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Abstract
In this paper we extend the denominator rule for ratios given in different units of measurement and we explain how to derive
the relevant aggregation shares, which are given in terms of the denominator variable and the constants converting the
relevant variables into the same unit of measurement.
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1 Introduction

This paper was motivated by a stimulating question raised
by W.E. Diewert about the applicability of the denominator
rule for ratios given in different units of measurement. As
initially stated by Fӓre and Karagiannis (2017), the
denominator rule, namely that aggregation of ratio-type
variables should be based on weights given in terms of the
denominator variable of the relevant quotient, is related to
the theoretically consistent aggregation of ratios given in the
same unit of measurement across decision-making units
(DMUs). In this paper we undertake the task of extending
the denominator rule for ratios given in different units of
measurement.

In many empirical studies we are not only interested in
individual performance but also on how well a group of
DMUs performs. Consider, for example, the case of public
hospitals: hospital managers are more interested on their
specific units while health authority staff are more interested
on the overall picture. Notice however that the vast majority
of previous efficiency studies in health care delivery, with

the exception of Pilayavsky and Staat (2008), Nguyen and
Zelenyuk (2021) and Färe and Karagiannis (2022), analyzed
the overall picture by means of a simple arithmetic average
of individual efficiency scores. As it is explained in Kar-
agiannis (2015a), this accurately reflects aggregate
achievements only when performance and size are uncor-
related. Otherwise, a weighted average should be used and
in this case, the choice of aggregation weights become
crucial in order to ensure theoretical consistency, in the
sense that the individual and the aggregate scores have the
same form and the same intuitive interpretation.

Fӓre and Karagiannis (2017) have recently provided
such an aggregation rule, i.e., the denominator rule, for
ratios given in the same unit of measurement and explained
how it can be used to aggregate, for example, individual
(radial) technical, allocative and scale efficiency scores,
measures of input congestion, and capacity utilization. It is
important to note however that the applicability of the
denominator rule is not limited to the above cases pre-
supposing DMU’s optimizing behavior, where the
denominator rule may be viewed as the practical counterpart
of Koopmans (1957) theorem and its cost and revenue
corollaries, but it may also be used to aggregate partial and
total productivity indices1 as well as other ratio-type mea-
sures of performance given in the same unit of measure-
ment. The latter may include programmatic efficiency
scores or metafrontier technology gap ratios (Karagiannis
2015b; Walheer 2018a), DEA-based composite indicators
(Karagiannis 2017; Rogge 2018), cost efficiency scores
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with private and public inputs (Walheer 2019), and markup
or Lerner market power indices (Basu 2019; deLoecker et
al. 2020; Shaffer and Spierdijk 2020).

In this paper we extend the denominator rule for ratios
given in different units of measurement and we explain how
to derive the relevant aggregation shares. In this case, the
aggregation weights are given in terms of the denominator
variable and the constants that are used to convert the
relevant variables into the same unit of measurement. This
enlarges considerably the applicability of the denominator
rule to include cases of aggregating (across DMUs) per-
formance measures given in different units of measurement
as well as cases of aggregating across commodities, inputs
or outputs. In this direction, we provide a number of
applications illustrating how the denominator rule with unit
ratio difference can be used for (i) aggregating Fӓre effi-
ciency indices, enhanced Russell efficiency indices, and
Lerner’s indices of market power across DMUs and (ii)
deriving a weighted Russell efficiency index, a weighted
potential improvement efficiency index as well as the
weighted average form of the Laspeyres, Paasche and Lowe
price and quantity indices.

The rest of this paper unfolds as follows: in the next
section we present the theoretical part and the main results.
In the third section, we provide a number of applications of
the denominator rule with unit ratio difference. Concluding
remarks follow in the last section.

2 Problem setting and main results

Consider that our objective is to aggregate two ratios z1/ξ1
and z2/ξ2, given in different units of measurement, by
means of an aggregator function L : R2

þ ! Rþ describing
the type of aggregation, namely, arithmetic, harmonic,
geometric, etc., in such a way to preserve theoretical
consistency in the sense that z1/ξ1, z2/ξ2 and the resulting
aggregate measure have the same (ratio) form and the
same intuitive interpretation. The main result is stated as:2

2.1 Denominator rule with unit ratio difference

Let z=(z1, z2)>0, ξ=(ξ1, ξ2)>0 and c1, c2>0 are constants
converting c1z1, c1ξ1, c2z2, and c2ξ2 into the same unit of
measurement. Then, for arithmetic aggregation we have

L
z1
ξ1

;
z2
ξ2

� �
¼ θ1

z1
ξ1

� �
þ θ2

z2
ξ2

� �
¼ c1z1 þ c2z2

c1ξ1 þ c2ξ2
ð1Þ

where θ1 ¼ c1ξ1
c1ξ1þc2ξ2

� 0, θ2 ¼ c2ξ2
c1ξ1þc2ξ2

� 0 and θ1+ θ2= 1.

If the ratios are given in the same unit of measurement
c1= c2= 1 and the conventional denominator rule applies
(see Fӓre and Karagiannis 2017). If, in addition to c1=
c2= 1, we have ξ1= ξ2= ξ then

L
z1
ξ
;
z2
ξ

� �
¼ ξ

2ξ

� �
z1 þ ξ

2ξ

� �
z2 ¼ 1

2
z1 þ z2ð Þ ð2Þ

in which case, the average reflects accurately the
aggregate. Two are the implications of this result: first,
(2) provides one of the alternative ways to derive the
simple (equally-weighted) arithmetic average form of the
translation function–based Luenberger productivity indi-
cator, introduced in Chambers (2002); for the other two
see Fӓre and Zelenyuk (2019). Second, (2) provides the
theoretically consistent way for aggregating (across
DMUs) composite indicators by means of the Benefit-of-
the-Doubt (BoD) model (see Karagiannis 2017), which
essentially is an input-oriented DEA model with a single
constant (unitary) input.

On the other hand, an alternative way to obtain the same
aggregate value, namely c1z1+c2z2/(c1ξ1+c2ξ2), is to use
harmonic aggregation and define the aggregation weights in
terms of the numerator (instead of the denominator) of the
relevant ratio–this is called the numerator rule by Fӓre and
Karagiannis (2017):

L
z1
ξ1

;
z2
ξ2

� �
¼ c1z1 þ c2z2

c1ξ1 þ c2ξ2
¼ δ1

z1
ξ1

� ��1

þδ2
z2
ξ2

� ��1
" #�1

ð3Þ
where δ1 ¼ c1z1= c1z1 þ c2z2ð Þ � 0, δ2 ¼ c2z2= c1z1þð
c2z2Þ � 0 and δ1+δ2= 1.

Next let us consider the relationship between the
denominator rule with unit ratio difference and Aczél’s
(1987, p. 150) geometric aggregation rule, namely:

L
z1
ξ1

;
z2
ξ2

� �
¼ z1

ξ1

� �g1 z2
ξ2

� �g2

¼
Q2

i¼1 z
gi
iQ2

i¼1 ξ
gi
i

ð4Þ

where g1≥0, g2≥0 and g1+g2= 1. In particular, we look for
the values of g1 and g2 that make the aggregate value in (1)
equal to the aggregate value in (4). For this purpose, we use
Reinsdorf et al. (2002) result for the additive decomposition
of geometric means, namely that

L ¼ π1z1 þ π2z2
π1ξ1 þ π2ξ2

¼ π1ξ1
π1ξ1 þ π2ξ2

� �
z1
ξ1

þ π2ξ2
π1ξ1 þ π2ξ2

� �
z2
ξ2
ð5Þ

where π1 ¼ g1=m z1; ξ1Lð Þ, π2 ¼ g2=m z2; ξ2Lð Þ and m(.)
denotes the logarithmic mean, i.e., m z1; ξ1Lð Þ ¼ z1 � ξ1Lð Þ

2 The following result can easily be extended to the case of more than
two variables.
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= ln z1ð Þ � ln ξ1Lð Þ½ � and m z2; ξ2Lð Þ ¼ z2 � ξ2Lð Þ= ln z2ð Þ�½
ln ξ2Lð Þ�.3 Then, from (1) and (5), we have θ1 ¼
π1ξ1= π1ξ1 þ π2ξ2ð Þ and θ2 ¼ π2ξ2= π1ξ1 þ π2ξ2ð Þ. By sub-
stituting π1 and π2 into these and rearranging terms yields:

θ1 ¼ g1ξ1m z2; ξ2Lð Þ
g1ξ1m z2; ξ2Lð Þ þ g2ξ2m z1; ξ1Lð Þ ð6Þ

θ2 ¼ g2ξ2m z1; ξ1Lð Þ
g1ξ1m z2; ξ2Lð Þ þ g2ξ2m z1; ξ1Lð Þ

But from (1) we know that θ1 ¼ c1ξ1= c1ξ1 þ c2ξ2ð Þ and
θ2 ¼ c2ξ2= c1ξ1 þ c2ξ2ð Þ. Combining these with (6) and
given that g1+g2= 1, we obtain the values of g1 and g2 for
which L ¼ L as:

g1 ¼ c1m z1; ξ1Lð Þ
c1m z1; ξ1Lð Þ þ c2m z2; ξ2Lð Þ ð7Þ

g2 ¼ c2m z2; ξ2Lð Þ
c1m z1; ξ1Lð Þ þ c2m z2; ξ2Lð Þ

An alternative proof of (7), following Balk (2008, pp.
141-42), is:4 rewrite (1) as:

θ1 L� z1
ξ1

� �
þ θ2 L� z2

ξ2

� �
¼ 0 ð8Þ

and use the logarithmic mean to get:

θ1m L; z1=ξ1ð Þln Lξ1
z1

� �
þ θ2m L; z2=ξ2ð Þln Lξ2

z2

� �
¼ 0

ð9Þ

After few manipulations and rearrangement of terms, (9)
results in:

lnL ¼ η1ln
z1
ξ1

� �
þ η2ln

z2
ξ2

� �
ð10Þ

where

η1 ¼
θ1m L; z1=ξ1ð Þ

θ1m L; z1=ξ1ð Þ þ θ2m L; z2=ξ2ð Þ ð11Þ

η2 ¼
θ2m L; z2=ξ2ð Þ

θ1m L; z1=ξ1ð Þ þ θ2m L; z2=ξ2ð Þ

By substituting θ1 ¼ c1ξ1= c1ξ1 þ c2ξ2ð Þ and θ2 ¼ c2ξ2=
c1ξ1 þ c2ξ2ð Þ into (11) we can verify that η1= g1 and η2= g2.

If the ratios are given in the same units of measurement,
then c1= c2= 1 and the aggregation weights in (7) are
simplified as follows:

g1 ¼ m z1; ξ1Lð Þ
m z1; ξ1Lð Þ þ m z2; ξ2Lð Þ ð12Þ

g2 ¼ m z2; ξ2Lð Þ
m z1; ξ1Lð Þ þ m z2; ξ2Lð Þ

This should be compared to the approximate solutions
provided by Fӓre and Zelenyuk (2005) and Fӓre and Kar-
agiannis (2020) for the arithmetic aggregation to result in the
same aggregate value as the geometric aggregation. Here,
thanks to the denominator rule with unit ratio difference, we
are able to provide an exact solution to this problem.

As suggested by a referee, g1 and g2 in (7) may also be
obtained by relating (3) and (4). In this case, a relation
analogous to (5) is given as:

L ¼ π01z1 þ π02z2
π01ξ1 þ π02ξ2

¼ π02z1
π01z1 þ π02z2

� �
z1
ξ1

� ��1

þ π02z2
π01z1 þ π02z2

� �
z2
ξ2

� ��1
" #�1

ð13Þ

where π01 ¼ g1=m ξ1; z1L
�1ð Þ, π02 ¼ g2=m ξ2; z2L

�1ð Þ, m ξ1;ð
z1L�1Þ ¼ ξ1 � z1L�1ð Þ= ln ξ1ð Þ � ln z1L�1ð Þ½ � and m ξ2;ð
z2L�1Þ ¼ ξ2 � z2L�1ð Þ= ln ξ2ð Þ � ln z2L�1ð Þ½ �. Then, follow-
ing the same steps as above, one can verify that

g1 ¼ c1m ξ1; z1L
�1ð Þ

c1m ξ1; z1L�1ð Þ þ c2m ξ2; z2L�1ð Þ ð14Þ

g2 ¼ c2m ξ2; z2L
�1ð Þ

c1m ξ1; z1L�1ð Þ þ c2m ξ2; z2L�1ð Þ

We have thus shown that there are four alternative ways
to obtain the same aggregate value of c1z1 þ c2z2ð Þ=
c1ξ1 þ c2ξ2ð Þ by using either (1), (3), (4) with (7) or (4)
with (14). The last two alternatives are less attractive than
the first two, as the aggregate and the individual ratios (or
their inverse) occur in the aggregation weights in (7) and
(14). On the other hand, as aggregate data is published in
the form of totals, aggregate performance ratios are better
understood as arithmetic rather than geometric aggregates
of the individual performance ratios (Färe and Karagiannis
2020). In addition, by comparing the first two alternatives,
the denominator rule is intuitively more appealing and
simpler than the numerator rule.

Notice that (1) and (4) with (7) rely on denominator-
based weights while (3) and (4) with (14) on numerator-
based weights. One may think that advantages would result
by combining the two types of weights to obtain the

3 See Balk (2004) for an alternative derivation of (5).
4 This was suggested by one of the reviewers.
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aggregate ratio. This can be done, for example, by taking
the geometric means of either (1) and (3) or (4) with (7) and
(4) with (14). In such cases, however, the resulting relations
are less useful for analytical purposes (e.g., for ascertaining
the impact of individual ratios on the aggregate ratio)
compared to those using either the denominator- or the
numerator-based weights. Alternatively, one may follow a
procedure analogous to that used for obtaining Montgomery
and Sato-Vartia type of indices (see Balk 2008, pp. 85–87).
In the former case, one can verify that the resulting aggre-
gation weights do no add-up to 1 and this is a serious
shortcoming when considering share weighted averages
while in the latter the aggregation weights are given as:

g1 ¼
m c1z1

c1z1þc2z2
; c1ξ1
c1ξ1þc2ξ2

� �
m c1z1

c1z1þc2z2
; c1ξ1
c1ξ1þc2ξ2

� �
þ m c2z2

c1z1þc2z2
; c2ξ2
c1ξ1þc2ξ2

� � ð15Þ

g2 ¼
m c2z2

c1z1þc2z2
; c2ξ2
c1ξ1þc2ξ2

� �
m c1z1

c1z1þc2z2
; c1ξ1
c1ξ1þc2ξ2

� �
þ m c2z2

c1z1þc2z2
; c2ξ2
c1ξ1þc2ξ2

� �
which add-up to one but they are far less intuitively
appealing compared to those of the denominator rule with
unit ratio difference. In particular, the aggregation weights
in (15) may be interpreted as the normalized logarithmic
mean of the “value” shares of the numerator and
denominator variables while the aggregation weights in
(1) are simply the “value” shares of the denominator
variable. For c1= c2= 1, i.e., when the ratios are given in
the same unit of measurement, (15) have been used by Balk
(2021, ch. 9) for aggregating labor and total factor
productivity indices across DMUs.

3 Some applications

In this section, we present several applications where the
denominator rule with unit ratio difference may be used:

3.1 Price and quantity indices

We start by explaining how the denominator rule with unit
ratio difference can be used to obtain the weighted average
form of several well-known price and quantity indices.5

First, consider the case where c1 ¼ y01, c2 ¼ y02, z1 ¼ p11,
ξ1 ¼ p01, z2 ¼ p12, and ξ2 ¼ p02, with pi and yi being
respectively the price and the quantity of the ith commodity
(subscripts are used to index commodities and superscripts

to index time periods). Then, the application of the
denominator rule with unit ratio difference results in the
Laspeyres price index:

PL p1; p0; y0
� � ¼ p11y

0
1 þ p12y

0
2

p01y
0
1 þ p02y

0
2

¼ p01y
0
1

p01y
0
1 þ p02y

0
2

p11
p01

� �
þ p02y

0
2

p01y
0
1 þ p02y

0
2

p12
p02

� �
ð16Þ

Similarly, if c1 ¼ y11, c2 ¼ y12, z1 ¼ p11, ξ1 ¼ p01, z2 ¼ p12,
and ξ2 ¼ p02, then the application of the denominator rule
with unit ratio difference results in the Paasche price index:

PP p1; p0; y1ð Þ ¼ p11y
1
1þp12y

1
2

p01y
1
1þp02y

1
2
¼ p01y

1
1

p01y
1
1þp02y

1
2

p11
p01

� �
þ p02y

1
2

p01y
1
1þp02y

1
2

p12
p02

� � ð17Þ

In addition, if c1 ¼ yb1, c2 ¼ yb2, z1 ¼ p11, ξ1 ¼ p01,
z2 ¼ p12, and ξ2 ¼ p02, then the application of the denomi-
nator rule with unit ratio difference results in the Lowe price
index:

PLo p1; p0; y1ð Þ ¼ p11y
b
1þp12y

b
2

p01y
b
1þp02y

b
2
¼ p01y

b
1

p01y
b
1þp02y

b
2

p11
p01

� �
þ p02y

b
2

p01y
b
1þp02y

b
2

p12
p02

� � ð18Þ

where b refers to some third period.
Second, by interchanging the role of prices and quantities

one can obtain the corresponding quantity indices: that is,
(i) if c1 ¼ p01, c2 ¼ p02, z1 ¼ y11, ξ1 ¼ y01, z2 ¼ y12, and
ξ2 ¼ y02, the application of the denominator rule with unit
ratio difference results in the Laspeyres quantity index, (ii)
if c1 ¼ p11, c2 ¼ p12, z1 ¼ y11, ξ1 ¼ y01, z2 ¼ y12, and ξ2 ¼ y02,
one can obtain the Paasche quantity index, and (iii) if
c1 ¼ pb1, c2 ¼ pb2, z1 ¼ y11, ξ1 ¼ y01, z2 ¼ y12, and ξ2 ¼ y02, we
get the Lowe quantity index. These results clearly support
Caves et al. (1982, p. 73) assertion that “numerous index
number formulas can be explicitly derived from particular
aggregator functions”. In the cases of the Laspeyres,
Paasche and Lowe price and quantity indices, we have
shown that this is given by the denominator rule with unit
ratio difference.

3.2 Efficiency indices

Consider first the Fӓre (1975) input-oriented non-radial
efficiency measure, which is defined as:

Ek xk; yk
� � ¼ hmin

i

n
min
λki

λki : xk1; ¼ ; λki x
k
i ; ¼ ; xkI

� � 2 L yk
� �

;

0<λki � 18 i
oi�1

� 1

ð19Þ
where xi refers to input quantities, L(y)= {x:(x,y)∈T} is the
input requirement set and T is the production possibility set.

5 But this does not, for example, apply to Palgrave price and quantity
indices, which use comparison period value shares to aggregate price
and quantity relatives.
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The input requirement set is assumed to be closed and non-
empty for finite y, to satisfy strong (input and output)
disposability, input convexity, continuity, and 0I∉L(y) for
y ≥ 0J but 0I∈L(0J).6 Ek (xk, yk) seeks the shortest, uni-
dimensional distance to the frontier by scaling down each
input in turn, holding output and other inputs fixed, and then
takes the minimum over all these scalings. Let us assume that
there are only two inputs and that we want to aggregate the
efficiency scores of two firms or DMUs A and B (see Fig. 1).
Then, according to the Fӓre (1975) efficiency measure, the
score of firm A is determined bymeans of the first input while
that of firm B by means of the second input; that is EA ¼
1=λA1 ¼ xA1=exA1 and EB ¼ 1=λB2 ¼ xB2=exB2 , where a tilde over a
variable denotes its potential or technically efficient quantity.
Applying the denominator rule with unit ratio difference to
the optimal solution of (19) and let z1 ¼ xA1 , ξ1 ¼ exA1 ¼ λA1x

A
1 ,

z2 ¼ xB2 , and ξ2 ¼ exB2 ¼ λB2x
B
2 , we obtain:

L
xA1exA1 ; xB2exB2
� �

¼ c1exA1
c1exA1þc2exA2 xA1exA1

� �
þ c2exA2

c1exA1þc2exA2 xB2exB2
� �

¼ c1xA1þc2xB2

c1exA1þc2exA2
ð20Þ

with input prices being potential candidates for c1 and c2.
Second, consider the most widely used non-radial effi-

ciency metric, namely the Russell measure, the input-
oriented form of which is defined by Fӓre and Lovell (1978)
as:

Rk xk; yk
� � ¼ min

λk
1
I

PI
i¼1 λ

k
i : λk1x

k
1; ¼ ; λki x

k
i ; ¼ ; λkI x

k
I

� � 2 L yk
� �

;
�
0<λki � 1 8 i	 � 1

ð21Þ
where λki ¼ exki =xki . Rk xk; yk

� �
reduces all non-zero inputs by

a set of individual factors that minimize the arithmetic mean
of the reductions in such a way to ensure that the resulting
input vector belongs to the efficient subset. The Russell
measure has been often criticized (see e.g., Ruggiero and
Bretschneider 1998) for implicitly assuming that all inputs
equally affect the level of potential production, regardless of
their importance in total cost as well as the extent of their
input-specific inefficiency, i.e., the magnitude of the λi’s. To
overcome this shortcoming, Zhu (1996) and Ruggiero and
Bretschneider (1998) proposed a weighted Russell measure
defined as:

Rk
w xk; yk
� � ¼ min

λk

PI
i¼1 ϕ

k
i λ

k
i : λk1x

k
1; ¼ ; λki x

k
i ; ¼ ; λkI x

k
I

� � 2 L yk
� �

;
�

0<λki � 1 8 i ¼ 1; ¼ ; Iϕk
i � 0;

PI
i¼1 ϕ

k
i ¼ 1

	 � 1

ð22Þ
In the literature, there are several different alternatives for

determining the weights ϕ’s, ranging from expert opinion

(Zhu 1996), to regression analysis (Ruggiero and Bretsch-
neider 1998) and to Shannon entropy (Hsiao et al. 2011).

We may also use the denominator rule with unit ratio
difference for determining the ϕ’s as the λki ¼ exki =xki are in
different units of measurement. By substituting z1 ¼ exk1,
z2 ¼ exk2, ξ1 ¼ xk1 and ξ2 ¼ xk2, we have for the two-inputs
case:

Rk
w xk1; x

k
2; y

k
� � ¼ θk1λ

k
1 þ θk2λ

k
2 ¼ θk1

exk1
xk1

� �
þ θk2

exk2
xk2

� �
¼ ck1exk1 þ ck2exk2

ck1x
k
1 þ ck2x

k
2

ð23Þ
where θk1 ¼ ck1x

k
1= ck1x

k
1 þ ck2x

k
2

� �
and θk2 ¼ ck2x

k
2= ck1x

k
1þ

�
ck2x

k
2Þ. There are several candidates for ck1 and ck2 but here

we focus only on two that have been previously used in the
literature. If we use input prices for ck1 and ck2, i.e., c

k
1 ¼ w1

and ck2 ¼ w2 where w refers to inputs prices, then (23)
becomes what Fӓre et al. (1985, p. 148) referred to as the
Russell input cost measure of technical efficiency. Alter-
natively, one may use output elasticities obtained from a
production function regression model for ck1 and ck2, as
Ruggiero and Bretschneider (1998) suggested, but this
choice is less intuitively appealing.

Notice that if θ1= θ2 in (23) then we are back to the
conventional Russell measure with ck1x

k
1 ¼ ck2x

k
2 or alter-

natively, ck1=c
k
2 ¼ xk2=x

k
1, which determines the slope of the

implicit isocost line. The latter is essentially related to de
Borger et al. (1998) interpretation of the conventional
Russell measure’s projection point: for DMU A in Fig. 2,
the projection point A1 reflects the cost minimizing input
choice when the relative factor price equals the (negative)
ratio of actual input quantities, i.e., �xA2=x

A
1 .
7 Given that

cost at point A1 is equal to that at point A3, i.e., the point of
intersection between the implicit isocost line and the ray
through DMU A’s actual input bundle, the ratio OA3/OA

Fig. 1 Fӓre input-oriented efficiency measure for a technology with
two inputs and a single output

6 0I and 0J are I- and J-dimensional zero vectors, respectively.

7 Bogetoft and Hougaard (1998) suggested that the projection point is
determined by minimizing a linear function with gradient 1

xA1
; 1
xA2

� �
.
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renders to the conventional Russell measure of technical
efficiency a (shadow) cost-saving interpretation (see Der-
vaux et al. 1998).8 On the other hand, as actual cost at point
A1 equals that at point A2, i.e., the point of intersection
between the market isocost line and the ray through DMU
A’s actual input bundle, the ratio OA2/OA renders to the
Russell input cost measure of technical efficiency a clear
cost saving interpretation.

Third, a similar issue, namely that input excesses are
considered as equally important, arises in the case of the
potential improvement inefficiency index, which in its input-
oriented form is given as (see Bogetoft and Hougaard 1998):

Pk xk; yk
� � ¼XI

i¼1
βk

xki � bxki
xki

� �
¼
XI

i¼1

xki � ~xki
xki

� �
� 0

ð24Þ

where bxki is the ith coordinate of the ideal reference point
corresponding to the largest possible reduction in the ith input
such that bxki ¼ min xki : xk1; ¼ ;bxki ; ¼ ; xkI

� � 2 L yð Þ� 	
, and

βk ¼ xki �exki� �
= xki � bxki� �

is constant for all inputs.9 For the
two-inputs case depicted in Fig. 3, the projection point of PA

(xA, yA) is A1 and its coordinates are given by a “weighted”
average of actual and ideal reference point coordinates, i.e.,exki ¼ 1� βk

� �
xki þ βkbxki for i= 1, 2. Both the potential

improvement inefficiency index in (24), which is equal to
the sum of the (normalized) input-specific potential improve-
ment indices, and that ofWang et al. (2013), which is equal to
the simple average of the (normalized) input-specific

potential improvement indices, weight the excess of each
input equally even if their prices or their cost shares differ
significantly. Based on the denominator rule with unit ratio
difference and by substituting zk1 ¼ xk1 �bxk1, zk2 ¼ xk2 �bxk2,
ξk1 ¼ xk1 and ξk2 ¼ xk2 we can obtain a weighted potential
improvement inefficiency index Pk

w xk; yk
� �

, which over-
comes the above criticism:

Pk
w xk; yk
� � ¼ θk1

xk1�exk1
xk1

� �
þ θk2

xk2�exk2
xk2

� �
¼ ck1x

k
1þck2x

k
2ð Þ� ck1exk1þck2exk2ð Þ

ck1x
k
1þck2x

k
2

ð25Þ

where θk1 ¼ ck1x
k
1= ck1x

k
1 þ ck2x

k
2

� �
and

θk2 ¼ ck2x
k
2= ck1x

k
1 þ ck2x

k
2

� �
. If ck1 and ck2 are set equal to input

prices then Pk
w xk; yk
� �

has a nice cost-saving interpretation:
let the slope of the iso-cost line passing through point A in
Fig. 3 reflect the actual relative input prices, then
PA
w xA; yAð Þ= (cost at point A – cost at point A1)/cost at

point A.
Fourth, consider the enhanced Russell efficiency mea-

sure and its aggregation across DMUs. The enhanced
Russell measure is defined as (Pastor et al. 1999):10

Rk
E ¼ min

λk ;δk

1
Ið Þ
PI

i¼1
λki

1
Jð Þ
PJ

j¼1
δkj
: λk1x

k
1; ¼ ; λkI x

k
I ; δ

k
1y

k
1; ¼ ; δkJy

k
J

� � 2 T ;

(
0<λki � 1 8i; δkj � 1 8j

o
� 1

ð26Þ

Cooper et al. (2007), using essentially the conventional
denominator rule suitable for ratios given in the same unit
of measurement, derived a “system” efficiency measure for

x

x

A

L(y)

A1
A2

A3

− /− //
O

Fig. 2 Russell input-oriented efficiency measure for a technology with
two inputs and a single output

Fig. 3 Potential improvement inefficiency measure for a technology
with two inputs and a single output

8 Dervaux et al. (1998) also provided such a cost reinterpretation for
the Fӓre efficiency index.
9 There is no general rule that applies for the normalization in (24)
(Asmild et al. 2003). Here we follow Hougaard et al. (2004) and use
xki , i.e., the actual input quantity. There is no need for any normal-
ization when all input variables are measured on the same scale, e.g.,
in monetary terms.

10 The enhanced Russell measure is essentially a reformulation of the
Fӓre et al. (1985, pp. 160-61) graph Russell measure of technical
efficiency.
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each input and output as:

λTi ¼
XK

k¼1
λki

xki
xTi

� �
¼
XK

k¼1

~xki
xki

� �
xki
xTi

� �
¼
PK

k¼1exki
xTi

¼ exTi
xTi

ð27Þ

δTj ¼
XK

k¼1
δkj

ykj
yTj

 !
¼
XK

k¼1

eykj
ykj

 !
ykj
yTj

 !
¼
PK

k¼1eykj
yTj

¼ eyTj
yTj

where xTi ¼PK
k¼1 x

k
i and y

T
j ¼PK

k¼1 y
k
j . Then, in an attempt

to obtain an overall “system” efficiency measure they used
the following relationship:11

RE ¼
1
I

� �PI
i¼1 λ

T
i

1
J

� �PJ
j¼1 δ

T
j

¼
1
I

� �PK
k¼1

PI
i¼1

xki
xTi

� �
λki

1
J

� �PK
k¼1

PJ
j¼1

ykj
yTj

� �
δkj

ð28Þ

which however implicitly assumes that every input (output)
has the same effect on cost-saving (revenue-enhancing). A
more intuitively appealing overall “system” efficiency
measure can be obtained by relying on the denominator
rule with unit ratio difference. By setting zi ¼ exTi and ξi ¼
xTi for inputs and zj ¼ ~yTj and ξj ¼ yTj for outputs we get:

RE ¼
PI

i¼1
θiλ

T
iPJ

j¼1
θjδ

T
j

¼
PI

i¼1

cix
T
iPI

i¼1
cix

T
i

� � exT
i
xT
i

� �
PJ

j¼1

cjy
T
jPJ

j¼1
cjy

T
j

 ! eyT
j

yT
j

� � ¼
PK

k¼1

PI

i¼1

cix
k
iPI

i¼1
cix

T
i

� �
λki

PK

k¼1

PI

j¼1

cjy
k
jPJ

j¼1
cjy

T
j

 !
δkj

¼
PK

k¼1

PI

i¼1
θki λ

k
iPK

k¼1

PI

j¼1
θkj δ

k
j

ð29Þ

with the most obvious candidates for ci and cj being the
input and output prices.

3.3 Market Power Index

If we set c1= y1, z1= p1−MC1, ξ1= p1, c2= y2, z2=
p2−MC2, and ξ2= p2 then we can use the denominator rule
with unit ratio difference to aggregate price-cost margins or
Lerner (1934) indices of market power:

L p1�MC1
p1

; p2�MC2
p2

� �
¼ p1y1

p1y1þp2y2
p1�MC1

p1

� �
þ p2y2

p1y1þp2y2
p2�MC2

p2

� �
¼ p1y1þp2y2ð Þ� MC1y1þMC2y2ð Þ

p1y1þp2y2

ð30Þ

where MC refers to marginal cost. That is, the aggregate
Lerner index is obtained by aggregating the individual
measures with revenue shares as weights. Without any
formal reasoning or any further explanation, Dickson
(1979) used these weights to relate the aggregate Lerner
index of market power with the Herfindahl index, the
conjectural variation, and the industry demand elasticity.

4 Concluding remarks

In this paper we have provided a rule for consistent
(arithmetic) aggregation of ratio-type variables with differ-
ent units of measurement. This consists an extension of the
denominator rule and the implied aggregation shares are
given in terms of the denominator variable of the relevant
ratio and the constants converting the relevant variables into
the same unit of measurement. The denominator rule with
unit ratio difference is a necessary and sufficient condition
for consistent aggregation of ratio-type variables with dif-
ferent units of measurement. Its main advantage is that it
can be used to aggregate ratio-type variables not only across
DMUs but also across commodities, outputs or inputs.

The applicability of the conventional denominator rule is
mainly limited to aggregation across DMUs and it is thus
particular helpful for working with ratio-type performance
measures, including a quite large number of efficiency and
productivity indices. For some other performance measures
though such as the non-radial technical efficiency indices,
e.g., Fӓre efficiency measure and the enhanced Russell
efficiency measure, and the Lerner index of market power
that we considered in this paper, the denominator rule with
unit ratio difference should be used to obtain a theoretically
consistent aggregate (across DMUs) measure. By doing so,
we have shown that (23) provides an alternative set of
weights for aggregate Russell efficiency measure compared
to that of Zhu (1996) based on expert opinion, and that of
Hsiao et al. (2011) based on Shannon entropy. In addition,
the denominator rule with unit ratio difference provides a
justification for the weights used by Dickson (1979) to
obtain the aggregate Lerner index of market power.

However, the applicability of the denominator rule with unit
ratio difference goes beyond aggregation across DMUs as it can
be used to aggregate price and/or quantities across commodities,
outputs or inputs. As an illustration in Section 3, we have shown
how Laspayres, Paasche and Lowe price and quantity indices
can be obtained by applying the denominator rule with unit ratio
difference. In addition, we have used it to derive a weighted
Russell efficiency index and a weighted potential improvement
efficiency index. In particular, (24) provides an alternative set of
weights for the weighted potential improvement inefficiency
index compared to equal weights used by Wang et al. (2013)
while (29) provides an alternative set of weights for the

11 Actually, Lozano (2009) derived this relation after correcting a
mistake in Cooper et al. (2007) Eq. (13).
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enhanced Russell efficiency measure compared to those of
Cooper et al. (2007) and Lozano (2009). The denominator rule
with unit ratio difference could also be found useful in several
other aggregation problems in economics, management and
operation research.
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