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Abstract
We consider goodness–of–fit tests for the distribution of the composed error in Stochastic Frontier Models. The
proposed test statistic utilizes the characteristic function of the composed error term, and is formulated as a weighted
integral of properly standardized data. The new test statistic is shown to be consistent and computationally convenient.
Simulation results are presented whereby resampling versions of the new tests are compared to classical
goodness–of–fit methods.

JEL classification C10 ● C12 ● C46 ● C52

Keywords Goodness–of–fit ● Parametric bootstrap ● Maximum likelihood estimation ● Normal/exponential distribution ●

Normal/gamma distribution

1 Introduction

The stochastic frontier production model (SFM) was first
introduced by Aigner, Lovell, and Schmidt (ALS) Aigner
et al. (1977) and Meeusen and van den Broeck (1977), in
the form of a Cobb-Douglas production function,

Y ¼ β>X þ ε ¼ β>X þ v� u; ð1Þ

where Y is the maximum log–output obtainable from a
vector of log–inputs X ¼ ðx1; ::: ; xdÞ 2 Rd, β 2 Rd;

ðd � 1Þ, is an unknown vector of parameters, and ε= v
− u, denotes the composed error term. The random
component v is intended to capture the effects of purely
random statistical noise (disturbances beyond the firm’s

control), while u ≥ 0 is intended to capture the effects of
technical inefficiency which are specific to each firm.

We now review earlier work on goodness–of–fit tests for
certain aspects of the SFM. Schmidt and Lin (1984) and Coelli
(1995) suggested tests of normality for the composed error term
ε by means of the empirical third moment of the OLS residuals.
A moment-based method employing skewness and excess
kurtosis has also been proposed quite recently by Papadopoulos
and Parmeter (2021). Lee (1983) proposed Lagrange Multiplier
tests for the normal/half-normal and the normal/truncated-nor-
mal SFM within the Pearson family of truncated distributions.
Kopp and Mullahy (1990) introduced GMM–based tests for
the distribution of the inefficiency component u by simply
assuming the noise component v to be symmetric, but not
necessarily normally distributed. They also suggest a
GMM–based test for the symmetry assumption utilizing odd
order moments of residuals. Bera and Mallick (2002) also
suggest tests that enjoy moment interpretations but they test
their moment restrictions by means of the information matrix.
Most of the aforementioned tests however are not omnibus, i.e.
they may have negligible power against certain alternatives.
While Wang et al. (2011) also suggest certain non-omnibus
procedures, they are probably the first to apply specification
procedures, such as the Kolmogorov–Smirnov test, that are
omnibus, i.e. procedures which, being based on consistent tests,
enjoy non-negligible power for arbitrary deviations from the
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null model, and not just for directive alternatives. These authors
are also innovative by suggesting the use of the bootstrap in
order to compute critical points and actually carry out the test in
practice. A further innovation is brought forward by Chen and
Wang (2012) who in effect propose to use the characteristic
function (CF) for testing distributional specifications in SFMs.

One important aspect of the SFM specification methods is
the distribution of the technical inefficiency term u. In this
paper we proceed in the lines set forward by Wang et al.
(2011) and Chen and Wang (2012) and suggest
bootstrap–based omnibus specification tests for the composed
error with special emphasis on the law of the inefficiency
component u in SFMs that utilize the CF. Our tests make use
of the fact that CFs are often easier to compute than densities
or distribution functions, and also utilize the property that
conditionally on the independence of u and v, the CF of the
composed error term ε may easily be obtained from the pro-
duct of the CFs of u and v. The rest of the paper unfolds as
follows. In Section 2 we introduce the tests, discuss some
aspects of the test statistics, prove consistency, and also con-
sider estimation of parameters. In Section 3 we present a
Monte Carlo study of a bootstrap–based version of the new
tests in the case of a normal/exponential and a normal/gamma
SFM. Conclusions and outlook are presented in Section 4. A
few technical arguments are deferred to Appendices A and B .
There is also an accompanying Supplement containing Monte
Carlo results for some extra simulation settings.

2 Goodness–of–fit tests

In this section we consider tests for SFMs with exponen-
tially distributed inefficiency and also tests for SFMs with
gamma distributed inefficiency. In the first case the para-
meters are fully unspecified while in the latter case they are
partially specified.

2.1 Tests for the composed error with exponential
inefficiency

Let Z denote an arbitrary random variable, and recall that the
CF of Z is defined by φZðtÞ ¼ EðeitZÞ ¼ E½cosðtZÞþ
i sinðtZÞ� � CZðtÞ þ iSZðtÞ; t 2 R, with i ¼ ffiffiffiffiffiffiffi�1

p
, where CZ

(t) and SZ(t) denote the real and imaginary parts, respec-
tively, of φZ(t). A few basic properties of CFs that will be
used here are the following: (a) For the CF of Z it holds
φZð�tÞ ¼ φ�ZðtÞ ¼ φZðtÞ, where z denotes the conjugate of
the complex number z, (b) if Z has a symmetric around zero
distribution, then its CF is real-valued, i.e. it holds SZ(t)≡ 0,
and hence φZ(t)≡CZ(t), and (c) if Z1 and Z2 are independent
then φZ1þZ2

ðtÞ ¼ φZ1
ðtÞφZ2

ðtÞ.

Consider now the SFM in Eq. (1), and suppose that on
the basis of data (Xj, Yj), j= 1, . . . , n, we wish to test the
null hypothesis

H0 : Model (1) holds true with u � ExpðθÞ
for some θ> 0;

ð2Þ

where ExpðθÞ denotes the exponential distribution with
density θ−1e−x/θ. At this stage the law of the pure statistical
error v will be left unspecified.

In this connection, and since in the context of SFMs, u
and v are assumed independent and v is typically
assumed to have a distribution that is symmetric around
zero, it readily follows that the CF of the composed error
term may be computed as

φεðtÞ ¼ φv�uðtÞ ¼ φvðtÞφuð�tÞ ¼ CvðtÞφuðtÞ
¼ CvðtÞðCuðtÞ � iSuðtÞÞ:

ð3Þ

and hence if in addition we assume that CvðtÞ ≠ 0; t 2 R,
then

SεðtÞ þ tCεðtÞ ¼ �CvðtÞ SuðtÞ � tCuðtÞð Þ ¼ 0; ð4Þ

if and only if

SuðtÞ � tCuðtÞ ¼ 0: ð5Þ
However, Henze and Meintanis (2002) have shown that
Eq. (5) is a characterization of the unit exponential
distribution. Consequently (4) holds, if and only if (5) holds
for all t 2 R, which in turn only holds under the null
hypothesis H0 in (2) with θ= 1. This fact justifies taking the
left hand side of Eq. (4) as the point of departure of our test,
but in order to reduce the test of the null hypothesis H0 to
unit exponentiality, we will consider instead of ε the
standardize error defined by eε ¼ ε=θ.

To this end recall that the SFM in (1) depends on the
regression parameter β, that under the null hypothesis (2)
this model also involves the exponential parameter θ and
that the pure statistical error v may also involve an
unknown parameter. Let bεj ¼ Yj � bβ>Xj, be the residuals
of the SFM (1) under the null hypothesis H0. Clearly these
residuals, besides being dependent on the regression
parameter bβ, they are also computed conditionally on
suitable estimates of the aforementioned distributional
parameters; see Section 3 for parameter estimation. We
will write beεj ¼ bεj=bθ; j ¼ 1; ¼ ; n, for the respective stan-
dardized residuals. Then the left hand side of Eq. (4) may
be estimated by

DnðtÞ :¼ SnðtÞ þ tCnðtÞ; t 2 R; ð6Þ
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where

CnðtÞ ¼ 1
n

Xn
j¼1

cosðtbeεjÞ; SnðtÞ ¼ 1
n

Xn
j¼1

sinðtbeεjÞ;
with Cn (resp. Sn) being an estimator of C~ε (resp. S~ε). In view
of (4), Dn(t) should be close to zero under the null hypothesis
H0 identically in t 2 R, at least for large sample size n. Thus
it is reasonable to reject H0 for large values of the test statistic

Tn;w ¼ n

Z 1

�1
D2

nðtÞ wðtÞ dt; ð7Þ

where w(t) > 0 is an integrable weight function–1. The test
figuring in (7) is an integrated and weighted test, and in this
sense it is analogous to a Cramér-von Mises test, the only
difference being that instead of the estimated distribution
function used in the latter test, within Tn,w, and specifically in
D2

nðtÞ, we employ the estimated CF of the underlying law. In
view of the uniqueness property of CFs and the positivity of the
weight function w(t), formulation (7) leads to a test statistic that
is (globally) consistent, and thus to an omnibus test; see
Proposition 1. However the uniqueness property of CFs only
holds if, as it is done in (7), this CF is considered over all
possible arguments t 2 R, and therefore the chi-squared tests
suggested in Chen and Wang (2012) (see also Wang et al.
(2011)) which are based on computing the empirical CF over a
finite grid of points, are not omnibus. On the other hand chi-
squared tests have the advantage of a simple limit null
distribution with well known and tabulated critical points, and
thus the practitioner does not necessarily need to resort to
bootstrap resampling. Despite this advantage however, con-
vergence to the limit chi-squared distribution may prove quite
slow and thus often one has to revert back to bootstrap for
actual test implementation; see for instance Wang et al. (2011).

While the consistency of the test based on Tn,w may be
proved for a general class of weight functions, the choice
w(t)= e−λ∣t∣, λ > 0, is particularly appealing from the computa-
tional point of view. To see this write Tn,λ for the test statistic in
(8) with weight function e−λ∣t∣. Then after some straightforward
algebra (refer to Appendix A for details) we obtain

Tn;λ ¼ λ
n

Pn
j;k¼1

1

λ2þ beε�jk� �2 � 1

λ2þ beεþjk� �2 þ 4
beεþjk

λ2þ beεþjk� �2
� �2

þ
2 λ2�3

beεþjk� �2
� �

λ2þ beεþjk� �2
� �3 þ

2 λ2�3
beε�jk� �2

� �

λ2þ beε�jk� �2
� �3 ;

ð8Þ

where we write ∑j,k for the double sum ∑j∑k, and wherebeεþjk ¼ beεk þbeεj, and beε�jk ¼ beεk �beεj, j, k= 1,…, n.

We now illustrate the role that the weight function e−λ∣t∣

plays in the test statistic Tn,λ. To this end we use expan-
sions of the trigonometric functions sinð�Þ and cosð�Þ, and
after after some algebra (refer to Appendix B for details)
we obtain from (8)

lim
λ!1

λ3

4 Tn;λ ¼ n 1
n

Pn
j¼1

beεj þ 1

 !2

: ð9Þ

The “limit statistic” in the right–hand side of (9) measures
normalized distance from unity of the sample mean of the
standardized residuals beεj. Recall in this connection that under
the null hypothesis H0, EðeεÞ ¼ �1, and thus this distance
should vanish under H0, as n→∞. However this same dis-
tance will also vanish under an alternative for which the
standardized error term happens to have expectation equal to
one. In conclusion taking a value of the weight parameter λ
that is “too large” forces the test to depend on lower order
moments of the residuals and should be avoided if the test is to
have good power against alternatives with arbitrary moment
structure. On the other hand, values of λ too close to the origin
result in a test that is prone to numerical error due to peri-
odicity of trigonometric functions.

Remark 1 It is clear from Eqs. (3)–(4) which are
instrumental in defining our test statistic that (5) is robust
to the law of the pure statistical error v, as long as this
law satisfies CvðtÞ≠0; t 2 R. Of course the test statistic is
conditioned on a preliminary estimation step, and thus
rejecting on the basis of the test in (8) implies rejection of
the “entire” normal/exponential law for the composed
error in that this entire law is present in the test statistic
both at the estimation as well as at the test construction
step following the estimation step. In this sense our test
has power not only against non-exponential specifications
for u, but also against any non-normal specification for v,
such as the Student-t (see Wheat et al. (2019)) and the
stable (see Tsionas (2012)) specification. We refer the
interested reader to the accompanying Supplement for
corresponding Monte Carlo results. In this connection we
note that a large class of distributions with φZ ≠ 0 is the
class of infinitely divisible laws (see Sasvári (2013),
§3.11). At the same time, and while tailored specifically to
the null hypothesis H0 of exponentiality in (2), our test
may also be applied with any other law of v with a non-
vanishing CF. To do so one has to apply (8) as test sta-
tistic but the residuals have to be computed via, say
maximum likelihood, that takes into account the specific
non-normal law postulated for v.

1 The test for the cost frontier model with ε= v+ u may be computed
by modifying Eq. (6) to Dn(t)≔ Sn(t)− tCn(t) and by analogously
defining the test statistic in Eq. (8).
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Continuing on the power properties and due to the
uniqueness of CFs (see Sasvári (2013) Theorem 1.3.3), we
maintain that the test statistic Tn,w defined by (8) has
asymptotic power one as n→∞ for arbitrary deviations
from the null hypothesis H0. This result is formally stated
and proved below. As it is already implicit X⊤ denotes
vector transposition, and we also write k X k¼
ðPd

k¼1 x
2
kÞ

1=2
for the Euclidean length of X.

Proposition 1 Consider the SFM in (1) and suppose the
following conditions hold: (C1) The CF of v satisfies φv ≠
0, the regressor X 2 Rd; d � 1, has finite mean and (X,
v, u) are mutually independent, (C2) the distributions of u
and X are such that u+ a⊤ X is not exponentially dis-
tributed for any d–vector a ≠ 0 (C3) the estimator bβ
satisfies bβ ! b almost surely (a.s.) as n→ ∞ for some
b 2 Rd, with b= β0 (the true value) under H0 and (C4)
the weight function w > 0 is such that

R
Rt

2wðtÞdt <1.
Then for the test statistic in (8) it holds

Tn;w

n
!
Z 1

�1
D2ðtÞwðtÞdt :¼ Δw; ð10Þ

a.s. as n→∞, with D(t)= Se(t)+ tCe(t), where Ce (resp. Se)
denotes the real (resp. imaginary) part of the CF of ej(b)≔
Yj− b⊤Xj, j= 1, . . . , n.

Proof. For simplicity we assume the distributional para-
meters to be fixed under the null hypothesis and that spe-
cifically θ= 1. Then the following Taylor expansion of the
cosine function around β= b

cosðtejðbβÞÞ ¼ cosðtejðbÞÞ þ ðbβ � bÞ>∇ cosðtejðβÞÞjβ¼b�

where

∇ cosðtejðβÞÞ ¼ ∂ cosðtejðβÞÞ
∂β1

; :::;
∂ cosðtejðβÞÞ

∂βd

� �>

and b* is such that k b� � b k	k bβ � b k, leads to

CnðtÞ � 1
n

Xn
j¼1

cos tej
� �					

					 	 jtj
Xd
k¼1

jbβk � bkj 1n
Xn
j¼1

jXjkj ! 0;

a.s. as n→∞, so that Cn(t)→ Ce(t) and likewise Sn(t)→ Se
(t). Thus D2

nðtÞ ! D2ðtÞ, and since D2
nðtÞ 	 ð1þ jtjÞ2, withR

Rð1þ jtjÞ2wðtÞdt <1 by (C4), we may invoke Lebes-
gue’s theorem of dominated convergence (see Jiang
(2010), §A.2.3) and the proof of (10) is finished.
Clearly Δw > 0 unless D(t)= 0 identically in t. Now write
e= Y− b⊤X= ε− a⊤X= v− (u+ a⊤X), where a= b−
β0, so that by independence φeðtÞ ¼ φvðtÞφuþa>Xð�tÞ ¼
φvðtÞðCuþa>XðtÞ � iSuþa>XðtÞÞ and therefore since by (C1)
φv ≠ 0, D ≡ 0 holds if and only if Suþa>XðtÞ ¼ tCuþa>XðtÞ;

identically in t, which is an established characterization of
the exponential distribution; see Henze and Meintanis
(2002) for tests based on this characterization, and
Jammalamadaka and Taufer (2003) and Henze and
Meintanis (2005) for reviews on testing for exponenti-
ality. However condition (C2) rules out this possibility
unless u follows an exponential distribution, in which case
b= β0 (or a= 0), i.e. Δw= 0 only under the null
hypothesis H0 figuring in (2). Thus Tn,w→∞ a.s. as
n→∞ under alternatives and consequently the test which
rejects H0 for large values of Tn,w is consistent. ■

Remark 2 Formally speaking, for fixed distribution of the
regressor X with CF φX ≠ 0, condition (C2) is violated if
φuðtÞ ¼ ð1� itÞφa>XðtÞð Þ�1. For the circumstances under
which this violation is possible to become more transparent
assume that X ≡ 1, i.e. assume that the simple location
SFM, Y= β+ ε, holds. Then this condition reads as φu(t)=
(1−it)−1e−iAt, A ¼Pd

k¼1 ak (the sum of the elements of the
vector a), meaning that u= Z− A, with Z exponentially
distributed. If this happens however, then we are not in line
with the classical assumption that the support of the dis-
tribution of u is the non–negative real line.

2.2 Estimation for the normal/exponential case

As already mentioned the parameters of any given SFM are
considered unknown and thus they should be estimated
from the data (Xj, Yj), j= 1, . . . , n. Here we will illustrate
the estimation procedure on the assumption that v �
Nð0; σ2vÞ, i.e. that v follows a zero–mean normal distribu-
tion with variance σ2v . In this connection one of the most
commonly used estimator is the maximum likelihood esti-
mator (MLE), which is known to be consistent and
asymptotically efficient.

In order to compute the normal/exponential likelihood
function we note that the density for the composed error
term ε, is given by (see Kumbhakar and Lovell (2000)),

f ðεÞ ¼ 1
θ
Φ � ε

σv
� σv

θ

� �
exp

ε

θ
þ σ2v
2θ2

� �
ð11Þ

where Φ( ⋅ ) denotes the standard normal distribution
function. Based on this equation, the log-likelihood function
for the sample may be written as

log Lðβ; σ2v ; θÞ ¼ �n log θ þ n σ2v
2θ2

� �
þ Pn

j¼1
log Φ � εj

σv
� σv

θ

� �
þPn

j¼1

εj
θ :

ð12Þ

Since the log-likelihood function in (12) is non-linear,
iterative computational methods are needed to be
developed. To this end, a Matlab code was developed in
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which the unconstrained maximisation of (12) is done
using the library function fminunc. For the implementa-
tion of this program the Quasi-Newton method is used,
instead of the Newton-Raphson method, since the latter
requires the calculation of second partial derivatives.

2.3 Tests for the composed error with gamma
inefficiency

In this section we consider the test for a SFM with gamma
distributed inefficiency term; see for example Tsionas
(2000). By way of example we consider the null hypothesis

H0 : Model (1) holds true with u � Gammaðκ; θÞ
for κ ¼ 2 and some θ> 0;

ð13Þ

i.e. we consider testing for a gamma distribution with shape
parameter equal to κ= 2, and unspecified value of θ. Recall
in this connection the density of the gamma distribution is
f(x; κ, θ)= (xκ−1/(Γ(κ)θκ))e−x/θ, with ΓðκÞ ¼ R10 xκ�1e�xdx.

Since the CF of a random variable Z following the
gamma distribution is given by φZ(t)= (1−itθ)−κ, and by
analogous steps as in Section 2 it follows that for κ= 2
the CF of the standardized composed error eε ¼ ε=θ
satisfies

ð1� t2ÞS~εðtÞ þ 2tC~εðtÞ ¼ 0; t 2 R ð14Þ

and therefore suggest a test statistic analogous to (8) with

DnðtÞ ¼ ð1� t2ÞSnðtÞ þ 2tCnðtÞ; t 2 R; ð15Þ

where Cn and Sn are defined in the same way as in (6) but
now the residuals are estimated from the SFM Yj =
β+ εj under the normal/gamma null hypothesis (13)
with κ= 2.

With some further algebra it follows that if we employ
the same weight function w(t)= e−λ∣t∣, the test statistic is
rendered in the following form which is convenient
for computer implementation (refer to Appendix A

Table 1 Size of the test for the
normal/exponential null
hypothesis at level of
significance α and sample size n

α= 5% n Tn,λ KS CvM

λ= 0.5 λ= 1.0 λ= 2.0 λ= 3.0 λ= 4.0 λ= 5.0

θ= 0.5 100 4.4 6.0 7.2 7.1 6.4 7.3 5.6 5.8

200 4.5 4.6 4.8 4.7 4.6 4.9 3.7 5.0

300 5.8 4.3 5.0 5.9 5.8 5.4 5.7 3.8

500 4.8 4.4 5.3 5.8 4.8 5.0 7.2 7.2

θ= 1 100 4.8 4.0 4.9 3.9 3.2 2.8 5.5 5.2

200 6.9 6.0 3.8 3.4 2.3 2.3 6.0 6.5

300 6.1 5.3 4.1 3.0 2.4 2.5 5.8 5.4

500 3.9 3.5 5.2 3.1 2.5 2.5 3.9 4.8

θ= 3 100 4.9 3.0 2.8 3.6 4.5 4.5 4.6 3.5

200 5.5 3.5 4.4 5.3 4.7 5.1 6.0 4.7

300 3.8 2.4 2.8 2.6 2.1 2.6 2.7 2.6

500 4.1 4.2 4.6 4.5 4.6 4.9 3.6 4.8

θ= 5 100 4.1 3.6 3.6 4.9 5.3 5.1 4.3 3.8

200 3.2 4.2 4.1 4.7 5.2 4.9 3.8 3.6

300 5.9 3.8 4.1 5.1 5.3 5.5 4.9 4.1

500 5.1 4.9 6.7 6.5 5.4 4.9 6.9 6.2

θ= 8 100 4.8 4.1 5.4 6.0 5.7 5.9 5.1 6.1

200 2.9 4.7 4.8 6.0 6.4 6.0 5.0 4.0

300 7.3 6.2 6.0 6.3 5.9 6.2 6.1 6.5

500 5.5 6.2 5.6 6.1 6.4 5.8 5.8 5.4

θ= 10 100 2.9 3.3 3.4 3.5 4.4 3.8 3.8 3.7

200 3.5 5.0 4.4 4.5 4.4 4.1 4.6 4.6

300 5.2 3.5 4.5 4.3 4.6 4.7 5.1 4.7

500 5.2 6.2 5.7 6.3 6.2 5.9 5.5 5.5

Number of Monte Carlo iterations M= 1000, KS Kolmogorov-Smirnov test, CvM Cramér-von Mises test,
normal: standard normal, exponential: ExpðθÞ
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for details):

Tn;λ ¼ λ
n

Pn
j;k¼1

1

λ2þ ~̂ε
�
jkð Þ2 �

1

λ2þ ~̂ε
þ
jkð Þ2

þ
4 λ2�3

beε�jk� �2
� �

λ2þ beε�jk� �2
� �3 þ

12 λ2�3
beεþjk� �2

� �

λ2þ beεþjk� �2
� �3

þ
8
beεþjk λ2þ beεþjk� �2

� �2

�12 λ2� beεþjk� �2
� �� �

λ2þ beεþjk� �2
� �4

þ
24 λ4�10λ2

beε�jk� �2

þ5
beε�jk� �4

� �

λ2þ beε�jk� �2
� �5

�
24 λ4�10λ2

beεþjk� �2

þ5
beεþjk� �4

� �

λ2þ beεþjk� �2
� �5 ;

ð16Þ

with beεþj;k and beε�j;k j, k= 1,…, n, defined in exactly the same
way as in (8).

The comments made in Remark 1 apply here too, i.e. the
test defined in (16) may be used with any given law of v
with real and non-vanishing CF, be it normal or non-nor-
mal, but we reiterate that this generality is conditioned on a
proper estimation step that takes into account the specific
law of v postulated.

Before closing this part we also wish to emphasize that
the tests considered herein, and as far as the law of the
inefficiency is concerned, are specific to the null hypoth-
eses as stated, i.e. the test in (8) is specific to the null
hypothesis of exponentiality figuring in (2) while the test in
(16) is specific to the null hypothesis as stated in (13), and
that in both cases the tests are not directional aiming
against a specific alternative, but rather they have power
against arbitrary deviations from the corresponding null
hypothesis. On the other hand these tests may be appro-
priately modified to test a more general null hypothesis
such as testing for a gamma distribution with unspecified
value of κ, or to test a separate family of distributions like
the popular half-normal specification for the technical
efficiency term u. In doing so however, one has to take into
account the specific structure of the CF of u under this
particular specification and design the test analogously; see
Section 4 for some extra discussion on this issue.

Table 2 Power of the test
against the normal/half-normal
alternative at level of
significance α and sample size n

α= 5% n Tn,λ KS CvM

λ= 0.5 λ= 1.0 λ= 2.0 λ= 3.0 λ= 4.0 λ= 5.0

σu= 0.5 100 4.9 8.1 7.9 7.8 7.7 8.3 5.9 5.4

200 6.0 6.2 7.2 7.4 8.2 8.5 5.9 5.1

300 3.9 5.3 6.4 6.5 7.5 8.6 5.5 5.3

500 4.6 4.7 5.6 6.1 7.1 7.3 5.1 4.5

σu= 1 100 4.3 5.4 8.5 9.7 9.4 9.2 6.1 5.4

200 4.0 4.8 7.1 7.3 8.6 9.0 5.7 5.7

300 5.7 5.0 5.9 6.0 5.1 5.2 5.8 6.0

500 4.1 4.6 4.9 5.8 6.6 6.3 5.4 6.2

σu= 3 100 6.3 7.1 7.2 5.6 5.4 4.5 8.8 10.0

200 6.8 9.6 13.5 12.9 12.1 11.9 15.3 15.4

300 9.3 15.4 22.3 21.3 21.4 21.1 18.6 23.4

500 17.7 33.4 50.4 58.9 61.4 58.5 35.3 43.7

σu= 5 100 7.3 9.3 18.5 19.8 19.2 19.1 16.6 22.2

200 13.9 26.6 36.8 40.7 41.6 41.9 31.7 38.4

300 21.9 42.7 60.0 64.7 68.3 67.8 47.8 58.7

500 42.9 76.0 89.5 92.4 92.0 90.5 76.2 87.9

σu= 8 100 9.0 20.0 28.2 33.7 33.9 34.4 23.2 27.7

200 25.8 46.2 61.5 64.9 65.7 65.0 52.0 67.1

300 44.6 71.0 83.7 87.8 89.6 89.4 72.4 87.4

500 77.1 93.0 97.3 97.7 98.3 98.7 92.3 98.4

σu= 10 100 11.2 25.9 35.6 39.7 41.9 41.3 28.2 32.1

200 30.9 51.4 68.4 72.8 74.4 75.2 57.8 71.4

300 52.9 79.5 90.6 91.9 93.0 93.3 84.6 93.1

500 83.9 93.5 98.5 98.6 98.8 98.9 96.2 99.5

Number of Monte Carlo iterations M= 1000, KS Kolmogorov-Smirnov test, CvM Cramér-von Mises test,
normal: standard normal, half-normal: HNð0; σ2uÞ
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3 Simulations

3.1 Simulations for the normal/exponential case

In this section we present the results of Monte Carlo study for
the new test statistic given by Eq. (8).2 Specifically under the
null hypothesis we consider the normal/exponential SFM
whereby v � Nð0; 1Þ and u � ExpðθÞ for θ= 0.5, 1.0, 3.0,
5.0, 8.0, 10.0, while the power of the test is computed against a
normal/half–normal alternative hypothesis with the same
Gaussian component, and the half–normal scale parameter set
equal to σu= 0.5, 1.0, 3.0, 5.0, 8.0, 10.0.

We also compare the results of the proposed test statistic
with those obtained from the classical Kolmogorov – Smirnov
(KS) and Cramér–von Mises (CvM) tests. For ease of reference
we report the equations defining the KS and CvM test statistics.
To this end note that both these statistics utilize the empirical
cumulative distribution function bFnð�Þ of the residuals bεj and
the theoretical (assumed) cumulative distribution function

F0j :¼ F0ðbεj;bσv;bθÞ under the null hypothesis H0. The
respective formulas are given by

KS ¼ maxfDþ;D�g;where
Dþ ¼ max

1	j	n

j
n � F0j

 �

D� ¼ max
1	j	n

F0j � j�1
n

�
 � ð17Þ

and

CvM ¼ 1
12n

þ
Xn
j¼1

F0j � 2j� 1
2n

� �2

; ð18Þ

with the assumed normal/exponential cumulative distribution
function F0( ⋅ ) being computed by numerical integration. For
recent developments in computing the cumulative distribution
function of the composed error see Amsler et al. (2019) and
Amsler et al. (2021) that consider the popular case of a normal/
half-normal SFM.

We consider the simple location SFM in Eq. (1), Yj= β+
εj, with β estimated by MLE. The number of Monte Carlo

Table 3 Size of the test for the
normal/gamma null hypothesis
with κ= 2, at level of
significance α and sample size n

α= 5% n Tn,λ KS CvM

λ= 0.5 λ= 1.0 λ= 2.0 λ= 3.0 λ= 4.0 λ= 5.0

θ= 0.5 100 4.6 4.7 5.2 5.1 5.8 6.5 4.3 6.0

200 6.0 4.0 4.6 5.7 5.4 7.0 6.1 6.0

300 6.9 3.4 4.7 5.7 6.0 5.8 6.1 4.6

500 4.4 5.6 4.2 3.9 2.9 2.3 3.2 4.0

θ= 1 100 4.9 5.1 4.7 4.1 4.6 3.4 3.1 4.7

200 5.5 6.4 5.7 3.8 3.6 2.6 7.0 4.6

300 4.3 3.6 5.1 4.3 4.0 3.2 3.1 3.3

500 3.3 4.8 4.8 4.2 4.9 4.1 6.1 5.5

θ= 3 100 4.5 4.3 3.4 5.0 5.4 5.6 4.5 4.4

200 5.7 5.1 5.1 4.4 4.5 4.5 5.8 5.0

300 4.4 3.6 5.6 5.0 4.4 4.5 4.7 5.0

500 5.5 5.0 4.5 4.9 5.1 5.0 5.9 5.1

θ= 5 100 4.8 4.8 5.3 4.7 3.8 3.7 4.1 4.5

200 3.4 4.2 3.9 4.8 4.6 4.6 4.1 4.2

300 5.5 5.1 4.6 4.8 5.4 5.3 4.1 4.5

500 4.9 5.2 4.6 4.6 4.7 3.7 3.4 3.6

θ= 8 100 6.5 5.9 4.2 4.7 4.7 3.8 5.4 5.5

200 5.0 5.4 5.3 6.4 5.2 6.3 4.4 5.1

300 3.3 4.1 5.4 6.0 6.1 7.2 5.9 5.7

500 4.6 4.1 3.5 3.5 4.7 4.9 3.8 3.7

θ= 10 100 5.4 4.5 5.6 4.5 4.6 4.2 5.2 5.4

200 4.8 5.8 4.4 3.9 5.2 5.8 4.4 4.6

300 6.5 5.5 5.8 5.3 4.3 4.8 5.1 4.9

500 4.4 4.3 3.8 4.9 6.1 5.3 4.1 5.0

Number of Monte Carlo iterations M= 1000, KS Kolmogorov-Smirnov test, CvM Cramér-von Mises test,
normal: standard normal, gamma: Gamma(κ= 2, θ)

2 For simulations we used Matlab software R2015a version.

Journal of Productivity Analysis (2022) 57:285–296 291



replications is M= 1000, with sample size n= 100, 200, 300,
500, and nominal level of significance α= 5%. For the new
test statistic Tn,λ we consider λ= 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0.

Since however the parameters of the model are considered
unknown, we employ a parametric bootstrap version of the
tests which resamples from the null distribution with estimated
parameters, and thus the extra variation due to parameter esti-
mation is taken into account in computing critical values of test
statistics; see for instance Babu and Rao (2004) for theory of
the parametric bootstrap. However, the implementation of a
Monte Carlo simulation employing the parametric bootstrap
will potentially incur a great cost in computational time due to
the nested iteration structure involved with attempting to
evaluate a bootstrap procedure in a Monte Carlo. To alleviate
this computational burden, the so-called “warp speed” boot-
strap procedure will be used to approximate the bootstrap cri-
tical value in the Monte Carlo study. This bootstrap procedure
which has been put on a firm theoretical basis by Giacomini
et al. (2013) and Chang and Hall (2015) capitalizes on the
repetition inherent in the Monte Carlo simulation to produce
bootstrap replications, rather than relying on a separate “boot-
strap loop”. More specifically we calculate the bootstrap test

statistic for only one bootstrap sample (single double-resam-
pling) for each of the M Monte Carlo iterations, and ultimately
obtain M bootstrap sample test statistics at the end of the
simulation. The steps in performing the warp-speed version of
the parametric bootstrap are itemized below for the normal/
exponential case. For the normal/gamma case, step (B3) needs
to be modified in an obvious manner.

(B1) Draw a Monte Carlo sample fY ðmÞ
j ;XðmÞ

j g; j ¼ 1;

::: ; n, compute the estimator–vector bΘðmÞ
, where

bΘðmÞ ¼ ðbβðmÞ;bσðmÞ2v ;bθðmÞÞ.
(B2) On the basis of bΘðmÞ

calculate the residuals bεðmÞj and

the corresponding test statistic Tm ¼ TðbεðmÞ1 ; ¼ ;bεðmÞn Þ.

(B3) Generate i.i.d. bootstrap errors εðmÞj ; j ¼ 1; ¼ ; n,

where εðmÞj ¼ vðmÞj � uðmÞj , with vðmÞj � Nð0;bσ2vÞ and uðmÞj

� ExpðbθÞ, and independent.

(B4) Define the bootstrap observations Y ðmÞ
j ¼ bβðmÞXj

þεðmÞj , j= 1, . . . , n.

Table 4 Power of the test
against the normal/exponential
alternative at level of
significance α and sample size n

α= 5% n Tn,λ KS CvM

λ= 0.5 λ= 1.0 λ= 2.0 λ= 3.0 λ= 4.0 λ= 5.0

θ= 0.5 100 3.9 5.2 6.9 6.3 6.0 6.8 5.0 5.7

200 4.6 4.4 4.5 5.3 5.4 5.6 5.3 3.8

300 6.1 5.1 6.6 5.9 6.0 5.9 5.5 6.0

500 2.8 4.5 6.5 6.4 7.1 7.3 6.3 5.1

θ= 1 100 5.9 4.9 7.1 6.1 5.2 4.5 5.3 4.5

200 5.2 5.1 6.7 4.8 4.1 4.3 5.1 6.5

300 4.2 6.9 6.2 5.0 4.6 3.8 8.0 8.0

500 5.4 4.5 6.8 7.8 7.9 7.7 5.3 6.8

θ= 3 100 6.4 6.8 7.7 9.1 11.7 15.1 12.8 12.0

200 8.9 9.7 16.8 20.8 26.2 29.2 20.7 24.5

300 6.4 13.7 25.3 31.8 40.8 42.8 34.5 37.9

500 8.9 19.7 34.3 44.8 55.1 60.2 49.1 56.7

θ= 5 100 3.6 10.0 20.6 31.6 38.2 40.9 25.1 32.3

200 8.8 21.5 35.4 46.8 57.0 58.8 49.1 50.6

300 9.8 29.5 51.0 64.1 72.3 76.2 61.0 70.6

500 13.5 42.6 71.3 85.0 89.7 91.4 81.5 88.9

θ= 8 100 9.2 16.9 42.9 56.5 61.8 59.8 46.8 59.8

200 14.2 26.0 59.9 76.1 79.8 80.4 69.4 79.3

300 21.6 46.3 80.6 91.6 93.4 92.5 86.1 92.2

500 34.6 69.0 96.5 99.0 99.4 99.2 98.4 99.4

θ= 10 100 10.2 19.0 58.3 67.2 68.2 68.2 58.9 65.5

200 13.7 37.5 79.0 88.3 89.0 87.5 79.1 86.0

300 26.5 54.2 92.4 96.4 96.5 96.1 94.5 96.1

500 45.5 81.0 99.1 99.8 99.9 99.8 99.5 100.0

Number of Monte Carlo iterations M= 1000, KS Kolmogorov-Smirnov test, CvM Cramér-von Mises test,
normal: standard normal, exponential: ExpðθÞ
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(B5) Based on fY ðmÞ
j ;Xjg compute the bootstrap

estimator bΘðmÞ
b ¼ ðbβðmÞb ;bσ2ðmÞb;v ;bθðmÞb Þ, and the correspond-

ing bootstrap residuals, say, bϵðmÞj , j= 1, . . . , n.

(B6) Compute the test statistic bTm :¼ TðbϵðmÞ1 ; ¼ ;bϵðmÞn Þ,
based on the bootstrap residuals.
(B7) Repeat steps (B1)–(B6), for m= 1, . . . ,M, leading
to test–statistic values Tm and bootstrap statistic valuesbTm; m ¼ 1; ::: ;M.
(B8) Set the critical point equal to bT ðM�αMÞ, where bT ðmÞ,
m= 1,…,M, denote the order statistics corresponding tobTm, and α denotes the prescribed size of the test.

In the Table 1 the size results (percentage of rejection
rounded to the nearest integer) for the tests Tn,λ, KS and CvM
are presented at level of significance α= 5%, corresponding to
the Nð0; 1Þ=ExpðθÞ null hypothesis. Table 2 shows power
results for the normal/half–normal alternative hypothesis
Nð0; 1Þ=HNð0; σ2uÞ. For power results corresponding to some
extra simulation settings we refer the interested reader to the
accompanying Supplement. From Table 1 we see that for all
three tests the empirical size varies with the value of the

exponential parameter θ, while for the new test Tn,λ figures also
vary with the weight parameter λ. Overall however and with a
few exceptions the nominal size is satisfactorily recovered.
Turning to Table 2 we observe that the power is low for all
tests when the sample size n is small with lower values of the
half–normal parameter σu, but progressively increases with n as
σu gets larger, in which case the new test Tn,λ enjoys a clear
advantage against its competitors, at least for higher values of
the weight parameter λ.

3.2 Simulations for the normal/gamma case

In Table 3 we present level results for the test in (16) under the
normal/gamma null hypothesis with vj � Nð0; 1Þ and uj ~
Gamma(κ= 2, θ) for the same values of θ considered in §3.1.
As before estimators of parameters were obtained by maximum
likelihood. The results in Table 3 show that the three tests
respect the nominal size to a satisfactory degree. The power
results are reported in the Tables 4, 5, and 6, and correspond to
powers of the test based on Tn,λ in (16) as well as the KS and
CM tests for the null hypothesis normal/gamma with κ= 2,
against the alternatives normal/exponential (i.e. normal/gamma

Table 5 Power of the test
against the normal/gamma
alternative with κ= 3 at level of
significance α and sample size n

α= 5% n Tn,λ KS CvM

λ= 0.5 λ= 1.0 λ= 2.0 λ= 3.0 λ= 4.0 λ= 5.0

θ= 0.5 100 5.2 3.6 5.4 3.9 3.5 3.9 3.5 4.1

200 4.2 3.4 5.8 4.6 4.8 4.9 4.4 5.9

300 4.2 5.4 4.8 5.6 6.3 4.9 4.5 3.1

500 4.9 4.9 4.5 4.6 4.4 4.4 4.7 5.4

θ= 1 100 5.9 4.3 4.8 4.0 2.4 2.0 3.8 2.8

200 5.6 5.1 4.8 3.4 3.7 3.5 4.9 5.6

300 4.6 6.8 5.6 5.3 4.1 3.0 5.4 4.5

500 4.3 5.3 6.5 5.5 5.4 4.8 5.9 5.4

θ= 3 100 3.6 3.9 5.5 5.3 6.4 6.0 6.2 5.6

200 4.4 4.9 7.0 7.0 6.7 6.6 8.4 8.1

300 5.5 4.6 6.6 7.7 8.6 9.2 8.6 9.1

500 6.4 6.9 10.3 10.1 12.5 14.1 12.0 12.8

θ= 5 100 5.5 5.4 5.7 6.3 6.4 6.2 6.8 7.0

200 4.8 5.3 6.8 8.8 10.0 9.1 9.0 7.5

300 6.7 7.0 7.6 10.6 12.0 13.0 10.9 10.8

500 5.3 6.1 9.3 12.2 17.3 18.3 13.9 15.2

θ= 8 100 4.5 6.0 8.7 10.9 11.8 10.9 10.6 12.0

200 4.2 4.9 8.3 11.3 13.4 12.1 9.3 11.4

300 4.2 7.2 12.3 14.7 17.8 19.1 14.6 15.2

500 4.3 6.0 12.6 16.4 20.9 23.4 15.4 16.6

θ= 10 100 7.1 5.7 8.3 10.1 10.0 10.5 9.4 10.7

200 4.5 4.7 9.0 12.5 14.9 16.1 10.2 12.1

300 4.9 5.6 12.9 15.3 17.7 18.1 14.8 17.3

500 6.6 7.4 12.0 16.4 21.2 22.8 18.1 18.0

Number of Monte Carlo iterations M= 1000, KS Kolmogorov-Smirnov test, CvM Cramér-von Mises test,
normal: standard normal, gamma: Gamma(κ= 3, θ)
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with κ= 1), normal/gamma with κ= 3 and normal/gamma
with κ= 0.5, respectively. The percentage of rejection varies
with the alternative under consideration, being relatively low
for κ= 3, but increases considerably for the other two alter-
natives. The message that may be drawn from these results is
that the new test with larger values of λ (λ= 4 or 5) seems to be
preferable to its competitors almost uniformly with respect to
the sample size n and the alternative being considered.

4 Conclusions

We propose goodness–of–fit tests for the distribution of the
composed error ε= v− u in stochastic frontier production
models. The new test statistics are based on the characteristic
function of the composed error term ε and they are omnibus,
i.e. they possess non–negligible power asymptotically for any
given alternative under test. Moreover, bootstrap versions of
the tests are shown to have competitive power compared to the
classical Kolmogorov–Smirnov and Cramér-von Mises tests in
finite samples.

We wish to close by stressing the fact that the tests pre-
sented herein make use of specific properties of the CF
underlying the null hypothesis and as such they are tailored
for specific hypotheses under test. If they are to be modified
to apply to other cases such as the popular normal/
half–normal or normal/gamma, or any other specification,
then one has to employ alternative properties analogous to
(4) and (14) that apply to the CF of the specific distribution
under test; see for instance the test for the skew normal
distribution suggested by Meintanis (2007) which may be
used to test the normal/half-normal SFM. On the other hand
there also exists a general formulation for a test statistic
based on the CF that may be applied to any specification of
the law of the composed error ε. To this end suppose we
wish to test a particular specification for the composed error
that involves a parameter vector, say Θ, containing regres-
sion as well as any distributional parameter of this specifi-
cation. Then this general formulation is given by

Tn;w ¼ n

Z 1

�1
jφnðtÞ � φεðt; bΘÞj2wðtÞdt;

Table 6 Power of the test
against the normal/gamma
alternative with κ= 0.5 at level
of significance α and sample
size n

α= 5% n Tn,λ KS CvM

λ= 0.5 λ= 1.0 λ= 2.0 λ= 3.0 λ= 4.0 λ= 5.0

θ= 0.5 100 6.6 4.8 4.3 7.0 7.9 8.6 5.3 4.8

200 5.5 5.6 3.7 6.8 7.9 7.9 4.5 3.7

300 4.3 7.0 7.4 5.0 6.1 6.2 5.7 6.1

500 4.1 4.8 5.5 4.5 3.7 4.1 6.0 4.1

θ= 1 100 5.0 5.3 6.0 5.8 4.1 4.4 3.6 4.7

200 6.4 6.2 10.3 8.6 7.8 6.7 6.1 7.6

300 4.5 4.0 6.8 8.3 7.5 6.6 6.4 6.7

500 4.5 4.7 7.8 8.3 9.5 9.1 7.0 7.9

θ= 3 100 4.8 7.3 15.8 20.7 25.1 29.7 22.2 25.3

200 6.6 16.4 41.8 49.8 58.1 62.5 47.2 55.3

300 8.6 23.3 59.4 72.9 79.9 83.5 63.7 75.7

500 6.5 43.8 78.9 86.8 92.2 94.6 83.8 90.5

θ= 5 100 7.2 25.4 44.0 59.2 63.5 68.3 57.8 64.0

200 13.5 51.5 80.1 88.3 94.2 95.2 88.5 93.1

300 15.3 74.4 93.4 97.4 98.5 99.0 96.9 98.5

500 27.0 94.0 99.9 100 100 100 100 100

θ= 8 100 17.9 52.9 80.2 87.5 91.1 92.8 89.8 91.8

200 38.3 83.5 97.4 99.5 99.7 99.8 99.3 99.8

300 55.5 98.0 100 100 100 100 100 100

500 85.1 100 100 100 100 100 100 100

θ= 10 100 26.6 67.5 91.7 95.8 97.2 97.7 95.3 97.2

200 58.1 94.6 99.7 99.9 99.9 99.9 100 99.9

300 81.3 99.5 100 100 100 100 100 100

500 98.6 100 100 100 100 100 100 100

Number of Monte Carlo iterations M= 1000, KS Kolmogorov-Smirnov test, CvM Cramér-von Mises test,
normal: standard normal, gamma: Gamma(κ= 0.5, θ)
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where φn(t)= Cn(t)+ iSn(t) is the empirical CF computed
from estimated residuals, see for instance below Eq. (6),
and φε(t; Θ) is the CF under the null hypothesis, both
computed on the basis of the estimator bΘ of the
parameter vector Θ obtained under the particular
parametric specification underlying the null hypothesis.
While tests such as the above have the advantage of full
generality, this formulation is based on the premise
that the null CF φε(t; Θ) is known and has a rather simple
expression, so that numerical integration is not neces-
sary. Otherwise tests like the ones defined by (8)
and (16) which are tailored, i.e. they make use of the
specific structure of the CF under the null hypothesis,
may be preferable, at least from the computational point
of view.
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Appendix A

Starting from Eq. (6) we obtain

D2
nðtÞ ¼ S2nðtÞ þ t2C2

nðtÞ þ 2tSnðtÞCnðtÞ

¼ 1
n

Pn
j¼1

sinðbeεjÞ
 !2

þ t2 1
n

Pn
j¼1

cosðbeεjÞ
 !2

þ 2t 1
n

Pn
j¼1

sinðbeεjÞ
 !

1
n

Pn
j¼1

cosðbeεjÞ
 !

¼ 1
n2
Pn
j;k¼1

sinðbeεjÞ sinðbeεkÞ þ t2

n2
Pn
j;k¼1

cosðbeεjÞ cosðbeεkÞ
þ 2t

n2
Pn
j;k¼1

sinðbeεjÞ cosðbeεkÞ;
where we write ∑j,k for the double sum ∑j∑k. Also recall the
trigonometric identities

sin z1 sin z2 ¼ 1
2 ½cosðz1 � z2Þ � cosðz1 þ z2Þ�

cos z1 cos z2 ¼ 1
2 ½cosðz1 � z2Þ þ cosðz1 þ z2Þ�

sin z1 cos z2 ¼ 1
2 ½sinðz1 � z2Þ þ sinðz1 þ z2Þ�

Now plug the above expression for D2
nðtÞ into the test

statistic (7) and substitute the above product formulae, and

integrate term-by-term the resulting expression. Then after
some grouping we obtain (8) by making use of the integralsZ 1

�1
cosðtzÞe�λjtjdt ¼ 2λ

z2 þ λ2
;

Z 1

�1
t2 cosðtzÞe�λjtjdt ¼ 4λðλ2 � 3z2Þ

z2 þ λ2
� �3 ;

Z 1

�1
t sinðtzÞe�λjtjdt ¼ 4zλ

z2 þ λ2
� �2 :

Equation (16) may be proved by following analogous
steps, but we also need the extra integralsZ 1

�1
t4 cosðtzÞe�λjtjdt ¼ 48λð5z4 � 10z2λ2 þ λ4Þ

z2 þ λ2
� �5 ;

Z 1

�1
t3 sinðtzÞe�λjtjdt ¼ 48zλðλ2 � z2Þ

z2 þ λ2
� �4 :

Appendix B

Starting from Eq. (6) and using sinðzÞ ¼ z� ðz3=3!Þ þ ¼
and cosðzÞ ¼ 1� ðz2=2!Þ þ ¼ , we obtain (in increasing
powers of t)

DnðtÞ ¼ t 1
n

Pn
j¼1

beεj þ 1

 !
� t3

2!
1
3
1
n

Pn
j¼1

beε3j þ 1
n

Pn
j¼1

beε2j
 !

þ ¼ ;

and by squaring

D2
nðtÞ ¼ t2 1

n

Pn
j¼1

beεj þ 1

 !2

� t4 1
3
1
n

Pn
j¼1

beε3j þ 1
n

Pn
j¼1

beε2j
 !

1
n

Pn
j¼1

beεj þ 1

 !

þ ¼ :

Plugging the above expression in Eq. (7) and integrating
term-by-term leads to

Tn;w ¼ n 4
λ3

1
n

Pn
j¼1

beεj þ 1

 !2
2
4

� 48
λ5

1
n

Pn
j¼1

beεj þ 1

 !
1
3
1
n

Pn
j¼1

beε3j þ 1
n

Pn
j¼1

beε2j
 !

þ ¼ �;
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and by taking the limit as λ→∞, we readily obtain (9),
where we made use of the integral

Z 1

�1
jtjme�λjtjdt ¼ 2m!

λmþ1 ; m ¼ 1; 2; ¼ :
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