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Abstract In this paper, we prove existence and uniqueness of equilibrium in a rent-

seeking contest given a class of heterogeneous risk-loving players. We explore the role

third-order risk attitude plays in equilibrium and find that imprudence is sufficient for risk

lovers to increase rent-seeking investment above the risk-neutral outcome. Moreover, we

show that rent can be fully dissipated in a standard Tullock contest played by a large

number of risk-lovers.
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1 Introduction

In a rent-seeking contest, individuals, groups, or institutions compete with one another to

obtain a known prize or rent. Competition often manifests itself in the expenditure of

resources designed to increase the likelihood of receiving the given rent. A large literature

applies the theory to politics, sports and many other fields.1 A notable strand of the relevant

research centers on testing the theoretical predictions of rent-seeking models in controlled

laboratory settings. However, the majority of these studies suffer from a similar yet per-

plexing result: subjects tend to spend more in rent-seeking effort than theory would suggest
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for risk-neutral participants. The outcome customarily is called over-investment.2 Houser

and Stratmann (2012) and Sheremeta (2013) provide thorough reviews of the experimental

literature and the prevalence of such a seemingly irrational finding. In the survey by

Sheremeta (2013), the causes of the over-investment phenomenon include bounded

rationality, additional utility of winning, other-regarding preferences, and probability

distortion.

Within a framework of expected utility (EU) theory, we derive conditions under which

rent over-investment can occur in equilibrium. These conditions rely on both an agent’s

attitude towards risk in general and attitude towards downside risk, also known as pru-

dence. Originally defined by Kimball (1990), prudence is a precautionary savings motive

whereby saving increases when future income prospects become riskier. Within the context

of EU theory, prudence is equivalent to a positive third derivative of the utility function.3

Eeckhoudt and Schlesinger (2006) use a concept of risk apportionment to show prudence

as a preference over 50–50 lottery pairs without the EU assumptions. In their work, prudent

agents demonstrate a risk location preference, effectively desiring a zero mean risk in a

high income state rather than a low one. In this paper, we emphasize the counterpart of

prudence, i.e., imprudence, and define it as a negative third derivative of a contestant’s

utility function.

In addition to the relationship between imprudence and rent over-investment, we also

find that agents’ risk-lovingness may cause rent over-dissipation, i.e., the sum of all

players’ investment exceeds the rent.4 The existing theories on risk attitudes and rent-

seeking deal almost exclusively with risk aversion.5 Most studies conclude that rent-

seeking expenditures decline as agents become more risk averse (relative to the risk-neutral

outcome). Hillman and Katz (1984) derive this result only when the rent is ‘‘small’’.

Without imposing a restriction on the rent’s value, Cornes and Hartley (2003) find that risk

aversion reduces rent-seeking expenditure under the assumption that the utility function

exhibits constant absolute risk aversion (CARA). Konrad and Schlesinger (1997) propose a

more generalized model that places no limits on either rent size or functional form.

Considering only a symmetric solution with identical agents, the authors’ ultimate con-

clusion suggests ambiguity in the relation between risk aversion and rent-seeking expen-

diture. It is only more recently that research has addressed higher-order risk effects in these

types of games. While not a rent-seeking model per se, Eeckhoudt and Gollier (2005)

present a loss-prevention model,6 which is equivalent to a non-strategic contest wherein

prudent agents supply less effort to avoid a loss than their risk-neutral counterparts. Treich

2 The term ‘‘over-investment’’ used in this paper is different from the winner’s curse common to auction
literature. See also footnote 4.
3 Menezes et al. (1980) make the initial reference to this third-order effect and name it downside risk
aversion. Their description suggests that downside-risk-averse agents dislike a transfer of risk from higher to
lower levels of wealth.
4 Note the difference between the terms ‘‘over-investment’’ and ‘‘over-dissipation’’. In this paper, over-
investment refers to an individual’s rent-seeking investment that exceeds the risk-neutral prediction, while
over-dissipation refers to an outcome where participants spend more in the aggregate than the value of the
available rent. Using simple numerical analysis, Tullock (1980) shows the conditions under which rents are
over-dissipated, namely non-linear rent-seeking production functions and the number of risk-neutral players.
5 Recent experimental studies suggest that risk-lovingness may help explain over-bidding in auctions; see
Gneezy and Smorodinsky (2006) and Platt et al. (2013).
6 Also known as the self-protection problem, first studied by Ehrlich and Becker (1972).
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(2010) proves, using Eeckhoudt and Gollier’s (2005) analogy, that risk aversion reduces

rent-seeking effort in a symmetric contest under the condition of prudence.

Recently, Jindapon (2013) complements Eeckhoudt and Gollier’s (2005) analysis by

proving that risk lovers also invest in loss prevention and they will exert more effort

than the risk-neutral solution if they are imprudent. Our intuition suggests that we

might be able to obtain a parallel result for a rent-seeking contest, which is a moti-

vation for this paper. However, to our knowledge, no previous contributions to the

relevant literature discuss the existence of equilibrium under risk-loving preferences,

although several papers do focus on the characterization of a unique equilibrium.

Notably, Szidarowszky and Okuguchi (1997) find a unique equilibrium under risk

neutrality, and Cornes and Hartley (2003) prove a similar result under risk aversion

with CARA preferences. More recently, Treich (2010) shows the existence and

uniqueness of a symmetric equilibrium under decreasing absolute risk aversion (DARA)

as long as the rent is small enough.7

In Sect. 2, we prove that for a set of heterogeneous risk-loving players, if each player’s

Arrow–Pratt measure of risk aversion does not change too quickly in the relevant income

domain, then a Nash equilibrium exists and it is unique. Since the risk-aversion measure is

constant given a convex CARA function, u(w) = eqw, with q[ 0, an equilibrium always

exists uniquely within that class of utility functions. Other classes of utility functions that

satisfy this restriction for some initial income and rent include convex CRRA (i.e., constant

relative risk aversion) functions, u(w) = wh, with h[ 1. Note that we neither need to

assume a very small rent in the context of Taylor’s approximation nor a certain kind of

monotonicity of the measure of risk aversion with respect to wealth.

We compare a risk lover’s rent-seeking investment in equilibrium to the risk-neutral

solution in Sect. 3. We find that risk lovingness and imprudence jointly are sufficient

for an increase in rent-seeking investment above the risk-neutral level. This result is

important, especially for researchers who use experimental observations to estimate

each individual’s parametric utility function. As mentioned above, over-investment is

very common in the laboratory; using a concave functional form to fit over-investment

data will create discrepancies.8 We focus on two simple functional forms that exhibit

risk-loving behavior, convex CARA and convex CRRA, and discuss how over-invest-

ment can be explained by risk lovingness and imprudence. We also present examples

of rent seeking wherein the sum of all players’ expenditures exceeds the rent, a phe-

nomenon known as rent over-dissipation. Specifically, we prove that rent over-dissi-

pation occurs when a large number of risk-loving players participate in a contest. To

our knowledge, this is the first paper to show that rent over-dissipation can occur in a

standard Tullock contest with EU maximizing players.9

We discuss our results and conclude in Sect. 4.

7 Cornes and Hartley (2012) conjecture that DARA players may induce a unique equilibrium. Yamazaki
(2009) also considers the DARA case without the assumption of small rent value. However, we discover a
flaw in his proof that restricts the existence of equilibrium to some special cases. See Appendix 2 for further
discussion.
8 See Abbink et al. (2010) for an example.
9 In a standard Tullock contest, the production function is linear and the number of players and the value of
the prize, which is common knowledge, are fixed. See Tullock (1980) and Higgins et al (1985) for a
treatment of both linear and non-linear Tullock contests.
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2 Existence of equilibrium

Consider the following n-player rent-seeking game with n C 2. Player i faces an initial

endowment of income Ii for i = 1,…,n. Players compete for an exogenous rent of a fixed

value R B Ii, for all i, by choosing a level of rent-seeking investment xi C 0. For a

representative player i, the probability of winning the rent follows the logistic contest

success function:

pi ¼
fiðxiÞPn
j¼1 fjðxjÞ

; ð1Þ

where fi is player i’s production function, transforming effort, here investment, into the

chance of winning.

Assumption 1 fi(0) = 0, f 0i (xi)[ 0, and f 00i (xi) B 0 for all xi C 0 and i = 1,2,…,n.

The assumption above is quite intuitive and common to both the rent-seeking literature

and contests in general.

If successful in winning the rent, player i’s final wealth is Ii - xi ? R; it otherwise will

be Ii - xi. Preferences over wealth are described by a utility function ui and each player

chooses xi to maximize his expected utility,

Eui ¼ piui Ii � xi þ Rð Þ þ 1� pið Þui Ii � xið Þ: ð2Þ

Given its significance in our results, we proceed using a methodology similar to that of

Szidarowszky and Okuguchi (1997) and Cornes and Hartley (2003). If we let yi = fi(xi), ,

and Y-i = Y - yi, the EU in (2) can now be written as

Eui ¼
yi

yi þ Y�i

� �

ui Ii � gi yið Þ þ Rð Þ þ Y�i

yi þ Y�i

� �

uiðIi � gi yiÞð Þ; ð3Þ

where gi is defined as fi
-1. Assumption 1 implies that gi(0) = 0, g0i(yi)[ 0, and g00i (yi) C 0

for all yi. According to (3), player i chooses his optimal rent-seeking effort yi, corre-

sponding to the optimal rent-seeking investment xi, to maximize his expected utility. We

can equivalently redefine this optimization problem as one where player i chooses a pair of

(yi, pi) to maximize

Ui yi; pið Þ ¼ piui Ii � gi yið Þ þ Rð Þ þ 1� pið Þui Ii � gi yið Þð Þ; ð4Þ

subject to the winning probability constraint

pi ¼
yi

yi þ Y�i

¼: pðyijY�iÞ: ð5Þ

Note that p(yi|Y-i), player i’s probability of winning, is increasing and concave in yi, and

decreasing in Y-i.

Now consider player i’s indifference curves in the (yi, pi) space.10 Let function qi
represent the probability of winning the rent such that, given yi, player i’s EU is equal to a

constant �U, that is,

qi yij �Uð Þ :=
�U � uiðIi � gi yiÞð Þ

ui Ii � gi yið Þ þ Rð Þ � uiðIi � gi yiÞð Þ : ð6Þ

10 For a graphical representation of this approach, see Tullock (1975).
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Given an increasing and concave constraint p(yi|Y-i), if player i’s indifference curve

qi(yi| �U) is strictly increasing and strictly convex in yi, a unique best response, y�i , to the

sum of all other player’s rent-seeking production, Y-I exists.
11 We state the following

assumptions about each player’s utility function to ensure this result. We denote player i’s

Arrow–Pratt measure of risk aversion by ri(w) = - ui
00(w)/ui

0(w).

Assumption 2 ui is thrice differentiable with

(i) ui
0(w), ui

0(w)[ 0 for all w and

(ii) ri(w) C 2ri(z) for all w, z [ (Ii - R,Ii ? R).

Assumption 2 (i) suggests two conditions of note. First, strictly increasing utility implies

that player i’s optimal investment, x�i , must be less than R and thus y�i \ fi(R). Otherwise

the distribution of his final wealth after investing x�i will be first-order stochastically

dominated by the distribution when he does not participate in the contest. Since Ii C R, as

assumed at the beginning of this section and R[ x�i , each player’s optimal investment is

not constrained by his budget. Second, we can identify the relevant income domain for

each player. Since x�i [ [0, R), each player’s final wealth must be less than Ii ?R (if he wins

the rent) and greater than Ii -R (if he does not win). Thus, the relevant income domain for

player i is (Ii - R,Ii ? R).

Assumption 2 (ii) requires that the Arrow–Pratt measure of risk aversion does not

change too quickly within the relevant income domain. If we pick any pair of w and z from

the interval (Ii -R, Ii ?R) and find that ri(w) C ri(z), then ri(w) C 2ri(z). On the other hand,

if ri(w)\ ri(z), we will have ri(w) C 2ri(z) if and only if the difference between ri(z) and

ri(w), i.e., ri(z) - ri(w), is smaller than -ri(z). Many functional forms of convex utility

functions possess this property. Consider a convex CARA function with the form

ui(w) = eqw, where q[ 0. Note that ri(w) = ri(z) = - q for all w and z so Assumption

2 (ii) always holds. Another example is a convex CRRA function with the form ui(w) =

wh, where h[ 1. Condition (ii) holds when the range of relevant income is not too large.

For example, if Ii = 4 and R = 1, then ri(w) [ ((1 - h)/3,(1 - h)/5) for all h[ 1 and w [
(3,5). It is not difficult to check whether a convex utility function satisfies this condition.

Lemma 1 Suppose that Assumption 2 holds. Indifference curves qi(yi| �U) are strictly

increasing and strictly convex in yifor all yi [ [0,fi(R)).

Proof See Appendix 1.

We adopt the approach by Cornes and Hartley (2003) to show existence and uniqueness

of equilibrium when all players are risk loving. First, given an aggregate investment of

other players Y-i, we define each player’s best response function y�i Y�ið Þwhich is the

investment by player i that maximizes (3). Then we derive player i’s share function siðY�Þ,
which is the probability that player i wins the contest as a function of total effort of all

players in the contest given player i’s optimal decision. Thus, Y� ¼ y�i Y�ið Þ þ Y�i. Next,

we obtain the following results regarding each player’s best response y�i Y�ið Þ and share

function siðY�Þ.

Lemma 2 Suppose that Assumptions 1 and 2 hold.

11 In fact, convexity of indifference curves is not necessary for the existence of player i’s best response
function given a concave constraint as in (5). For a risk averter with CARA utility functions, indifference
curves are concave yet Cornes and Hartley (2003) prove that the objective function is strictly quasiconcave
and therefore a global maximum exists. In the proof of Lemma 2, we show, despite the fact that ui is strictly
convex in wealth, that Eui is strictly quasiconcave in yi and player i’s best response function exists.
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(i) Player i’s best-response function y�i Y�ið Þ exists.
(ii) There exists a threshold

ji :=
uiðIi þ RÞ � uiðIiÞ

u0i Iið Þg0ið0Þ
ð7Þ

such that player i’s best response has the following properties:

(a) y�i Y�ið Þ[ 0 for all Y-i [ [0,ji) and
(b) y�i Y�ið Þ ¼ 0 for all Y-i C ji.

(iii) Each player’s share function siðY�Þ has the following properties:

(a) continuous on Y� [ 0,

(b) siðY�Þ ! 1 as Y� ! 0;
(c) siðY�Þ ¼ for all Y� � ji; and
(d) strictly decreasing in Y� for all Y� 2 ð0; jiÞ:

Proof See Appendix 1.

To prove part (i) of Lemma 2, we show that, given Assumptions 1 and 2, player i’s

objective in (3) is strictly quasiconcave in yi so there can be at most one positive stationary

point. If such a point exists, it is the global maximum of player i’s expected utility.

Otherwise, the global maximum is at yi = 0. Lemma 2 (ii) implies that, for player i, when

the aggregate investment of all other players is larger than some threshold, he will no

longer participate in the contest. Competitiveness in that sense reduces the probability of

winning; hence, the expected marginal benefit of winning becomes prohibitively small.

Consider the indifference curve that goes through the origin, i.e., qiðyij �U ¼ ui Iið ÞÞ where
ui(Ii) is utility from not participating in the contest. When Y-i becomes very large, the slope

of the constraint p(yi|Y-i) at the origin will be less than the slope of the indifference curve

qi(yi| �U = ui(Ii)) at the same point. The player thus chooses yi = 0, a corner solution, when

Y-i C ji.
It follows frompart (iii) of Lemma2 that, for any n,

Pn
i¼1 siðY�Þ is strictly decreasing given

Y� 2 ð0; max fjigÞ. Moreover,
Pn

i¼1 siðY�Þ ! n as Y� ! 0 and
Pn

i¼1 siðY�Þ ! 0 as as

Y� 2 max fjig. Hence there exists a unique value of Y� 2 ð0; max fjigÞ such thatPn
i¼1 siðY�Þ ¼ 1. We call such level of aggregate effort the equilibrium level of aggregate

investment,Ye. Therefore, spending by player i in equilibrium is ye = si(Y
e)Ye. Given Lemma

2, we can state sufficient conditions for a unique equilibrium under risk-loving attitudes.

Proposition 1 If Assumptions 1 and 2 hold, the rent-seeking game has a unique Nash

equilibrium.

3 Rent over-investment and over-dissipation

We now move to demonstrate the role third-order risk attitude plays in a rent-seeking

contest. Following Kimball (1990), we say that player i is prudent (imprudent) if

u000i (w)[ (\) 0 for all w. We begin with an examination of a generalized model and then

proceed with a more concrete example involving a standard Tullock contest. Consider

again the optimization problem in Eq. (3) from the previous section. In a symmetric

equilibrium (i.e., gi(y) = g(y), ui(w) = u(w), and Ii = I for i = 1,…,n) each player selects
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the same rent-seeking expenditure x, thereby selecting a corresponding investment y that

solves12

n� 1

n2y

� �

u I � g yð Þ þ Rð Þ � u I � g yð Þð Þ½ �

¼ 1

n

� �

u0 I � g yð Þ þ Rð Þ þ n� 1

n

� �

u0 I � g yð Þð Þ
� �

g0 yð Þ: ð8Þ

Therefore the optimal investment, y*, given R and n, satisfies the following condition,

y�g0 y�ð Þ ¼ n� 1ð ÞR
n2

1
R

� �
r
I�g y�ð ÞþR

I�gðy�Þ u0 wð Þdw
1
n

� �
u0 I � g y�ð Þ þ Rð Þ þ n�1

n

� �
u0 I � g y�ð Þð Þ

2

4

3

5: ð9Þ

Under the assumption of risk neutrality, the term in brackets reduces to 1 and the

solution easily simplifies to
n�1ð ÞR
n2

¼ ~y g0ð~yÞ, where ~y results from the risk-neutral optimal

investment ~x. We now address what role third-order risk attitude plays in equilibrium.

Proposition 2 Suppose that Assumptions 1 and 2 hold and all players are identical. If

players are imprudent, then each player’s rent-seeking investment in equilibrium exceeds

the corresponding risk-neutral level.

Proof See Appendix 1.

In the proof of Proposition 2, we show that the bracketed ratio in (9) is greater than 1

whenever u00 [ 0 and u000 \ 0. Since the left-hand side of (9) is strictly increasing in y, we

can conclude that y� [ ~y. If we examine a two-player contest, the optimal rent-seeking

condition in (9) can be written as

y�g0 y�ð Þ ¼ R

4

r
I�g y�ð ÞþR

I�gðy�Þ u0 wð Þdw
1
2

� �
u0 I � g y�ð Þ þ Rð Þ þ u0 I � g y�ð Þð Þ½ �R

2

4

3

5 ð10Þ

where again, under risk neutrality, the right-hand side becomes R/4. However, we find

that convexity of u is not relevant in determining the value of the right-hand side of (10).

Specifically, a negative u000 is necessary and sufficient for the bracketed ratio in (10) to be

greater than 1 so that y� [ ~y.13

Corollary 1 Suppose that Assumptions 1 and 2 hold and all players are identical. Under

n = 2, each player’s rent-seeking investment in equilibrium exceeds the corresponding

risk-neutral level if and only if players are imprudent.

If we consider the approach of Menezes et al. (1980) and interpret a positive third

derivative of a utility function as a preference for a rightward skew, these results make

intuitive sense. Prudent agents dislike additional rent-seeking expenditure because it

reduces their income in the ‘‘bad’’ state (i.e., not winning the rent) and thereby skews the

12 This is a special case of the first-order condition for each player’s maximization problem derived below
in (26) with si(Y

e) = 1/n for i = 1,…,n.
13 Consider (10). If we plot u0 and draw a chord connecting u0(I - g(y)) and u0(I - g(y) ? R), we find that
the area under the chord, i.e., the denominator in the brackets, is smaller than the area under u0, i.e., the
numerator in the brackets for any y if and only if u0 is concave, i.e., u0 0 0 \ 0, regardless of the sign of u00.
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income distribution leftward. However, imprudent agents can tolerate a leftward skew, and

therefore, spend more in rent-seeking efforts to win the ‘‘prize’’. This intuition can,

however, be somewhat ambiguous in the presence of risk lovingness.14 The second-order

and third-order effects may impact a player in opposite directions. In particular, it is

impossible to conclude whether a prudent risk-lover will invest more or less in rent seeking

than a risk-neutral player when n C 3. However, in a two-player game, this is possible and,

more notably, imprudence is all that is needed to induce over-investment because the

second-order effect does not matter. While this is quite limiting theoretically, much of the

existing experimental research focuses on two-player contests.

For further clarification, consider a symmetric contest with a standard Tullock lottery

where f(x) = x. In equilibrium, optimal rent-seeking investment in an n-player contest

derived in (9) can be re-expressed as

x� ¼ n� 1ð ÞR
n2

1
R

� �
r
I�x�þR
I�x� u0 wð Þdw

1
n

� �
u0 I � x� þ Rð Þ þ n�1

n

� �
u0 I � x�ð Þ

" #

: ð11Þ

Table 1 presents a summary of optimal investment in a Tullock contest with various

specifications for risk preference. We assume CARA and CRRA risk-lovers, i.e.,

u(w) = eqw and u(w) = wh, with q = 1.5, 3 and h = 1.5, 3. We compare each agent’s

optimal investment to the risk-neutral level in symmetric contests given two, three, and six

players. The values of individual investment greater than the risk-neutral level are shown

in bold. In all of the examples, initial income and rent size are I = 4 and R = 1,

respectively. As suggested in Proposition 2, the CRRA agent with h = 1.5 chooses to

invest more than the risk-neutral player because the former is an imprudent risk-lover. Both

imprudence and risk lovingness have a positive effect on the optimal investment level. On

the other hand, the CRRA agent with h = 3 and the CARA agents with both q = 1.5 and

q = 3 are prudent risk-lovers.15 When n = 2, as discussed above, risk-loving preference

does not play a role, only prudence does. Since prudence has a negative effect on the

optimal level of investment, these agents invest less than the risk-neutral player. However,

as n increases, their risk lovingness outweighs prudence so they choose to invest more than

the risk-neutral level.

Interestingly, when six players participate in the contest, each CARA player invests

more than 0.2 and the corresponding aggregate investment will be greater than the rent

itself. See aggregate investment in equilibrium given different number of players in

Table 2.

Proposition 3 Suppose that Assumption 2 holds, all players are identical, and f(x) = x. If

the number of players is large enough, the aggregate investment of all players in equi-

librium will exceed the value of the rent.

The above proposition can be stated without a formal proof. Using (7) we find that in a

symmetric Tullock contest, each player has the same threshold value of ji, which is

j ¼ uðI þ RÞ � uðIÞ
u0 Ið Þ : ð12Þ

14 See Konrad and Schlesinger (1997) for a detailed discussion. Treich (2010) considers only prudent risk-
averters.
15 See Crainich et al. (2013) and Ebert (2013) for properties of prudent risk-lovers.
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Note that gi
0(0) = 1 because fi(xi) = xi for i = 1,…,n. Since a player will not participate

in the contest if the total expenditures of all other players exceed j, then the aggregate

expenditure in equilibrium, Ye, will be less than j. Using the properties of each player’s

share function in Lemma 2 part (ii), we find that rent over-dissipation, i.e., Ye[R, may

occur in equilibrium for some large n if j[R. Specifically, we know that si(Y
*) is strictly

decreasing in Y* and si(j) = 0. If j[R, then we can choose a large n where 1/n = si(Y
e)

so that Ye [ (R,j). Given (12), we find that j[R if and only if

uðI þ RÞ � u Ið Þ
R

[ u0 Ið Þ: ð13Þ

Such an inequality holds for any strictly convex utility and hence the result in Propo-

sition 3 is obtained.16

For each numerical example given in Table 2, we can calculate the minimum number of

players necessary for rent over-dissipation. If we let n� denote the smallest n such that

1/n\ si(R), then we see rent over-dissipation in the same contest when the number of

players is greater than n�. In each column from left to right we find, si(1) = 0.228, 0.211,

0.052 and 0.151; the value of n� for each example can be calculated and is shown in the last

row of Table 2. Our theoretical prediction is consistent with Lim et al.’s (2014) experiment

wherein aggregate investment increases as the number of players increases.

Table 1 Individual investment in symmetric Tullock contests with 2, 3, and 6 players given Ii = 4 and
R = 1

Number of players CARA CARA CRRA CRRA Risk
(n) q = 1.5 q = 3 h = 1.5 h = 3 Neutral

2 0.212 0.151 0.251 0.248 0.250

3 0.239 0.192 0.231 0.239 0.222

6 0.204 0.211 0.145 0.162 0.139

The numbers in bold correspond to rent over-investment

Table 2 Aggregate investment in symmetric Tullock contests with 2, 3, and 6 players given Ii = 4 and
R = 1

Number of players CARA CARA CRRA CRRA
(n) q = 1.5 q = 3 h = 1.5 h = 3

2 0.424 0.302 0.502 0.496

3 0.717 0.576 0.693 0.717

6 1.224 1.266 0.870 0.972

Minimum n for rent over-dissipation 5 5 20 7

16 This result still holds in some generalized contests. If each player’s production function has fi
0 ð0Þ[ 1,

then we will find gi
0(0)\ 1 and the corresponding threshold value j will be larger than in (12).
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4 Conclusion

In this paper, we prove existence and uniqueness of equilibrium in a rent-seeking contest

given a class of heterogeneous risk-loving players and demonstrate conditions under which

rent over-investment is possible. In a symmetric contest, we find that imprudent risk-lovers

will always spend more than their risk-neutral counterparts. This conclusion can explain,

within an EU framework, the ‘‘excessive’’ expenditures often found in the experimental

literature. Moreover, we show that rent over-dissipation in equilibrium is possible given a

set of risk-loving players. At the very least, future experiments may benefit from screening

participants for their third-order risk attitudes. Early work from Tarazona-Gomez (2004)

and more recent studies by Deck and Schlesinger (2010) and Noussair et al. (2014) develop

methods to identify prudence (or imprudence) within experimental settings.

Acknowledgments We thank Klaus Abbink, Paul Pecorino, Ray Rees, Harris Schlesinger, Richard Watt,
and seminar participants at University of Alabama, University of Canterbury, and the 2013 Public Choice
Society Annual Meeting for valuable comments. We acknowledge Culverhouse College of Commerce for
financial support.

Appendix 1: Proofs

Proof of Lemma 1

The slope of indifference curve qi(yi| �U) is given by

q0i yij �Uð Þ ¼ ½qi/iðIi � gi yiÞð Þ þ ð1� qiÞwi Ii � gi yiÞð Þð �g0i yið Þ; ð14Þ

where

/i ¼
u0i wþ Rð Þ

uiðwþ RÞ � uiðwÞ
ð15Þ

and

wi ¼
u0iðwÞ

uiðwþ RÞ � uiðwÞ
: ð16Þ

Thus, under general conditions, the indifference curve is always upward sloping. By

letting vi: = Ii - gi(yi), we derive the second derivative of qi(yi| �U) with respect to yi from

(14) as

q00i ðyij �UÞ ¼ qi/i við Þ þ 1� qið Þwi við Þ½ �g00i yið Þ þ qiUi við Þ þ 1� qið ÞWi við Þ½ � g0i yið Þ
� 	2

;

ð17Þ

where

Ui wð Þ ¼ /i wð Þ /i wð Þ � wi wð Þ½ � � /0
iðwÞ ð18Þ

and

Wi wð Þ ¼ wi wð Þ /i wð Þ � wi wð Þ½ � � w0
iðwÞ: ð19Þ

96 Public Choice (2015) 164:87–101

123



The first term on the right-hand side of (17) is positive; however, the sign of the second

term is uncertain. To guarantee that it is positive we assume (i) u0
i(w) B ui(w)

[ui(w) - wi(w)] and (ii) w0
i(w) B wi(w)[ui(w) - wi(w)] for all w [ (Ii - R,Ii). Even

though Conditions (i) and (ii) are stated in terms of ui and wi instead of ui, their intuition is

quite simple. Using (15) and (16), we can write conditions (i) and (ii) as

u
00
i ðwþ RÞ
u0iðwþ RÞ � 2

u0i wþ Rð Þ � u0iðwÞ
ui wþ Rð Þ � uiðwÞ

ð20Þ

and

u
00
i ðwÞ
u0iðwÞ

� 2
u0i wþ Rð Þ � u0iðwÞ
ui wþ Rð Þ � uiðwÞ

ð21Þ

for all w [ (Ii - R,Ii) respectively. Thus, both inequalities can be satisfied if

u
00
i ðwÞ
u0iðwÞ

� 2
u

00
i ðzÞ
u0iðzÞ

ð22Þ

for all w, z [ (Ii - R,Ii ? R).

Proof of Lemma 2

Part (i) Given the optimization problem in (3), an interior solution yi
* satisfies the first-

order condition:

F y�i
� �

:=
Y�i

y�i þ Y�ið Þ2
½ui Ii � giðy�i Þ þ R

� �
� ui Ii � giðy�i Þ

� �
�

� y�i
y�i þ Y�i

� �

u0i Ii � gi y
�
i

� �
þ R

� �
þ Y�i

y�i þ Y�i

� �

u0i Ii � gi y
�
i

� �� �
� �

g0i y
�
i

� �
¼ 0:

ð23Þ

For the equivalent constrained-optimization problem given by (4) and (5), an interior

solution (y�i ; p
�
i ) satisfies the tangency condition and the constraint:

Y�i

y�i þ Y�ið Þ2
� ½p�i /i v

�
i

� �
þ 1� p�i
� �

wi v
�
i Þ

� 	
g0i yið Þ ¼ 0 ð24Þ

p�i �
y�i

y�i þ Y�i

¼ 0; ð25Þ

where v�i = Ii -gi(y
�
i ) and ui and wi are defined in (15) and (16), respectively. Substituting

p�i from (25) into (24) yields

G y�i
� �

:=
Y�i

y�i þ Y�ið Þ2
� y�i

y�i þ Y�i

� �

/i v
�
i

� �
þ Y�i

y�i þ Y�i

� �

wiðv�i Þ
� �

g0i y
�
i

� �
¼ 0: ð26Þ

Note that G(yi) is the difference between the slope of the constraint and the slope of

indifference curve at (yi, p(yi|Y-i)). Since the former is decreasing (in fact, strictly

decreasing when Y-i[ 0) and the latter is strictly increasing (see Lemma 1), G(yi) is

strictly decreasing in yi. If Y-i is less than a threshold (derived in part (ii) below), G(yi)[ 0
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when yi = 0. Moreover, we find that G(yi)\ 0 when yi is large enough. There conse-

quently exists only one value y�i such that G y�i
� �

¼ 0.

Next, we define

Dðy�i Þ :¼ uiðIi � giðy�i Þ þ RÞ � uiðIi � giðy�i ÞÞ: ð27Þ

Since u0 and u00 are strictly positive, we know that D(yi) is strictly positive and strictly

decreasing in yi. Given the definitions of G(yi) and D(yi), we can write the first-order

condition in (23) as

Fðy�i Þ ¼ Gðy�i ÞDðy�i Þ ¼ 0: ð28Þ

The properties of G(yi) and D(yi) described above imply that F(yi) is strictly decreasing

for all yi � y�i and that y�i is the only value of yi such that the first-order condition holds.

Thus we can say that F(yi) C (B) 0 if and only if yi B (C) y�i ; it follows that Eui in (3) is

strictly quasiconcave in yi. Since budgets do not constrain each player’s investment, the

only possible corner solution would be at zero, which occurs only when Y-i is so large that

y�i satisfying the first-order condition is negative. If this is the case, then we know that a

positive solution to the first-order condition in (3) does not exist because F(yi)\ 0 for all

yi C 0, so player i’s optimal decision is setting yi = 0.

Part (ii) We find the status quo level of player i’s utility with no investment and no

chance of winning to be ui(Ii). The constrained optimization problem yields an interior

solution, i.e., y� [ 0 given Y-i, whenever the slope of the indifference curve

qi(yi| �U = ui(Ii)) at yi = 0 is less than the slope of the constraint p(yi|Y-i) at yi = 0. Since

q0iðyij �UÞ) is given by (14) and p0 yijY�ið Þ ¼ Y�i

yiþY�ið Þ2, we have q0iðyij �U ¼ ui Iið ÞÞ\p0 yijY�ið Þ
at yi = 0 if and only if

wiðIiÞg0i 0ð Þ\ 1

Y�i

: ð29Þ

By letting ji ¼ 1=½wiðIiÞg0i 0ð Þ�, we find that y� [ 0 if and only if Y-i\ji.
Part (iii) Define player i’s share function, the probability that player i wins the con-

testgiven his optimal investment as si (Y
�) where Y� = (Y-i) ? Y-i. Since y�i (0)[ 0,

Y� = 0 is never an equilibrium and we do not need to define si(0). Using the constraint

(25), we rewrite the tangency condition (24) as

1� p�i
Y� � ½p�i /i v

�
i

� �
þ 1� p�i
� �

wi v
�
i Þ

� 	
g0i yið Þ ¼ 0; ð30Þ

which can be rearranged as

p�i ¼
½1� wi v

�
i

� �
g0i y

�
i

� �
Y��

1� wi v
�
ið Þg0i y�ið ÞY�½ � þ /i v

�
ið ÞY� : ð31Þ

Therefore, we have

siðY�Þ ¼ max
½1� wi v

�
i

� �
g0i y

�
i

� �
Y��

1� wi v
�
ið Þg0i y�ið ÞY�½ � þ /i v

�
ið ÞY� ; 0


 �

: ð32Þ
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We find that si is a continuous function of Y� for Y� [ 0 and that 1 is its upper bound. In

addition, as Y� approaches 0, si converges to 1. From part (ii) we know that y� = 0 if

Y-i C ji, where ji = 1/[wi(Ii)gi
0(0)]. Thus we can say that si = 0 if Y� C ji, which is

consistent with the numerator of (32). To show (d) we totally differentiate the system of

Eqs. (24) and (25) with respect to Y-i.

dp�i
dY�i

¼

� Y�i

Y�4 � y�i
Y�2 p�i /i v

�
i

� �
þ ð1� p�i Þwi v

�
i

� �� 	
g00i y�i
� �

þ y�i
Y�2 ½p�i /0

i v
�
i

� �
þ 1� p�i
� �

w0
i v

�
i Þ

� 	
g0i yið Þ
� 	2

qi00 y�i ju�ið Þ � p00ðy�i jY�iÞ
ð33Þ

dy�i
dY�i

¼
y�i �Y�i

Y�3 þ y�i
Y�2 /i v

�
i

� �
� wi v

�
i

� �� 	
g0i y

�
i

� �

q00i y�i ju�ið Þ � p00ðy�i jY�iÞ
ð34Þ

where u�i is the optimal EU corresponding to y�i . Since q00i ðy�i ju�i Þ� 0 and

p00 y�i jY�i

� �
¼ �2Y�i

y�i þ Y�ið Þ3
\0; ð35Þ

the denominator of each equation is always positive. Consider the numerator of (33). The

middle term is nonnegative because ui is convex and gi is concave. Thus
dp�i
dY�i

\0 if

y�i
Y�2 ½p

�
i /

0
i v

�
i

� �
þ 1� p�i
� �

w0
i v

�
i Þ

� 	
g0i yið Þ
� 	2\

Y�i

Y�4 : ð36Þ

Substituting gi
0(yi) from (24) and

y�i
Y� from (24) in (36) yields

p�i ð1� p�i Þ½p�i /0
i v

�
i

� �
þ 1� p�i
� �

w0
i v

�
i Þ

� 	
\ p�i /i v

�
i

� �
þ 1� p�i
� �

wi v
�
i

� �� 	2
: ð37Þ

Conditions (i) and (ii) in the proof of Lemma 1 guarantee that (37) holds, so
dp�i
dY�i

\0 for

all Y-i [ (0,ji). Now consider (34). Substituting q00i ðy�i ju�i Þ from (17) and p00ðy�i jY�iÞ from
(35) into (34) yields

dy�i
dY�i

[ � 1. Given the definition of Y� above, it follows that

dY�

dY�i
¼ dy�i

dY�i
þ 1.

Since
dy�i
dY�i

[ � 1, then dY�

dY�i
[ 0. Given

dp�i
dY�i

\0, it follows that dsi
dY�i

\0 for all Y� [
(0,ji).

Proof of Proposition 2

Using a generalization of Hermite–Hadamard’s inequality given by Theorem 5.11 in

Pĕcarić et al. (1992), we have

1

n

� �

u0 I � xþ Rð Þ þ n� 1

n

� �

u0 I � xð Þ\ n

2R
r

I�xþ2R=n

I�x

u0 wð Þdw ð38Þ

when u000\ 0. Using Steffensen’s inequality given by Theorem 6.19 in Pĕcarić et al.

(1992), we find
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r
I�xþ2R=n

I�x

u0 wð Þdw\ 2

n
r

I�xþR

I�x

u0 wð Þdw ð39Þ

when u00 [ 0. Thus, (38) and (39) jointly imply

1

n

� �

u0 I � xþ Rð Þ þ n� 1

n

� �

u0 I � xð Þ\ 1

R
r

I�xþR

I�x

u0 wð Þdw ð40Þ

and the bracketed term in (9) is greater than 1. Proposition 2 clearly follows.

Appendix 2: A note on equilibrium in Yamazaki (2009)

In the proof of Lemma 1 found in Yamazaki (2009), the author attempts to confirm the

convexity of an indifference curve G by examining its first partial derivative with respect to

yi:

oGi

oyi
¼ g0iðyiÞ

ui z
H
ið Þ � ui z

L
ið Þ u0i z

L
i

� �
þ

�U � ui z
L
i

� �

ui z
H
ið Þ � ui z

L
ið Þ ðu

0
i z

H
i

� �
� u0i z

L
i

� �
Þ

� �

; ð41Þ

where zi
H denotes income with the rent and zi

L is income without it, with all other variables

being defined previously. The author incorrectly claims ui(zi
H) - ui(zi

L) to be non-in-

creasing in yi when the difference is actually increasing in yi under the assumption of risk

aversion. Therefore we cannot conclude that indifference curves are convex and the

existence of a unique equilibrium under DARA breaks down.
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