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Abstract
We provide a review of the literature related to the “wrong skewness problem” in stochastic frontier analysis. We identify
two distinct approaches, one treating the phenomenon as a signal from the data that the underlying structure has some special
characteristics that allow inefficiency to co-exist with “wrong” skewness, the other treating it as a sample-failure problem.
Each leads to different treatments, while siding with either raises certain methodological issues, and we explore them. We
offer simulation evidence that the wrong skewness as a sample problem likely comes from how the noise component of the
composite error term has been realized in the sample, which points towards a new way to handle the problem. We also
investigate the issues that arise when attempting to use the unconstrained Normal-Half Normal (Skew Normal) likelihood.

Keywords Stochastic frontier ● Wrong skewness ● Non-representative sample ● Skew Normal ● Data mining ● Singular
Information matrix

JEL classification C18 ● C51 ● C21 ● C46 ● D24

1 Introduction

The production stochastic frontier model (SFM) is gener-
ically formulated (in logarithms) as

y ¼ m xð Þ þ ε; ε ¼ v� u;

E vð Þ ¼ 0; E v3ð Þ ¼ 0; u ≥ 0; v??u;
ð1Þ

where m(x) is the maximum production function. Its defining
property is the composite regression error, ε= v− u, where
the non-negative u component represents inefficiency
measured in output units, the distance of actual production
from its maximum given inputs, due to efficiency losses.
The component v represents “noise" and is traditionally

specified as being symmetric around zero. Given this, and
combined with the fact that u is non-negative and enters with
a minus sign, the presumption is that the composite error ε
should exhibit negative skewness (or positive skewness, for
the cost-frontier model, where u enters with a plus sign). We
will discuss the topic based on the production SFM.

The “wrong skewness problem” is particular to estima-
tion of the SFM and relates to the error term: it occurs when
the skewness of the residuals has the opposite sign from
what we expect from the model. It was first identified
through simulations in Olson et al. (1980) as a “Type I
failure”. The authors announced the issue in the context of
discussing the Corrected OLS estimator (COLS) for the
production SFM. They wrote, “A ‘Type I’ failure occurs if
the third moment of the OLS residuals is positive”, and a
few lines later, “(…) in every case of Type I failure we
encountered, the maximum likelihood estimate of λ also
turned out to equal zero. (This makes some sense, though
we cannot prove analytically that it should happen.) As a
result, Type I failures are not a serious problem.” The
parameter λ= σu/σv is the ratio of the inefficiency scale
parameter over the noise scale parameter.

But why “when the 3rd moment of OLS residuals is
positive” do we have a “failure”? And what kind of failure?
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As regards the COLS estimator, it fails because it incor-
porates the assumption that the skewness should be non-
positive (and would lead to a non-positive or even negative
estimate for σu). As regards MLE, it fails because it too
incorporates the assumption that the skewness should be
negative, and as Waldman (1982) proved formally, the
MLE for σu (bσu) is 0 when a “Type I failure” happens. But
this is an artificial result, as we will explain in Section 5.1

So before calling it a “failure”, first and foremost it
represents a mismatch between our a priori assumptions as
regards the population (negative skewness) and what the
available sample indicates, assuming that the sample is
“representative of the population”. Now the issue becomes:
Is our a priori assumption of negative population skewness
justified? Yes, under the standard additional assumptions
that v is symmetric and independent of u, and that u is non-
negative with monotonically declining density and hence
positive skewness. It is under these three assumptions, that
the population skewness of ε is (should be) negative, and so
when the sample skewness is positive, it is viewed as
having the wrong sign, hence the “wrong skewness
problem”.

Since it is a “problem” only under these additional
assumptions, the whole matter moves one level back: when
we obtain positive skewness, should we re-examine the
assumptions that led to it being labeled a “problem”, a case
of a sample not representing faithfully the population in that
respect? Is it not possible that our a priori assumptions on v
and u are what is “wrong”?

And indeed, one strand of the literature on the wrong
skewness problem has done just that: existing research has
relaxed either the monotonically declining density/positive
skewness assumption on u, the independence assumption
between v and u, and/or the symmetry assumption on v. Not
that these assumptions are unreasonable: The positive
skewness assumption for u has an economic motivation:
market forces make efficiency a factor of survival so more
firms will tend to be closer to low levels of inefficiency. The
independence and v-symmetry assumptions have more to do
with modeling convenience but they may also represent true
unanticipated shocks. But the relaxations that we will
review are also supported by economic and structural rea-
soning—they are not mechanical alterations of mathema-
tical/statistical assumptions. For these scholars, the positive
skewness is not “wrong” but a population characteristic
realized in the sample. We will review this literature first, in
Section 2, because it is this strand of literature that clearly
dispels a misconception about the relation between ineffi-
ciency and the sign of the error skewness: it shows that the

existence of inefficiency is not equivalent to a particular
sign of skewness in the population. It is not necessarily true
that, as one scholar once put it, when we have a positive
skewness in a production data sample,“the sample does not
support an inefficiency story”. In a production SFM, we can
have inefficiency and positive population skew. Corre-
spondingly, in a cost SFM, we can have inefficiency and
negative population skew. But if this is the case, then our a
priori assumptions are not really sine qua non in order to
obtain a model that can study what we want to study.2

Section 3 contains a methodological discussion on
whether “taking clues from data” to re-specify the SF model
as regards its distributional assumptions belongs to ques-
tionable practices of data-mining and the like, or not. But
the data aren’t always right: the other strand of the literature
on the wrong skewness problem stressed that it can indeed
be “wrong” and not infrequently: it is visibly probable, and
not just theoretically possible, to have a production popu-
lation with negative skew and a sample from it with positive
skew. To begin with, this may be a purely statistical matter.
Simar and Wilson (2009, p. 71) show through simulations
that, for example, when λ= 0.71 and the sample size is
n= 1000, there is a 22% chance of obtaining a sample
skewness with the wrong sign. But this statistical aspect
may also have a structural foundation: it is more likely to
appear when the “strength” of inefficiency u is relatively
low, either in absolute terms, or relative to the noise error
component v. This could reflect a distinctive structural
characteristic of the market under study. We review this
literature in Section 4.

Whatever the case may be, the conflict between our
assumptions on v and u on the one hand, and the realities of
the sample on the other, was dramatically showcased in
what is still the largest in scope empirical SFA study, the
book Industrial Efficiency in Six Nations by Caves (1992).
In their Table 1.1, p. 8, we learn that in a very large col-
lection of 1,318 industry-level samples from five countries
(Australia, Japan, Korea, UK, USA), 27% of them had the
“wrong skewness problem”. That is a very high percentage.
Mester (1997) reported the wrong skewness problem for
three of the twelve samples that she used (25%). But after
that, the wrong skewness problem disappeared from pub-
lished empirical work. Indicatively, Bravo-Ureta et al.
(2007) in a meta-regression analysis of 117 published
empirical production SF papers, found that all of them had
negative sample skewness. To our knowledge, from the
paper of Mester in 1997 to today, namely in 25 years, a
quarter of a century of intense publication of empirical

1 In light of these remarks, it is not clear why the authors considered
the wrong skewness problem as “not serious”, seeing that it makes the
COLS estimator inapplicable and the MLE a bad estimator.

2 The question whether what we want to study actually exists in the
real world, i.e. whether economic processes are indeed characterized
by a degree of inefficiency, is constantly answered in the affirmative in
the everyday world of economic activity.
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papers using the SFM, the only studies that reported a
wrong skewness problem in an empirical setup are Parmeter
and Racine (2012) and Haschka and Wied (2022).

So, either the wrong skewness problem was a short-lived
socio-economic phenomenon, perhaps a fin-de-siècle/mal-
du-siècle aberration that disappeared with the onset of the
new millennium, or, applied researchers, instead of imple-
menting the various approaches and solutions that theorists
kept publishing on the matter, kept abandoning these sam-
ples, resulting in the phenomenon being exorcised from the
published scientific record. Since samples with the wrong
skewness have a tangible probability of appearing by the
laws of chance alone, we believe it is the latter case.

After reviewing the literature on both fronts, we embark
on certain explorations of our own: we provide simulation
evidence that the sample skewness will be “wrong” mostly
when the noise error component is realized skewed, even if
it comes from a symmetric population. In such cases it
would have merit to specify the, theoretically symmetric but
asymmetric in the sample, error component as, exactly,
asymmetric, attempting with this tactic to “follow the
sample” and separate the chance skewness that comes from
v from the skewness that comes from u (and relates to
inefficiency).

In Section 5 we examine more closely the statistical
foundation of the Normal-Half Normal SFM, the Skew
Normal distribution. The wrong skewness as a sample
problem emerges when the relative strength of the ineffi-
ciency component is low. This brings us close to the
neighborhood of values where the MLE for the Skew
Normal has singular Hessian, and hence a non-standard
behavior. This casts doubt on whether it is advisable to keep
the original parametrization of the model, and we discuss
two (similar) re-parametrization schemes that have been
proposed. Section 6 catalogs open theoretical issues related
to the wrong skewness problem, and Section 7 concludes
with empirical guidance.

2 "Wrong skewness” as a property of the
population

2.1 Skewness of inefficiency

What if the “wrong skewness” is not wrong? What if our
sample represents faithfully the population’s skewness, as
regards its sign? Can we have real-world economic struc-
tures where a production-data population has inefficiency
and positive skew? Can we have a cost-data population that
has inefficiency and negative skew?

We can. Consider a market that, for whatever reason but
most likely due to heavy regulation or rigid barriers to entry
(e.g. “closed professions”), is characterized by many and

seriously inefficient firms. Then, the distribution of the non-
negative inefficiency component in a production setting will
exhibit negative skew: few firms will hover near the origin
(zero inefficiency), while the majority will sit comfortably
near higher positive values of inefficiency, although even-
tually the probability mass for very inefficient firms will go
to zero. This creates a long tail for lower inefficiency values
towards zero, a mode at some higher inefficiency level, and
a steeper tail as we move even further from the origin. We
have a high concentration of values to the right of the graph
of the distribution, with a longer tail to the left: the skew of
this distribution is negative. But since the inefficiency
component enters with a minus sign in the composite pro-
duction error term, the skew of the composite error itself
will be positive in the population, while representing high
inefficiency.3

This situation, which should be disheartening for any
economist but nevertheless is occasionally observed in the
real world, is exactly what Carree (2002) explored. He
pointed out that there exist well-known distributions that are
bounded from below at zero, and can exhibit negative skew
(hence positive after the minus sign in front): for example
the Binomial and the Weibull. Carree examined the SFM
with Binomial inefficiency, and Tsionas (2007) formulated
a panel-data SFM with Weibull inefficiency and a Bayesian
approach to inference.4

To visualize this, consider Fig. 1. In the left panel we plot
the densities for the Half Normal (with parameter 1), Wei-
bull, with shape parameter 5.5 and scale parameter 3, and a
(scaled) Binomial with size 20 and probability 0.75.5 We
see the classic positive skew for the Half Normal density
but a negative skew for the specific parameterizations for
the Binomial and the Weibull. It is clear for these two
distributions that negative skew implies a large percentage
of firms that are highly inefficient compared to those that are
highly efficient (the opposite of the Half Normal
implication).

The right panel of Fig. 1 displays the density of ε= v− u.
Again, it is clear that the density of the convolution between
v (here a Standard Normal) and u leads to densities that can
have negative skew (Half Normal) or positive skew (Wei-
bull/Binomial).

3 Griffin and Steel (2008) constructed a model to handle possible
heterogeneity in the sample vis-à-vis inefficiency. They used for the
purpose a two-component generalized Gamma mixture distribution,
and here the skewness of the inefficiency component could be either
positive or negative.
4 A recent contribution to this line of inquiry is Haschka and Wied
(2022) where they consider the healthcare sector in Germany in a
panel-data setting, providing structural reasons for, and finding
“wrong” skewness in parts of, their data set.
5 The scaling is so that the Binomial and Weibull inefficiencies have
essentially the same support.
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Carree (2002) mentioned that assuming a bounded sup-
port for a non-negative random variable (i.e. truncated also
from above) can also lead to a distribution with a negative
skewness, but he did not act on it. This happened some
years later, when, towards the other market-structure
extreme, Almanidis and Sickles (2011) and Almanidis
et al. (2014) questioned the accuracy of using a distribution
for the inefficiency component that has unbounded support
to the right. They argued that inefficiencies which are too
large will not be tolerated by the market and that the forces
of competition will root out rather quickly grossly ineffi-
cient firms. Technically, this can be modeled if we truncate
from above the distribution for the inefficiency component.
Specifically, for technical inefficiency following the doubly-
truncated Normal distribution, they showed that this may
lead to negative skewness for u, and hence to a positive
population skew for the composite production error.

We must note though, that, even under truncation, a
negative skew of the inefficiency component reflects that
inefficiencies tend towards the upper bound rather than
zero. So while the “Bounded Inefficiency” approach with
negative skew does not allow for long right tails and
extreme inefficiencies, it shares with the previous approach
the phenomenon of relatively high inefficiencies, which
constitutes a conceptual internal conflict in the economic
rationale and motivation of the model (that high inefficiency
does not survive). It provides a picture of the market where
highly inefficient firms may be non-existent, but the sur-
viving ones tend towards the upper bound of “allowed”
inefficiency. Although we should be realistically open to all
sorts of situations in a market, it is perhaps more consistent

to implement a Bounded Inefficiency model using dis-
tributions that retain a positive skew even under truncation,
in which case, they stop being a structural rationalization of
the wrong skewness problem.

2.2 Dependence and omitted variables

The approaches above proposed economic reasons why one
of the standard assumptions of the SFM, positively skewed
inefficiency, may not always be representative of the real
world. Others questioned another standard assumption,
again on economic grounds: that the components v and u of
the composite error term are statistically independent. The
earliest study to consider correlated error components is to
our knowledge Pal and Sengupta (1999).6 Their economic
motivation for the existence of intra-error dependence was
the fact that “managerial decisions may be affected by
natural factors such as climatic conditions which is a sta-
tistical noise”, but also misspecification in the form of
omitted latent variables that may affect inefficiency (“per-
sonal bias, family norms and standards” as they write).
These factors, being latent, are incorporated in the noise
component v. They constructed a SFM where noise and
efficiency followed jointly a bivariate correlated truncated
Normal.

Smith (2008) also explored an SFM with intra-error
dependence, mentioning the ever-present weather and sea-
sonality in agriculture, but also the side-effects of a heavy-
industry polluter on its own workforce due to uncontrolled
spillage of hazardous materials, as a by-product of the
production process. He employed a Copula to model
dependence and join the marginal distributions, an approach
that has also been adopted by, for example, El Mehdi and
Hafner (2014), Bonanno et al. (2017), Sriboonchitta et al.
(2017), as well as by Bonanno and Domma (2022). In the
presence of dependence, the skewness of the composite
error term can be either negative or positive, so again the
“wrong” skewness may in reality be a population
characteristic.

Papadopoulos (2021) returned to the omitted latent
variables argument of Pal and Sengupta (1999) but now
related directly to the sign of skewness, and for a more
pressing issue: due usually to lack of data, we do not often
include management as a distinct production factor (Alfred
Marshall would frown disapprovingly, Paul Samuelson
would sigh stoically). But management has a positive effect
on output, and it may be stronger than the effect of the
inefficiency component, resulting in positive skewness of
the composite error term. The solution he proposes is to
specify a two-tier stochastic frontier model for production,
and treat management as a latent variable entering

Fig. 1 Density plots for u (left panel) and ε= v− u (right panel) for
the Half Normal, Binomial and Weibull densities

6 See also Pal (2004).
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positively in the composite error. In this way, the composite
error may have positive or negative population skewness,
being the net result of the Tug-of-War between two
opposing forces (management and inefficiency) that are
estimated separately.

2.3 Asymmetry of the noise component

Bonanno et al. (2017) also innovated on another front: they
relaxed the symmetry assumption of the noise component v.
As economic motivation, they invoked a macroeconomic
dynamic framework where macro-shocks affect the noise
component of a production function, resulting in time-
varying skewness. They implemented a statistical specifi-
cation that allowed for either sign of skewness in the noise
component, something that naturally allows for the com-
posite error skewness to have any sign. Allowing the noise
component to be skewed has also been recently explored by
Badunenko and Henderson (2023) and Horrace et al. (2023)
who develop SFMs where the noise component is, respec-
tively Skew Normal and Asymmetric Laplace, while inef-
ficiency is assumed to follow an Exponential distribution.
Badunenko and Henderson (2023) mention many instances
of economic activity where what is modeled as noise is
expected and often found to be asymmetric: Asset pricing,
risk management, banking, supply shocks, interest rate
parity, education.7 We examine in more depth the issue of
skewed noise in Section 4.

Based on all these structural explanations on why we
may have inefficiency and “wrong” skewness, we cannot
agree with Simar and Wilson (2009) when they write (p.
73), referring to the standard production SFM with pre-
specified negative skewness, that “positively skewed resi-
duals should not be taken as evidence that the model is
misspecified.” They may very well be evidence of that, and
it is the duty of the researcher to confront the matter. The
critical and subtle issue is what kind of misspecification can
we validly treat without inadvertently adopting methodo-
logically questionable practices of “data mining”, and we
turn next to this important issue.

3 Mine or mind the data? Navigating model
specification

As we saw, there are many real-world economic situations
that could lead to a population with both inefficiency and
“wrong” skewness: high and widespread inefficiency,
bounded inefficiency, heterogeneous inefficiency, intra-
error dependence of noise and inefficiency, omitted

positive forces, or even a causally skewed noise. It is dif-
ficult to argue then that the negative skewness for the pro-
duction case (or the positive for the cost model case), should
constitute the “anticipated” structural reality (and as we
discussed earlier, the sample skewness in published SFA
studies is rather unreliable as evidence). Even if it is
eventually the case that statistically we observe more often
negatively skewed production data (positively skewed cost
data), nevertheless, if the obtained skewness is the “wrong”
one, researchers should contemplate whether any or many
of these situations may exist in their particular sample,
making the sample skewness sign to match, after all, the
population one. Only if they can argue against the structural
plausibility of such occurrences (by knowing the particular
market they are studying), it becomes valid to consider the
obtained skewness sign as “wrong” and treat it as a sample
problem. The simulations in Simar and Wilson (2009)
indicating that there is a not-small probability that we may
obtain the wrong skewness purely by the laws of chance,
cannot be used as an argument to skip the structural dis-
cussion: if say, there is a 20% chance to get the wrong
skewness by chance, this means that there is an 80% chance
that the sign of the sample skewness is faithful to the
population, a four-times-higher probability. The core argu-
ments for treating the sample skewness as wrong should be
economic, with the statistical laws being supportive to them,
not the other way around.

But we could also realize that the population we examine
through a sample may have the skewness sign that the
sample says it does. In such a case, we could implement any
of the models presented in the previous section.

In a conference presentation of this study, concerns were
raised that such an approach, where we estimate through
OLS the sample skewness and then we may change our
intended model accordingly, is an instance of “data mining”
and should be avoided.8 We have the following thoughts on
the matter, drawing from Leamer (1974, 1978, 1983), Aris
Spanos on data mining, Spanos (2000), and the still very
stimulating (actual) conversation on econometric metho-
dology between David Hendry and Edward Leamer, hosted
by Dale Poirier, (Hendry et al.1990, HLP1990 thereafter).

Taking ideas from the data is the most natural thing to do
in scientific exploration. Heckman and Singer (2017), in
their advocacy for “abducting" empirical economic analy-
sis, appear to have just encountered a wrong skewness case
when they write, “Abduction is the process of generating
and revising models, hypotheses, and data analyzed in
response to surprising findings." (our emphasis) A wrong
skewness sign in a stochastic frontier model is indeed a
“surprise", given our predominant preconceptions. Explor-
ing and responding to it is not at all equivalent to fiddling

7 Papadopoulos (2023) explores in some depth the idiosyncratic twists
and turns that the seemingly innocent “noise component” may take. 8 This is also the position taken in Simar and Wilson (2009, p. 72).
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with data in order to extract support for a priori anticipa-
tions. As is the case with detected sample patterns, corre-
lations and associations, so is with other sample
characteristics, which may be detected but be spurious in
the end (“fiction”, as Almanidis and Sickles 2011 put it).
But as Spanos writes (p. 248), “any empirical regression
that survives a thorough misspecification testing (…) is
worth another theoretical look (is there a theory justification
for such a correlation?) because it captures something that
appears to persist and is invariant over the whole of the
sample period.”

Building a model that aligns with the statistical aspects of
the data can not be considered a questionable approach.
Spanos states the obvious when he writes (p. 236), “If an
estimated model is going to be used for any form of sta-
tistical inference, its statistical adequacy is what ensures the
reliability of the overall inference”, where “statistical ade-
quacy” is understood as (p. 262) “capturing all the statistical
systematic information in the observed data.” Hardly an
unimportant desideratum. As Hendry says (HLP1990, p.
193) “(…) there are instances where empirical work has
changed how economists think about the world, and these
are then built into later thinking. Inflation effects in the
consumption function are a classic case in Britain, since
once they were added to the large macro models, many of
the multipliers changed sign, prompting theoretical
rethinking as well as further empirical testing.” Ah, the
issue of sign again…In pp. 210-211 of HLP1990, discuss-
ing Leamer’s three phases of empirical research, planning,
criticism, revision, and what would constitute a “genuine
criticism” (that would lead to a revision of the model), the
following illuminating dialogue unfolds:

– Leamer: I think wrong signs can make you upset…
– Hendry: I can’t accept that phraseology. A “wrong sign”

is a wrong notion. There we disagree. There are only
wrong interpretations. The coefficient must have the
sign it’s got: you are misinterpreting the sign.

– Leamer: I think of the plan as being contingent on the
choice of the sampling distribution and the choice of
prior. What you seem to be saying is that a wrong sign
forces you to rethink your prior and thus to alter
your plan.

– Hendry: No, I would say you are misinterpreting
the sign.

– Leamer: “Misinterpreting” means that you had the
wrong prior.

– Hendry: “Misinterpreting” means you have the wrong
theory.

– Leamer: Then, I’m not sure I understand what
you mean.

– Hendry: To form a theory of how the world works, a
conjecture when you approach data, is something that

all of us do. You can call it beliefs or you can call it
priors etc., although I think there is a distinction
between the theory one is using and a prior distribution
over the parameters of that theory. We may have no idea
whether an entity is going to be positive or negative, in
which case there would be no misinterpretation.

Apart from detecting the usual semantic hurdles that
people face when they try to understand each other, it is
clear that both scholars consider the existence of a wrong
sign as a serious matter that should be treated with the
appropriate deliberation, and not as something that could be
summarily dismissed as an unfortunate incident that has no
true relation to the real-world phenomenon that we study.
We note that this is the same Edward Leamer that has
offered us the tour-de-force on the dangers and the con-
sequences of data-mining, “Specification Searches: Ad Hoc
Inference with Nonexperimental Data” (Leamer 1978),
always a recommended reading. Our case would fall in the
category of “data-instigated models” (his ch. 9, which is
largely based on Leamer 1974). But there, Leamer is almost
exclusively concerned with the selection of regressors.
Adopting the Bayesian view of Leamer, we ask, why our
priors include a negative error skewness in a production
SFM? If they do because we have thought about the market
we are studying, and we have excluded the structural pos-
sibilities presented in the previous section, then we are
justified in treating a positive sample skewness as “wrong”,
and decide our next steps based on that. But if the intention
to specify a likelihood with negative skewness does not
involve some conscious structural arguments from our part,
then, it would appear, in reality we “have no idea whether
an entity is going to be positive or negative” as Hendry put
it, and so, in order to reflect our situation in our modeling
we should specify a likelihood unconstrained as regards the
direction of the skewness and let the data decide. Alter-
natively, running an initial OLS regression to obtain the
sample skewness, is not done to dictate how we should
proceed with our likelihood, but to inform us on what we
are facing: to push this to the extreme, if in a production
data set we obtain negative sample skewness, we should
also worry if the population skew is positive (for any of the
reasons presented in Section 2) and so have a “wrong
skewness problem” in our hands, even if the sign of sample
skewness is the “traditionally anticipated” one. Leamer
(1983) himself expands his beloved “Sherlock Holmes”
parable to present what the true dangers are. Quoting, (pp.
317-318).

In response to a question from Dr. Watson concerning
the likely perpetrators of the crime, Sherlock Holmes
replied “No data yet…It is a capital mistake to
theorize before you have all the evidence. It biases the
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judgments”. Were Arthur Conan Doyle trained as a
theoretical statistician, he might have had Watson
poised to reveal various facts about the crime, with
Holmes admonishing: “No theories yet…It is a capital
mistake to view the facts before you have all the
theories. It biases the judgments.”

Each of these quotations has a certain appeal. The
first warns against placing excessive confidence in the
completeness of any set of theories and suggests that
over-confidence is a consequence of excessive theo-
rizing before the facts are examined. The second
quotation, on the other hand, points to the problem
which data-instigated theories necessarily entail.
Theories which are constructed to explain the given
facts, cannot at the same time be said to be supported
by these facts.

What we have tried to make clear earlier, is that we do
not argue that our theory about what happens in the market
we study should follow the data blindly, the sign of the
sample skewness in our case. A positive skewness in a
production data set should not automatically mean zero-
inefficiency or a sample problem, but neither should it
mean, automatically, that some idiosyncratic structural
characteristic is present in the population that creates posi-
tive skewness in the presence of inefficiency. We do not
construct a theory to explain the data, our case is not one of
“double-duty” for the data or “observations in search of
hypotheses”, as Leamer (1978, p. 285) puts it. We do not
contemplate filtering out “nasty" observations, or changing
regressors/controls, or the mathematical expression for the
frontier function (from, say, Cobb-Douglas to Translog).
What we desire is statistical adequacy of the model in the
sense of Spanos. The model we started with is a regression
equation estimated by ordinary least squares. No distribu-
tional assumptions are involved in obtaining the estimated
skewness of the residuals. What we do is let the data have a
say on the specific matter, not necessarily the final say.

The reason why we desire to have a statistically adequate
model, is in order to arrive at a characterization of our
sample as being representative of the population. Because,
suppose now that we have obtained a sample skewness that
we honestly consider wrong, after performing our due
diligence. Then another hurdle is awaiting us: in what sense
is it meaningful to proceed with the sample at hand, since
we ourselves have concluded that it is not representative of
the population in that respect?

In a series of papers, Kruskal and Mosteller (1979a, b, c,
1980) conducted a wide review of both the statistical and
not-statistical scientific but also non-scientific literature, and
identified no less than nine variants as regards the meaning
of the concept “representative sampling”: in order of
appearance in their papers they are, (1) generalized if

unjustified acclaim for data, (2) absence of selective forces,
(3) miniature of the population, (4) typical or ideal case or
cases, (5) coverage of the population, (6) a vague term to be
made precise, (7) representative sampling as a specific
sampling method, (8) as permitting good estimation, or (9)
good enough for a particular purpose.

It is difficult to include a sample having the sign of the
empirical skewness opposite to the population’s in any of
these categories, and so accept it as “representative". Note that
the last category (Kruskal and Mosteller 1979c), “good
enough for a particular purpose” refers to situations where the
question to be answered by the data is things like mere exis-
tence, order-of-magnitude, ballpark estimates and the like, so
perhaps a more accurate label would be “good enough for a
not very ambitious or demanding purpose”. But asking that the
sample gets the sign of skewness right cannot be considered as
very demanding, especially since we are talking about the
skew of OLS residuals: there is no distributional mis-
specification to contribute to the result and the residual is the
linear projection error for the specific set of regressors used.

So, if we do think that the sign of the sample skewness is
wrong, we must treat our sample as partly non-
representative. Thankfully, scholars have come up with a
menu of different ways to proceed with a sample that does
indeed have the wrong skewness, and we now turn to
present them. These are methods to conduct valid estima-
tion and inference with a non-representative sample,
something that should attract the attention of statisticians
and econometricians in general, not just researchers in
stochastic frontier analysis.

4 "Wrong skewness” as a property of the
sample

There are constructs with plausible natural assumptions that
lead to statistical distributions for the inefficiency term that
have positive skewness (leading to negative skewness of the
composite error term). Torii (1992) presents two such con-
structs. The first is based on “capital vintage”, and the inef-
ficiency resulting from technological progress and non-
immediate replacement of fixed assets inside each decision-
making unit. The second construct assumes that inefficiency
is due to the incompleteness of managerial control. Here the
“management effort” to mitigate inefficiency will be dis-
tributed Half Normal or Exponential depending on whether
this effort is statistically correlated with the level of ineffi-
ciency (leading to the Half Normal), or not. Correlation
would indicate a more proactive management, while a less
proactive management maps intuitively to the “absent-
minded” Exponential distribution. Kuosmanen and Fosgerau
(2009) present another managerial narrative that leads to a
distribution of inefficiency with positive skewness.

Journal of Productivity Analysis (2024) 61:121–134 127



So we do have economic arguments to support this
approach, in which case, facing a sample that has the
wrong skewness may indicate a non-representative com-
position, while it can also be helped by a population
characteristic: low population inefficiency-low skewness
combined with the laws of chance. The sample skew is a
random variable and it can take negative and positive
values, so there is always non-zero probability that it will
fall on the wrong side of zero. And the closer to zero is the
value of the population skew, the more probable this
becomes.

There are different structural economic scenarios that
may lead to low skewness. Consider for example an
emerging market for a new product: inefficiency may still
be high as firms are at the first stages of their learning
curves, but noise and uncertainty are expected to also be
high, in an unsettled market with consumers being also at
the first stages of their learning curves. This may lead to a
low signal-to-noise ratio (ratio of standard deviations
between inefficiency and noise) and low skewness for the
composite error. In a totally different setup, we may observe
low skewness due to low inefficiency in mature markets
with thin profit margins: here, efficiency is an acute matter
of survival. This case has been formalized in the “zero-
inefficiency” model of Kumbhakar et al. (2013), where a
proportion of firms have “zero” (negligible) inefficiency,
while the rest have low inefficiency. Nevertheless, this is
not a model to handle a wrong skewness situation, since its
likelihood pre-assigns a negative skew. But the wrong
skewness can just be a chance event, as the simulations of
Simar and Wilson (2009) indicated, for which we will
provide further evidence in a while.

So we see that, as there are valid reasons to contemplate
the case of the “wrong skewness” as actually being a
population characteristic, there are also reasons that support
the position that the sample skewness has the opposite sign
of the population skewness. What we advocate here is that
researchers should face the issue transparently and argue
why they adopt one or the other interpretation.

4.1 Approaches to migrate from wrong skew

Simar and Wilson (2009), after showing that the sample
skewness may have the wrong sign by chance alone,
proposed three different ways to conduct valid inference in
the presence of it: first, in order to construct prediction
intervals, they propose a “bagging” procedure (boot-
strapping and aggregating on predictors), or alternatively a
method to obtain bootstrap-adjusted interval estimates. For
confidence intervals they construct a parametric bootstrap
algorithm. They present simulations that support the
improved performance of their algorithms against con-
ventional methodologies.

Hafner et al. (2018) proposed another approach, by
extending the density of the model: they create the exten-
sion by mirroring the density onto the negative axis by
reflecting it at zero, and they truncate and shift it so that it
has a non-negative support (while also being bounded from
above). The novelty here is that the manner in which the
density is reflected is such that regardless of the sign of the
skewness, the density has the same mean. Why does this
matter? Given the focus on the Half-Normal distribution,
being a single parameter density, the mean is itself enough
to identify said parameter. This implies that the mirrored
density can circumvent issues pertaining to the sign of the
skewness in identifying the parameters of the inefficiency
distribution.

The elegance of this approach is that it retains the stan-
dard distributional assumptions commonly invoked by
applied researchers, but manipulates the density of ineffi-
ciency in such a way that guarantees that the sign of
skewness no longer plays the key role in identifying the
model. An unfortunate side-effect of this manipulation of
the underlying density is that one can no longer use stan-
dard formulae and statistical software to estimate the model.
The authors point out the similarities with Almanidis and
Sickles (2011) and Almanidis et al. (2014). They establish
the asymptotic properties of the corrected OLS and max-
imum likelihood estimators corresponding to this new
density, and provide the expressions for predicting technical
efficiency when inefficiency is distributed either Half Nor-
mal or Exponential. They also derive a likelihood-ratio test
for the symmetry of the composite error term.

Cai et al. (2021) pushed the view that the wrong skew-
ness is a finite sample problem to its logical decision-
making consequences, in order to get the job done: if it is,
then force the estimator to “ignore” it. They proposed
estimating the stochastic frontier model by imposing a
(linearized) inequality constraint on the skewness sign of
the residuals (either in a COLS or an MLE framework), the
forbidden sign depending on whether one estimates a pro-
duction or a cost model. Such a constraint requires a
numerical bound away from zero. Naturally the size of this
bound will impact the estimator, for in any scenario where
the wrong skew arises, the constrained MLE for the var-
iance parameter of inefficiency will be set equal to this
bound. An interesting feature of incorporation of the con-
straint is that it leads locally to the same behavior as found
by Waldman (1982). That is, in an area of the parameter
space near the OLS estimates, the constraint binds.

For maximum likelihood Cai et al. (2021) suggested
using a Bayesian Information Criterion to optimally deter-
mine the bound’s value, while for COLS, a criterion based
on the residual sum of squares (similar to Mallow’s Cp).
Their simulations indicated that these criteria work well.
However the bound is selected, the intuition is quite simple:
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when confronted with wrong skew and the belief that the
empirical model is correctly specified, the researcher simply
replaces the 0 estimate for the variance parameter from the
Half Normal distribution with a small number. It is the
selection of this small number where all the statistical
interest lies, but the switch is what matters for practice. Our
exposition here is a bit more simplified that what is pro-
posed by the authors. This is because we do not keep all of
the original maximum likelihood estimates (read OLS) and
simply replace the 0 value with some other number. The
constraint in some sense prevents the local (global?) optima
that is OLS from being reached and so all of the parameter
estimates are likely to differ to some extent.

An important feature of the constrained MLE/COLS
approach adopted by Cai et al. (2021) is that the bound on
the constraint is not an interesting model parameter. In fact,
it is not a parameter at all. It is simply a device that allows
one to circumvent wrong skewness when one believes that
the model is correctly specified.

Zhao and Parmeter (2022) and Parmeter and Zhao
(2023), in a similar fashion as both Hafner et al. (2018) and
Cai et al. (2021), attempted to by-pass wrong skewness but
do so using a slightly different approach that does not
require modifications to the density or the selection of a
lower bound on a constraint. The idea in both of their papers
(one being MLE and the other COLS), is to solve the model
(or place constraints on the model) based on the expected
value of the absolute value of the composite error. That is,
whereas Hafner et al. (2018) constructed a density that no
longer requires skewness to identify key parameters and Cai
et al. (2021) constrained the skewness, Zhao and Parmeter
(2022) and Parmeter and Zhao (2023) used a different
moment condition altogether. As it turns out, use of this
moment condition, either in MLE or COLS, requires non-
linear techniques, but reduces quite dramatically the
occurrence of “Type I failures” (but does not completely
eliminate their occurrence). That is, the use of this moment,

E[∣ε∣], does not guarantee that wrong skewness is eschewed
as in Hafner et al. (2018), but it also does not require a
fundamental change to the shape of the density while it
drastically lessens the occurrence of the issue. In the MLE
case, use of E[∣ε∣] as a constraint is independent of any
tolerances (as in Cai et al. 2021) and again dramatically
lowers the occurrence of wrong skewness (but does not
completely eliminate it). The constraints that Zhao and
Parmeter (2022) required are

E jεij½ � ¼ σ
ffiffiffiffiffiffiffiffi
2=π

p
;

E jεij½ �ð Þ2
Var εið Þ ¼ 2ð1þ λ2Þ

π þ ðπ � 2Þλ2 : ð2Þ

These moment constraints are entirely consistent with the
Normal-Half Normal distributional assumptions.9

4.2 Blame it on the noise

One thing these articles did not explore in detail is what
must happen so that we obtain a sample that has the sign of
the empirical skewness opposite to the population sign. In
Table 1 we present the results from a simulation to indicate
that perhaps “the noise is to blame”: that the noise com-
ponent of the composite error term is realized skewed in the
sample, not because it is skewed in the population, but
because symmetry is a fragile property, and not easy to
achieve in a finite sample.

We draw from a Normal-Half Normal distribution with
negative skewness. The table shows the empirical prob-
ability of having a positively skewed realized sample of the
Normal variate given that the sample skewness of the
composite error term is estimated as positive. We see that
there is a very high probability that the two will happen
together. To connect with Simar and Wilson (2009)

Table 1 Pr bγ1ðvÞ> 0jbγ1ðεÞ> 0½ �.
σv= 1

λ2 0.01 0.05 0.1 0.5 1 2

γ1(ε) −0.0002 −0.0023 −0.0065 −0.0600 −0.1370 −0.2718

σu 0.1 0.2236 0.3162 0.7071 1 1.4142

SNR ¼ σu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=π

p
0.0602 0.1347 0.1906 0.4262 0.6028 0.8525

n

25 0.965 0.824 0.917 0.799 0.740 0.693

50 0.967 0.830 0.891 0.821 0.781 0.744

100 0.965 0.829 0.918 0.841 0.811 0.764

200 0.968 0.825 0.917 0.862 0.846 0.831

500 0.958 0.836 0.911 0.889 0.898 0.848

1000 0.972 0.933 0.918 0.939 0.938 1

5000 0.970 0.949 0.948 0.995 1 n/a

Normal-Half Normal distribution with negative skewness

9 The authors also consider the same setup but for the Normal-
Exponential framework.
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simulations, for λ2= 0.5 and n= 1000 the probability they
report of obtaining by chance a sample skew with sign
opposite to that of the population is 0.22. Our results say
that in these 22 in 100 cases, 94% of the time the noise
component has been realized as positively skewed. So we
are bound to obtain a chance wrong skewness in our sam-
ples not infrequently.

This provides a motive to specify the noise component so
as to allow for skewness, even if it is symmetric in the
population: this is deliberate “misspecification” in order to
“follow the sample” and be able to separate the chance
skewness from the skewness coming from the inefficiency.
We should implement a density that nests the symmetric case
so that we do not create inconsistency. As already mentioned,
Badunenko and Henderson (2023) and Horrace et al. (2023)
explored models with Skew Normal and Asymmetric Laplace
noise, respectively, and Exponential inefficiency. Tsionas
(2020) built a model with Asymmetric Laplace noise and Half
Normal inefficiency, although only in a Bayesian framework.
Wei et al. (2021) proposed the Extended Skew Normal for the
noise component, coupled with Half Normal inefficiency.10

Finally, Zhu et al. (2022) combined dependence and noise
skewness, and proposed modeling the composite error term as
a multivariate Skew Normal distribution, where noise and
inefficiency are allowed to be dependent, and both are mar-
ginally Skew Normals.

We see that modeling the noise component as skewed
can serve two masters, becoming an agnostic escape:
whether we think the wrong skewness is a population
characteristic or a sample failure, it can accommodate both
situations. But the approach is not without dangers: in
certain cases we may have complete loss of parameter
identification, and also, statistical power may suffer.11

Finally, it is conceivable that the wrong skewness
emerged because the noise error component was realized as
skewed in the sample, while at the same time inefficiency is
“zero". Modeling the error term as skewed, this situation
should be uncovered through a very low estimate for the
mean/scale parameters of the inefficiency component.

5 Maximum likelihood with wrong or low
skewness

We have mentioned in the beginning that Waldman (1982)
proved that in the standard SFM production model with
Normal noise and Half Normal inefficiency (and so a Skew
Normal composite error with imposed negative skew), the
maximum likelihood estimate of inefficiency will be the

value zero when the skewness of the OLS residuals is
positive. Some other papers explored this topic further. Rho
and Schmidt (2015) found that this result also holds in the
“zero-inefficiency” model of Kumbhakar et al. (2013)
where a proportion of firms are fully efficient. Horrace and
Wright (2020) showed that the result holds even more
generally. Cho and Schmidt (2020) qualified the result,
showing that when “environmental variables” are used to
model the scale parameter of inefficiency, this stationary
point is in general neither a minimum nor a maximum.

That the MLE formally estimates inefficiency as being
zero when we have “wrong skewness”, does not make it a
good estimate for what holds in the data. On the contrary
this is an artificial result that comes about due to the con-
straint on the direction of skewness. Consider turning into a
log-likelihood the unconstrained Skew Normal density

gεðεÞ ¼
2
σ
ϕðε=σÞΦðλε=σÞ; σ > 0; λ 2 R: ð3Þ

Here, ϕ is the standard Normal density and Φ the
corresponding distribution function.

The profile log-likelihood with respect to λ (with fixed
sample and fixed σ) is unimodal, with the mode at the
value that reflects the data at hand. So if the data dictates a
positive value for λ, by disallowing these values, the part
of the likelihood that remains is monotonic, and so has a
maximum at the value λ= 0. We present such a case in
Fig. 2. For simplicity, we have generated a sample of size
n= 1000 from v+ u, where v is zero-mean Normal with
σv= 1 and u is Half-Normal with σu= 3. This behaves as a
v− u convolution with u having negative skewness. We
fixed σ, and used the sample to compute the average profile
log-likelihood for different values of λ. By design this
sample has positive skewness, so the mode lies on the
dotted part of the graph. Suppose that it was presented to
us as a production data sample. If we tried to fit a Skew
Normal with imposed negative skewness, we would allow
only the solid part of the graph of the profile likelihood,
while the dotted part would not be permitted. Hence, the
value λ= 0 becomes necessarily the maximum, since the
log-likelihood is monotonic as it approaches the maximum
that is consistent with the sample.

In light of these remarks another idea arises in order to
deal with “wrong skewness” in the Normal-Half Normal
(Skew Normal) SFM, when we do believe that it is wrong,
an idea that is simpler to the approaches presented earlier:
could we perhaps “follow the sample” just by specifying a
Skew Normal likelihood with unconstrained skewness sign,
and taking the obtained estimate while ignoring its sign?
Note that this encompasses another possible idea, to specify
a Skew Normal likelihood with imposed positive skewness,
since this constraint will not be binding. There are three
issues with this approach.

10 But see Canale (2011) for the practical weak identification issues
that arise with the Extended Skew Normal.
11 See Papadopoulos (2023) on these matters.
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First, one cannot help but notice the very flat likelihood
in Fig. 2. Although a mode does exist, locating it with
accuracy is bound to be difficult (and this graph comes from
a sample size of n= 1000). This weak identification issue is
reminiscent of the findings in Canale (2011) for the
Extended Skew Normal that we have mentioned earlier.

Second, if the sample skewness is wrong because the
noise component v has been realized as skewed while it is
symmetric in the population, then it will have a positive
sample 3rd cumulant κ3(v). Chiogna (2005) has shown that
an approximate expression for the MLE of λ is

bλ � sgnfκ3ðεÞg � κ3ðεÞj j1=3
cλ �

ffiffiffiffiffiffiffiffiffiffi
κ2ðεÞ

p ; cλ � 0:6018: ð4Þ

In the production SFM and under independence of v and
u, we have κ3(ε)= κ3(v)− κ3(u). Under wrong skewness
(“WS”), κWS

3 ðvÞ> κ3ðuÞ> 0, while if the sample is repre-
sentative ("R") of the population in that respect, we expect
κR3 ðvÞ � 0. Taking the ratio of the estimates in the two
situations, we have (ignoring the sign and canceling out the
denominators)

bλWS

bλR � κWS
3 ðvÞ � κ3ðuÞ

κ3ðuÞ
���� ����1=3 ¼ κWS

3 ðvÞ
κ3ðuÞ � 1

���� ����1=3: ð5Þ

From this we obtain

0< κ3ðuÞ< κWS
3 ðvÞ< 2κ3ðuÞ ) bλWS

<bλR
0< 2κ3ðuÞ< κWS

3 ðvÞ ) bλWS
>bλR: ð6Þ

If the sample 3rd cumulant of the noise is smaller than
double the 3rd cumulant of inefficiency, the MLE of λ will
be smaller than what we would have obtained under correct

skewness. If it is higher, we will get a larger estimate. This
shows that the possible sign switch in the sample from the
population is not accompanied by a full “mirroring” prop-
erty: it is not like we have the mirror image of a sample that
would be representative of the population. Therefore,
“trusting the magnitude and ignoring the sign” is not
justified.

A third danger when using the unconstrained Skew
Normal log-likelihood is that it has a singular Hessian when
λ= 0. This is an example of a more general result to be
found in Catchpole and Morgan (1997), where an
Exponential-family model is “parameter redundant” if the
mean can be expressed using a reduced number of para-
meters –and then the information matrix becomes singular.
This implies that we cannot just say “by specifying the
Skew Normal we nest the zero-inefficiency case.”We do, as
regards the mathematics, but as regards statistical inference
we would have to deal with the rather complicated topic of
maximum likelihood estimation under such a singularity.12

But also, when λ= 0, the distribution of the MLE is
bimodal, with one positive and one negative mode. This has
been formally derived by Chiogna (2005),

n1=6bλ!dZ
1=3; Z � Nð0; σ2z Þ; ð7Þ

where σ2z is some complicated expression (and irrelevant to
our discussion here). It follows that the approximate
distribution of bλ in finite samples has density

gλ;nðbλÞ ¼ 3bλ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞðσ2z=nÞ
p exp � 1

2

bλ6
ðσ2z=nÞ

( )
: ð8Þ

Fig. 2 Profile log-likelihood for
skewness parameter λ

12 See Rotnitzky et al. (2000).
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This density is symmetric around zero and bimodal, the
modes being located at

bλ� ¼ ±
2σ2z
3n

� �1=6

: ð9Þ

Although the case λ= 0 should not be expected to hold in
any real-world data (zero-inefficiency is a Platonic ideal),
Azzalini and Capitanio (2014) have shown through
indicative simulations (pp. 68-70) that due to the slow
convergence rate, O(n−1/6), of bλ, this bimodality persists
even when λ= 1.

A solution to these issues is to reparametrize the model.
The reparametrization (“centred” as the authors called it)
was already mentioned in Azzalini (1985), and formally
derived in Azzalini and Capitanio (1999a) (see Azzalini and
Capitanio (1999b) for the full version). The reparametriza-
tion amounts to centering the error term (making it zero-
mean), and also, to estimate the skewness coefficient γ1
instead of the skewness parameter λ. As the authors report,
the reparametrization removes the singularity of the infor-
mation matrix, lessens the correlation between the estimated
parameters, and improves the curvature of the log-
likelihood.13

Lee (1993) investigated a slightly different transforma-
tion specifically for the SFM, where the error term is again
centered, but the skewness parameter λ is retained. That this
simpler transformation works, shows (as was pointed out in
Azzalini and Capitanio 2014, p. 59) that in a regression
setup the practical cause of the singularity when λ= 0 is the
existence of the constant term of the regression, since then
the related elements of the gradient of the log-likelihood
become linearly dependent. In order to obtain the full pro-
duction frontier, centering should be reversed after
estimation.

Finally, as reparametrizations go, we could invoke the
invariance property of the MLE and estimate ξ≡ λ3, writing
the related part of the density as Φ(ξ1/3ε/σ) which would
result in a first-order condition with respect to ξ,

1

ξ2=3
1
3σ

Xn
i¼1

ϕ ξ1=3εi=σ
� �

Φ ξ1=3εi=σ
� � εi ¼ 0: ð10Þ

Looking at the asymptotic distribution of bλ in Equation
(7), one would expect bξ to have the usual convergence rate.
Moreover, its presence in the denominator of the first-order
condition for the log-likelihood would make the estimator
more sensitive to values near zero.

6 Open theoretical issues

We have focused on examining the wrong skewness pro-
blem in relation to a production setting (essentially covering
its dual partner, the cost framework, as well), which are the
traditional topics of stochastic frontier analysis. But fron-
tiers arise in other situations, and SF models have been
applied to cases of “investment efficiency” where financing
constraints operate as the inefficiency force (Wang 2003),
inefficiency in energy use (Filippini and Hunt 2011), and
entry deterrence due to regulation and the resulting ineffi-
ciency (Orea 2012). Thinking about how “wrong skewness”
could arise in such situations as a population characteristic
could reveal interesting structural aspects that do not coin-
cide with those operating in production and cost matters.

Moving to the other line of thought, if one treats wrong
skewness as a case of sample failure, the “zero-inefficiency”
model of Kumbhakar et al. (2013) could possibly be used as a
device to single out the observations that cause the problem.
Here, the firms deemed to be fully efficient could be the cul-
prits for the problem. Certainly, even if it could be shown to be
a valid approach from a technical point of view, the question
would remain: should we do something with the suspected
observations, or would that be unacceptable data-tampering?

In a similar vein, treating wrong skewness as a sample
failure, one could predict the noise error component following
Papadopoulos (2023), and look at the observations with high
positive predicted noise error component as those that drive
the wrong skewness result (in a production setting). Or, using
a result proven in Papadopoulos and Parmeter (2022), that a
large composite error most likely has a high realization of the
noise component and low inefficiency component, one could
look at the OLS residuals and examine more closely what
happens with those observations that have a high positive
residual. These are possibly simple diagnostic methods, that
nevertheless require proper examination and auditing before
being proposed as applied tools.

One topic that could see further exploration is the impact
that “determinants of inefficiency” have on the wrong
skewness case. As Cho and Schmidt (2020) note, there is a
wrong skewness type issue that arises when determinants of
inefficiency are present, but it is different. In this case no
identification issue may arise. And therein lies the rub. Part
of the wrong skewness issue that has plagued researchers
going back to the origins of SFA is that this is an exercise in
deconvolution, and deconvolution is hard. When we add
additional information, such as the presence of determi-
nants, this helps to lessen the burden of deconvolution.
These matters could be explored further.

Finally, recently there has been some interest in exam-
ining wrong skewness in more advanced stochastic frontier
models (endogeneity, panel data, spatial error components).
A common strategy has been to use one of the approaches

13 See Marchenko and Genton (2010) for related software routines,
but also Pewsey (2000) for a comparison of method-of-moments and
maximum likelihood estimation of the centred specification.
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discussed in Section 4 that help to mediate or circumvent
the need for positive skewness to identify the model.
However, these lines of research are still nascent. Whereas
in the cross-sectional setting Waldman (1982) demonstrated
precisely that OLS is MLE when the skewness of the OLS
residuals is of the wrong sign, no such results exist in these
more advanced settings. In Greene (2005)’s True Fixed
Effects model, is LSDV equal to MLE when the skewness
of the LSDV residuals is of the wrong sign? In Amsler et al.
(2016)’s setting where there is endogeneity, is IV equal to
MLE when the skewness of the IV residuals is of the wrong
sign? The answers to these questions remain unknown at the
moment and proposals advocating for some type of insu-
lation to wrong skewness are solutions in search of an as yet
unidentified problem.

7 Empirical guidance

Theoretical explorations aside, the main and forceful conclu-
sion of this review for empirical research is that the existence of
inefficiency is not equivalent to a specific sign of the popula-
tion skewness. This has important consequences and we next
list the resulting steps one should take in an empirical study:

1. Run an OLS regression and obtain the sign of the
residual skewness.

2. If the sign is the opposite of your a priori expectations,
contemplate on the market you are studying, its
characteristics and possible peculiarities.

3. Based on 2., formulate your arguments and decide as
to whether this “wrong skewness" is a population
characteristic or indicates a failure of your sample to
be representative of the population in that respect.

4. If you have concluded that the “wrong" sign in the
OLS residuals has a valid structural/economic inter-
pretation and so it is a population characteristic,
proceed to adjust the statistical aspects of the
econometric model in order for it to reflect the
features of the data and become statistically adequate,
applying one of the models presented in Section 2 (or
any newer contribution that may appear).

5. If you have concluded that the wrong skewness sign is
indeed wrong and a case of the sample failing to be
representative, choose a method to do valid estimation
and inference from those presented in Section 4 (or
any newer approach that may appear).

6. Evidently, report all these in your study, laying down
your arguments as to why you have chosen one or the
other interpretation and the associated estimation
model and method. Certainly do not just silently
reject the sample and go hunting for another one, as it
appears to have been the dominant choice up to now.
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