simply as

where Pi is the i-th party’s nationwide vote share, Pr
i
 is its regional vote share (both are 

non-renormalized), v and s are, respectively, the national vote and seat counts, and vr and 
sr are, again respectively, the regional vote and seat counts. For regional vote shares to sum 
up to 1, the vote shares of the national party j need to be rescaled (per R3) to

where R is the set of all regional parties and Rr is the set of regional parties running in 
region r . In the region with no regional parties, (15) will simplify to

With those approximations of regional vote shares, as well as precise data on the num-
ber of seats and districts within each region, the “pot and ladle” formula can be applied for 
each region without any further modifications.

Appendix 2: Aggregate errors for post‑1945 general elections in nine 
EU countries

Error is defined as the share of misallocated seats, i.e., the total variation distance between 
the actual and estimated seat share vectors, and modified cube law refers to the seat share 
estimates obtained by Taagepera’s (1986) modified cube law of election results (Table 5).20 
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20  Under Taagepera’s modified cube law for proportional elections, the expected seat share of the i-th party 
is given by qi = Px
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x) , where x := (log �∕ log s)1∕m , � is the number of voters, s is 
the number of seats, Pi is the non-normalized vote share of the i-th party, and � is the effective number of 
parties, i.e., � :=
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Table 5   Aggregate errors for post-1945 general elections in nine EU countries

Country Year Seats Districts Relevant 
parties*

Error of the “pot and 
ladle” formula (%)

Error of the 
modified cube 
law (%)

Belgium 2014 150 11 7 3.8 4.7
Croatia 2000 146 11 4 1.1 1.8

2003 144 11 7.3 1.6 7.5
2007 145 11 6.3 1.7 8.5
2011 143 11 3.5 3.1 5.2
2015 143 11 5.2 1.8 5.6
2016 143 11 5.4 2.5 3.9

Czech Republic 2002 200 14 4 1.0 0.8
2006 200 14 5 1.6 3.9
2010 200 14 5 0.9 1.5
2013 200 14 7 2.5 2.5
2017 200 14 9 2.3 5.9

Finland 2003 200 15 6.4 1.8 3.9
2007 200 15 7.4 2.9 3.9
2011 200 15 7.4 3.5 4.1
2015 200 13 7.4 2.8 3.2

Luxembourg 1945 51 4 4.3 2.1 7.5
1948 26 2 4 4.7 5.0
1951 26 2 3 1.5 4.2
1954 52 4 4 2.3 6.5
1959 52 4 4 2.7 5.6
1964 56 4 5 1.4 5.9
1968 56 4 4 2.7 4.9
1974 59 4 5 1.9 2.9
1979 59 4 6 2.8 6.8
1984 64 4 5 3.1 5.4
1989 60 4 7 3.7 6.7
1994 60 4 5 1.3 3.0
1999 60 4 6 3.9 5.0
2004 60 4 5 1.8 3.8
2009 60 4 6 1.6 4.5
2013 60 4 7 2.4 5.6
2018 60 4 7 4.8 7.4
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Table 5   (continued)

Country Year Seats Districts Relevant 
parties*

Error of the “pot and 
ladle” formula (%)

Error of the 
modified cube 
law (%)

Netherlands 1948 100 1 8 1.0 1.3
1952 100 1 8 0.7 1.4
1956 150 1 7 0.4 0.6
1959 150 1 8 0.8 1.5
1963 150 1 10 0.8 1.2
1967 150 1 11 0.9 1.5
1971 150 1 14 1.2 2.2
1972 150 1 14 1.1 1.7
1977 150 1 11 0.5 1.9
1981 150 1 10 0.9 1.0
1982 150 1 12 0.9 1.9
1986 150 1 9 0.8 1.8
1989 150 1 9 0.8 1.8
1994 150 1 12 1.0 2.0
1998 150 1 9 0.8 1.0
2002 150 1 10 0.8 1.5
2003 150 1 9 0.9 1.2
2006 150 1 10 1.0 1.1
2010 150 1 10 1.0 0.9
2012 150 1 11 1.1 1.7
2017 150 1 13 1.0 1.2

Poland 2005 460 41 6 1.2 3.2
2007 460 41 4 1.3 3.0
2011 460 41 5 0.9 4.9
2015 460 41 5 1.5 5.0

Portugal 1975 250 25 5 2.4 4.4
1976 263 24 4 1.3 1.7
1979 250 22 3 0.4 1.5
1980 250 22 3 0.6 1.0
1983 250 22 4 1.0 1.6
1985 250 22 5 1.4 2.9
1987 250 22 5 2.1 5.0
1991 230 22 4 2.6 3.3
1995 230 22 4 1.1 3.4
1999 230 22 4 2.3 2.7
2002 230 22 4 2.5 3.3
2005 230 22 5 1.6 5.0
2009 230 22 5 2.6 4.9
2011 230 22 5 2.3 3.8
2015 230 22 4 1.6 3.2
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Appendix 3: Statutory thresholds

Let t := (2m + n)−1 be the natural vote threshold for some fixed n ∈ ℕ , and let 𝜏 > t be 
the statutory threshold. Without loss of generality we can assume that the same threshold 
applies to all parties, and that p1 ≥ ⋯ ≥ pn . Assume that pn−1 ≥ � and pn ≥ t . Now let us 
consider the seat share of the i-th party, qi , where i = 1,… , n − 1 , as a function of pn . It 
can be seen that qi has a jump discontinuity at � , and its oscillation at that point, Ti , can eas-
ily be obtained from the seat share formula (2):

Formula (17) can easily be extended to the case of k out of n parties being uncertain to 
cross the threshold (assuming i = 1,… , n − k):

A party’s relative seat gain from the others’ failure to cross the threshold can be 
expressed as:

Note that

(17)Ti := lim
pn→�−

qi − lim
pn→�+

qi =
pi

2m

(
�∕t − 1

1 − �

)

.

(18)Ti(k) =
pi

2m

(
�∕t − 1

1∕k − �

)

.

(19)
Ti(k)

qi
=

� − t

(1∕k − �)
(
1 − t∕pi

) ≈
� − t

(1∕k − t)
(
1 − t∕pi

) .

(20)
Ti(k)

qi
=

� − t

(1∕k − �)
(
1 − t∕pi

) ≥ k
� − t

1 − t∕pi
≥ k(� − t),

Table 5   (continued)

Country Year Seats Districts Relevant 
parties*

Error of the “pot and 
ladle” formula (%)

Error of the 
modified cube 
law (%)

Spain 1977 350 52 4.3 5.2 7.6
1979 350 52 4.5 6.2 7.8
1982 350 52 3.3 3.6 4.7
1986 350 52 3.5 3.2 3.4
1989 350 52 4.5 1.5 6.9
1993 350 52 3.7 1.7 4.9
1996 350 52 3.4 2.4 3.2
2000 350 52 2.9 3.2 2.9
2004 350 52 2.5 2.1 2.2
2008 350 52 2.3 1.2 1.8
2011 350 52 2.9 3.5 3.3
2015 350 52 4.4 4.1 6.0
2016 350 52 4.4 2.7 4.3

*Averaged across regions
Source Global Elections Database (Brancati 2007) for pre-2007 elections. Constituency-Level Elections 
Archive (Kollman et al. 2018) and the web sites of the national electoral authorities for subsequent elections
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and

Accordingly, for k = 1 a party’s relative seat gain from a single competitor’s failure to 
cross the threshold satisfies � − t ≤ Ti∕qi ≤ �∕(1 − �).

Let us move to another issue introduced in Sect. 4.3, the “swing party” problem. Recall 
that pA and pB are the aggregate vote shares of, respectively, party blocs A and B . Under 
what condition bloc A would benefit from a swing party’s failure to clear the threshold? 
The positive answer is equivalent to the following inequalities:

As we assume that there are no relevant parties other than bloc A , bloc B , and the swing 
party C , we have 1 − � = pA + pB and n − 1 = nA + nB , and thus (24) is equivalent to:

Finally, we obtain:
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