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Abstract
Applications of efficiency and productivity analysis in which some inputs and outputs are given in the form of percentages,
averages and other types of ratio measures are sufficiently common in the literature. In two recent papers, the authors
developed the variable and constant returns-to-scale technologies with both volume and ratio types of inputs and outputs,
referred to as the R-VRS and R-CRS technologies. These technologies are generally nonconvex and have a complex
structure. In this paper we explore this in detail. We show that the R-VRS technology can be stated as the union of a finite
number of specially constructed standard VRS technologies. Similarly, the R-CRS technology in which all ratio inputs and
outputs are of the fixed type, which are typically used to represent environmental and quality factors, can be stated as the
union of a finite number of partial polyhedral cones. We show that these results have important theoretical, including
conceptual, implications.
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1 Introduction

In the literature on data envelopment analysis (DEA), it has
long been realized that the standard constant and variable
returns-to-scale (CRS and VRS) production technologies of
Banker (1984) and Charnes et al. (1978) are not suitable for
the situations in which some inputs and outputs are repre-
sented by ratio measures—see, e.g., Dyson et al. (2001).
Ratio inputs and outputs typically represent ratios of
volume measures expressed in the form of percentages and
averages. The reason for this is that, in contrast with volume
measures, the use of ratio inputs and outputs is generally
inconsistent with the axiom of convexity assumed in both
VRS and CRS technologies. In the case of CRS, the use of

ratio measures generally violates the additional assumption
that decision making units (DMUs) can be proportionally
scaled by a nonnegative scaling factor.

To illustrate this problem, consider the following
example.

Example 1 Suppose that, in the assessment of efficiency of
schools, output y1 represents all students and output y2
represents students with good academic achievements in the
school-leaving exams. Let the additional output y3 represent
the percentage of students with good academic achieve-
ments, calculated based on the values of the volume outputs
y1 and y2.
Table 1 shows the above three outputs for the two

observed schools A and B. Consider only the volume
outputs y1 and y2 and assume that schools A and B operate
in either VRS or CRS technology. Then any convex
combination of these schools is also in the corresponding
technology. For example, the simple average of schools A
and B, shown as the hypothetical (unobserved) school C in
Table 1, is included in both technologies. The correct
percentage of students with good academic achievements is
45/150, or 30%.
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Note that if we simply include the ratio output y3 in the
VRS or CRS technology, then, by averaging this output of
schools A and B, we obtain an overestimated, and hence
unsubstantiated, value of 40%.
This example shows that, if we include ratio outputs (and,

similarly, inputs) in the standard VRS or CRS technology,
then such measures in the hypothetical DMUs will
generally be incorrect.

A special case arises in which the analyst has access to
the volume measures used in the numerator and denomi-
nator of the ratio inputs and outputs. For this scenario,
Emrouznejad and Amin (2009) developed an approach in
which the assumption of convexity applies separately to the
known numerators and denominators used in the ratio
measures. However, this approach cannot be employed
when the volume measures used as the numerator and
denominator of the ratio input or output are unavailable.

In two recent papers, Olesen et al. (2015, 2017)
developed two different models of technology, referred to
as the ratio-VRS (R-VRS) and ratio-CRS (R-CRS) tech-
nologies, in which ratio inputs and outputs are used “as
is”, without any decomposition to the underlying volume
numerator and denominator. Both technologies satisfy a
generalized variant of the standard axiom of convexity
known as selective convexity (Podinovski 2005). The
R-VRS and R-CRS technologies allow conventional
convex combinations of the volume inputs and outputs,
while at the same time taking the ratio inputs at their
maximal level, and ratio outputs at the minimal level,
across all combined DMUs.

The R-CRS technology also uses a generalization of the
standard axiom of scalability, referred to as “ray unbound-
edness” by Banker et al. (1984), according to which the
volume inputs and outputs are scaled with a nonnegative
parameter in the conventional way, while the treatment of
ratio measures is different and depends on their assumed
type. Of particular practical significance is the R-CRS
technology in which all ratio inputs and outputs are of the
fixed type. Such technology is suitable in situations in
which ratio inputs and outputs represent environmental and
other exogenously fixed factors (e.g., in applications to
school performance, these could be the proportion of
households with high income or percentage of students with
special needs) or quality of products of goods and services
(e.g., the percentage of school leavers achieving good

results in exams or success rate of treatments in a hospital).
In all described situations, the R-CRS model with fixed ratio
inputs and outputs assumes that it is possible to scale the
volume inputs and outputs while keeping the environmental
and quality measures constant.1

Although the R-VRS and R-CRS technologies are
based on transparent sets of axioms, their explicit math-
ematical statements are less intuitive. Olesen et al.
(2015, 2017) establish several properties of these tech-
nologies and the models assessing the efficiency of DMUs
based on them. However, the overall geometric structure
of the R-VRS and R-CRS technologies has so far
remained unclear. This in turn made some theoretical
results (for example, the fact that both technologies are
closed sets, which is one of the basic assumptions in
production theory) formally correct but not sufficiently
intuitive.

In this paper, we explore the structure of the R-VRS and
R-CRS technologies, the latter assuming that all ratio
measures are of the fixed type. We prove that both tech-
nologies are the unions of a finite number of polyhedral
sets. More precisely, in the case of R-VRS, these sets are the
standard VRS technologies generated by different subsets of
observed DMUs whose ratio inputs and outputs are mod-
ified in a particular way. In the case of R-CRS, these
polyhedral sets are the partial cones obtained by scaling
only volume measures of the similarly modified
observed DMUs.

We show that the new results obtained in this paper have
various implications. In particular, these results should be
useful for the exploration of the R-VRS and R-CRS tech-
nologies and their efficient frontiers. This includes the
issues of classification of efficient DMUs, and sensitivity
and stability of efficiency measures. The representations of
the R-VRS and R-CRS technologies obtained in this paper
are also useful as theoretical foundations for the correct
definition of various frontier characteristics such as the most
productive scale size, marginal rates and local returns to
scale (RTS).

We proceed as follows. In Section 2, we introduce basic
terminology and notation. In Section 3, we discuss pro-
duction assumptions on which the R-VRS and R-CRS
technologies are based and give statements of these tech-
nologies. In Sections 4 and 5 we obtain the main results that
reveal the structure of the R-VRS and R-CRS technologies

Table 1 Schools in Example 1

School Output y1 Output y2 Percentage y3

A 200 20 10

B 100 70 70

C= 0.5A+ 0.5B 150 45 40 (incorrect), 30 (correct)

1 The incorporation of exogenous and quality-related measures in
efficiency analysis has been extensively discussed in the literature, and
different approaches have been developed based on different sets of
deterministic and probabilistic assumptions. Examples include models
with fixed exogenous factors of Banker & Morey (1986), the model of
production technology conditional on the level of the exogenous input
of Ruggiero (1996) and the conditional probabilistic approach of
Daraio and Simar (2005).
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as finite unions of polyhedral sets. In Section 6, we outline
some theoretical implications of our results. In Section 7,
we provide concluding remarks. The proofs of all mathe-
matical statements are given in the Appendix.

2 Preliminaries

Let I= {1, . . . ,m} and O= {1, . . . , s} be, respectively, the
sets of nonnegative inputs and outputs of technology
T � Rm

þ �Rs
þ. The subsets IV⊆ I and OV⊆O include

inputs and outputs given by volume measures. Their com-
plementary subsets IR= I\IV and OR=O\OV include ratio
inputs and outputs. We assume that there is at least one
input and at least one output, i.e., that the sets I ≠+ and
O ≠+, but allow any of their subsets of volume or ratio
measures to be empty.

In line with the given notation, we define a decision
making unit (DMU) as a member of technology T stated as
follows:

ðX; YÞ ¼ ðXV ;XR; YV ; YRÞ;

where X 2 Rm
þ and Y 2 Rs

þ are the vectors of inputs and
outputs, respectively. The subvectors XV, XR, YV and YR

consist of the inputs and outputs in the corresponding
subsets IV, IR, OV and OR.

Following Olesen et al. (2015), we allow a situation in
which some or all ratio inputs and outputs have specified
upper bounds, for example, 1 or 100%. Such bounds are
optional and, as shown by Olesen et al. (2015), in most (but
not all) cases, their specification does not affect the input or
output radial efficiency of the DMUs. However, for a rig-
orous definition of technology, such bounds need to be
taken into account. We state the bounds as follows:

XR � X
R

and YR � Y
R
: ð1Þ

Each component of vectors X
R
and Y

R
can be finite or

formally taken as+∞. The latter case is equivalent to the
situation in which no upper bound is specified on the
respective ratio input or output.2

Suppose that there are n observed DMUs (Xj, Yj), where
j∈ J= {1, . . . , n}. We assume that each observed DMU has
at least one strictly positive input and output, i.e., Xj and Yj
are nonzero vectors, and that the ratio inputs and outputs of
these vectors are within the bounds specified by the
inequalities (1), for all j∈ J.

3 Technologies with ratio inputs and outputs

Olesen et al. (2015) use the axiomatic approach for the
definition of the R-VRS and R-CRS technologies. This
approach defines a production technology based on the
explicitly stated production assumptions that this technol-
ogy is deemed to satisfy (Banker et al. 1984, Färe et al.
1985).

3.1 The R-VRS technology

Olesen et al. (2015) state the following three axioms of a
production technology T with volume and ratio inputs.

Axiom 1 (Feasibility of observed data). For any j∈ J,
(Xj, Yj)∈ T.

Axiom 2 (Free disposability). Let (X, Y)∈ T. Consider
any ð~X; ~YÞ ¼ ð~XV

; ~X
R
; ~Y

V
; ~Y

RÞ 2 Rm
þ �Rs

þ such that
~Y � Y , ~X � X, ~X

R � X
R
and ~Y

R � Y
R
, where X

R
and Y

R

are the vectors of upper input and output bounds from (1).
Then ð~X; ~YÞ 2 T .

Axiom 3 (Selective convexity). Let ð~X; ~YÞ 2 T and
ðX̂; ŶÞ 2 T . Assume that ~X

R ¼ X̂
R

and ~Y
R ¼ Ŷ

R
. Then

γð~X; ~YÞ þ ð1� γÞðX̂; ŶÞ 2 T , for any γ∈ [0, 1].
Note that Axiom 2 is a simple variation of the standard

axiom of free (or strong) disposability of all inputs and
outputs, adjusted for the requirement that the ratio inputs
and outputs must be within the bounds (1).

Axiom 3 of selective convexity was first stated in a
more general setting in Podinovski (2005). This axiom
allows convex combinations of volume inputs and outputs
of DMUs ð~X; ~YÞ and ðX̂; ŶÞ provided their ratio inputs and
outputs are identical. Furthermore, as proved by Podi-
novski (2005), Axiom 3, taken together with Axiom 2 of
free disposability, allows convex combinations of volume
inputs and outputs of any DMUs ð~X; ~YÞ and ðX̂; ŶÞ, even if
their ratio inputs and outputs are different. In this case,
each ratio input of the resulting DMU is taken as the
maximum of this input among the two combined DMUs,
and the ratio output is taken equal to the minimum of this
output among the two combined DMUs. Olesen et al.
(2017) call the resulting DMU obtained in this way the
ratio-convex (R-convex) combination of the two DMUs.
Therefore, if Axiom 2 is assumed, Axiom 3 can be
replaced by the equivalent in this case assumption that all
R-convex combinations of any two DMUs ð~X; ~YÞ 2 T and
ðX̂; ŶÞ 2 T are also in T.

Applying the minimum extrapolation principle first used
in DEA by Banker et al. (1984), Olesen et al. (2015) define
the R-VRS technology as follows.

Definition 1 The R-VRS technology TR
VRS is the intersec-

tion of all technologies T � Rm
þ �Rs

þ that satisfy Axioms
1–3.

2 In this paper, vector inequalities and equalities mean that the spe-
cified relation is true on the component-wise basis, e.g., XR � X

R

means that XR
i � X

R
i , for all i∈ IR.
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Olesen et al. (2015) further obtain an operational state-
ment of the R-VRS technology.3 Namely, technology TR

VRS

is the set of all DMUs ðX; YÞ 2 Rm
þ �Rs

þ for which there
exists a vector λ 2 Rn such that the following conditions
are true:

X
j2J

λjY
V
j � YV ; ð2aÞ

X
j2J

λjX
V
j � XV ; ð2bÞ

λj YR
j � YR

� �
� 0; 8j 2 J; ð2cÞ

λj XR
j � XR

� �
� 0; 8j 2 J; ð2dÞX

j2J
λj ¼ 1; ð2eÞ

XR � X
R
; ð2fÞ

YR � Y
R
; ð2gÞ

λ � 0: ð2hÞ

To see the meaning of the above conditions, note that
the vectors XV

j and YV
j of volume inputs and outputs of the

observed DMUs enter convex combinations in conditions
(2a) and (2b) with the nonnegative weights λj, for all j ∈ J.
Furthermore, if λj > 0, the inequalities (2c) imply YR

j � YR,
and the inequalities (2d) imply XR

j � XR. Therefore, con-
ditions (2c) and (2d) mean that the observed DMUs (Xj,
Yj) that enter convex combinations with a positive λj are
not worse than the DMU (X, Y) on all ratio inputs and
outputs.

Remark 1 Two special cases of technology TR
VRS are

worth highlighting. First, assume that there are no ratio
inputs and outputs. Then conditions (2c), (2d), (2f) and
(2g) are omitted and the resulting statement (2a)–(2h)
defines the conventional VRS technology of Banker
et al. (1984). Alternatively, suppose that there are no
volume measures and all inputs and outputs are ratios. In
this case conditions (2a) and (2b) are removed. It is
straightforward to prove that the remaining conditions
(2c)–(2h) define free disposal hull of Deprins et al.
(1984), with the additional upper limits on the inputs and
outputs (2f) and (2g).

3.2 The R-CRS technology with fixed ratio inputs
and outputs

The idea of the R-CRS technology of Olesen et al. (2015) is
to allow the scaling of the volume inputs and outputs of any
DMU by any factor α ≥ 0, while allowing the ratio inputs and
outputs to change (or remain constant) with respect to such
scaling. Olesen et al. (2015) identify four different types of
ratio measures, including the fixed and proportional types of
such measures. For example, as the name suggests, the inputs
and outputs of the proportional type are scaled in the same
proportion α as the ratio measures. However, it is the fixed
type that appears to be the most common in applications.

The fixed ratio inputs and outputs typically represent
either environmental or other exogenously fixed measures
that do not change as the volume of operations represented
by the volume inputs and outputs is scaled up or down. For
example, we would often consider ratio inputs and outputs
representing the socio-economic environment, such as the
proportion of population with higher socio-economic status
or percentage of population above certain age, as fixed ratio
measures. Similarly, fixed ratio measures may represent the
quality of the inputs or outputs that are not assumed to
change with the change of the volume, and may be dis-
cretionary or non-discretionary. Examples include the
average attainment or percentage of pupils with good grades
on entry to, and on exit from, a secondary school. We
would normally assume that these quality inputs and out-
puts remain constant while the physical volume of opera-
tions of the school, including the number of teachers,
expenses and pupils, could be scaled up or down.

The results obtained in this paper concern only the
R-CRS technology with the fixed type of ratio inputs and
outputs. This technology is defined by Axioms 1–3 stated
above and the additional axiom that allows the scaling of
volume measures while keeping all ratio inputs and outputs
constant. To state this assumption formally, we use a variant
of the axioms of scaling employed by Olesen et al. (2015) in
which, out of the four types of ratio measures, we leave only
the fixed type.4

Axiom 4 (Scaling with fixed ratio inputs and outputs).
Let (X, Y)= (XV, XR, YV, YR)∈ T. Then, for all α ≥ 0, the
DMU (αXV, XR, αYV, YR)∈ T.

The R-CRS technology TR
CRS with fixed ratio inputs and

outputs is denoted TF
CRS. Using the minimum extrapolation

principle, it is defined as follows. (This is a special case of
the general definition of the R-CRS technology given by
Olesen et al. (2015) which allows specification of different
types of ratio inputs and outputs).

3 In the mathematical statements in this paper, we use bold notation 0
and 1 for the vectors of zeros and ones, respectively. The dimensions
of both vectors are clear from the context in which they are used. The
superscript ⊤ means transposition.

4 Axiom 4 corresponds to Axioms 4 and 5 (Olesen et al. 2015) in
which all not fixed types of ratio measures (proportional, downward-
proportional and upward-proportional) are ignored.
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Definition 2 The R-CRS technology TF
CRS with fixed ratio

inputs and outputs is the intersection of all technologies
T � Rm

þ �Rs
þ that satisfy Axioms 1–4.

Under a mild additional assumption that IV≠+ and XV
j ≠0,

for all j∈ J, which should clearly be true in all meaningful
applications in which CRS is assumed, Olesen et al. (2015)
prove that technology TF

CRS is the set of all DMUs ðX; YÞ 2
Rm

þ �Rs
þ for which there exist vectors λ; σ 2 Rn such that

X
j2J

λjσjY
V
j � YV ; ð3aÞ

X
j2J

λjσjX
V
j � XV ; ð3bÞ

λj YR
j � YR

� �
� 0; 8j 2 J; ð3cÞ

λj XR
j � XR

� �
� 0; 8j 2 J; ð3dÞX

j2J
λj ¼ 1; ð3eÞ

XR � X
R
; ð3fÞ

YR � Y
R
; ð3gÞ

λ; σ � 0: ð3hÞ

The meaning of the above conditions is clear. The
inequalities (3a) and (3b) show that the multipliers σj, j∈ J,
are the scaling factors applied to the vectors of volume
inputs and outputs XV

j and YV
j of the observed DMUs. The

resulting scaled vectors are subsequently combined in
convex combinations using the components of vector λ as
the weighting coefficients. As in the case of the R-VRS
technology, conditions (3c) and (3d) mean that the observed
scaled DMUs ðσjXV

j ;X
R
j ; σjY

V
J ;X

R
j Þ whose volume inputs

and outputs enter the convex combinations in inequalities
(3a) and (3b) with a positive weight λj are not worse than the
DMU (X, Y) on all ratio inputs and outputs.

Remark 2 To see the relationship of statement (3a)–(3h) to
the standard statement of the CRS technology of Charnes
et al. (1978), assume that there are no ratio inputs and
outputs. In this case, all inequalities (3c), (3d), (3f) and (3g)
are removed, and the resulting statement is an alternative
equivalent statement of the standard CRS technology.5 In

contrast with the conventional statement of the CRS tech-
nology in which the single vector λ is used to describe all
conical combinations of the observed DMUs, in the
resulting statement (3a)–(3h), components of vector σ are
first used to scale observed DMUs, and a separate vector λ
is used to obtain convex combinations of the scaled DMUs.

For practical computations, Olesen et al. (2015) obtain
two further partly linearized variants of the above statement.
In particular, assuming that YV ≠ 0, they prove that a DMU
(X, Y)= (XV, XR, YV, YR) is in technology TF

CRS if and only if
DMU (X, Y) satisfies all conditions (2a)–(2h) with the
exception of equality (2e), with some vector λ.6 The
assumption that YV ≠ 0 should be satisfied in all applications
of practical interest, in which case we can use simpler
conditions (2a)–(2h) without equality (2e). However, in
order to explore the structure of technology TF

CRS in the
most general case, without any simplifying assumptions,
below we rely on its statement (3a)–(3h).

4 The structure of the R-VRS technology

To simplify the main idea of the exposition, let us first
consider the case in which the bounds (1) are not specified
or are infinite and for this reason are not stated. (We remove
this simplifying assumption afterwards.) In this case, the
inequalities (2f) and (2g) are removed from the statement
(2a)–(2h) of technology TR

VRS.
Consider any non-empty subset J 0 of the set of observed

DMUs, i.e., let J 0 � J, J 0≠+. The set J 0 may contain one or
several observed DMUs.

Define the vector XR� ðJ 0Þ of dimension ∣IR∣ as the
component-wise maximum of the vectors XR

j , j 2 J 0. Simi-
larly, define the vector YR� ðJ 0Þ of dimension ∣OR∣ as the
component-wise minimum of the vectors YR

j , j 2 J 0. For-
mally, we have:

XR�
i ðJ 0Þ ¼ max

j2J 0
XR
ji

n o
; 8i 2 IR;

YR�
r ðJ 0Þ ¼ min

j2J 0
YR
jr

n o
; 8r 2 OR:

ð4Þ

We now modify the observed DMUs
ðXj; YjÞ ¼ ðXV

j ;X
R
j ; Y

V
j ; Y

R
j Þ, j 2 J 0, by replacing their sub-

vectors of ratio inputs and outputs by the vectors XR� ðJ 0Þ

5 In the described case with no ratio inputs and outputs, the standard
statement of the CRS technology is obtained from (3a)–(3h) by the
substitution λ̂j ¼ λjσj, for all j∈ J, in which case the normalizing
equality (3e) becomes redundant and is also omitted.

6 If we use statement (2a)–(2h) without condition (2e), the assumption
YV ≠ 0 implies λ ≠ 0. Without the latter condition, statement (2a)–(2h)
does not put any limits on the subvectors of ratio inputs and outputs XR

and YR of the DMU (X, Y), apart from the bounds (2f) and (2g). As a
result, this allows DMUs (X, Y), for which YV= 0, that are not in
technology TF

CRS, for example, with the levels of ratio outputs higher
than those of any observed DMUs.
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and YR� ðJ 0Þ, respectively. The modified DMUs become

ðX0
j; Y

0
jÞ ¼ XV

j ;X
R� ðJ 0Þ; YV

j ; Y
R� ðJ 0Þ

� �
; j 2 J 0: ð5Þ

Consider the standard VRS technology TVRSðJ 0Þ gen-
erated by the set of modified DMUs defined by (5).
Although such technology does not differentiate between
volume and ratio measures and treats all of them as
volume measures, for clarity, we state the input and
output conditions separately for the volume and ratio
input and output subvectors. Because all modified DMUs
in the set J 0 as stated by (5) have the same subvectors of
ratio inputs and outputs, any convex combination of these
DMUs will also have the subvectors of ratio inputs and
outputs equal to the vectors XR� ðJ 0Þ and YR� ðJ 0Þ,
respectively.

Technology TVRSðJ 0Þ is, therefore, the set of all DMUs
ðX; YÞ 2 Rm

þ �Rs
þ for which there exists a vector λ 2

RjJ 0j (whose dimension is equal to the number of
observed DMUs in the set J 0 and whose components λj
correspond to the observed DMUs (Xj, Yj), j 2 J 0) such
that

X
j2J 0

λjY
V
j � YV ; ð6aÞ

YR� ðJ 0Þ ¼ YR� ðJ 0Þ
X
j2J 0

λj ¼
X
j2J 0

λjY
R� ðJ 0Þ � YR; ð6bÞ

X
j2J 0

λjX
V
j � XV ; ð6cÞ

XR� ðJ 0Þ ¼ XR� ðJ 0Þ
X
j2J 0

λj ¼
X
j2J 0

λjX
R� ðJ 0Þ � XR; ð6dÞ

X
j2J 0

λj ¼ 1; ð6eÞ

λ � 0: ð6fÞ

Technology TVRSðJ 0Þ is defined for each of the 2n− 1
non-empty subsets J 0 � J. Our next main result shows that,
if the bounds (1) are not specified, the R-VRS technology
TR
VRS generated by the set of observed DMUs (Xj, Yj), j∈ J,

is the union of the 2n− 1 standard VRS technologies
TVRSðJ 0Þ generated by the modified DMUs ðX0

j; Y
0
jÞ, j 2 J 0,

where each VRS technology TVRSðJ 0Þ is stated by condi-
tions (6a)–(6f).

Let J denote the set of all non-empty subsets of J, i.e.,
J ¼ 2J n f+g, where 2J is the power set of J. Note that
there are 2n− 1 elements of J .

Theorem 1 Suppose that the bounds (1) are not specified.
Then

TR
VRS ¼

[
J 02J

TVRSðJ 0Þ: ð7Þ

It is now easy to modify the statement of Theorem 1 for
the general case in which the bounds (1) are specified. First,
introduce the set B of all points in Rmþs that satisfy (1):

B ¼ ðX; YÞ ¼ ðXV ;XR; YV ; YRÞ 2 RmþsjXR � X
R
; YR � Y

R
n o

:

ð8Þ

We now have the following general result.

Corollary 1 Let the bounds (1) be specified. Consider the
R-VRS technology TR

VRS stated by conditions (2a)–(2h).
Then

TR
VRS ¼

[
J 02J

TVRSðJ 0Þ
 !

\ B ¼
[
J 02J

TVRSðJ 0Þ \ Bð Þ:

We now note that each VRS technology TVRSðJ 0Þ and,
therefore, technology TVRSðJ 0Þ \ B is a polyhedral set.
Therefore, we have the following result:

Corollary 2 Technology TR
VRS is the union of a finite

number (more precisely, 2n− 1) of polyhedral (and there-
fore closed convex) sets.

The following two examples illustrate Theorem 1.

Example 2 For illustration, we reuse the example given by
Olesen et al. (2015). Figure 1 shows the R-VRS technology
TR
VRS with a single volume input XV, volume output YV and a

ratio output YR generated by two observed DMUs A and B.
This technology includes the DMUs located on and below
the unbounded surfaces PBKL and HACG. (Both surfaces
are unbounded on the right and allow an unlimited increase
of the input.)
We note that technology TR

VRS is not convex. In
particular, it does not include convex combinations of the
observed DMUs A and B located on the line segment

Volume input 

Ra�o output 

Volume output 

Fig. 1 The R-VRS technology in Example 2
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joining them. However, according to Axiom 2 of free
disposability, DMU C is included in TR

VRS. Because the ratio
output YR of DMUs A and C is equal, by Axiom 3 of
selective convexity, these DMUs can be combined in
convex combinations, and the line segment AC is included
in technology TR

VRS. We further note that, although
technology TR

VRS is not convex, the section of this
technology corresponding to any level of the ratio output
YR is convex. For example, the section HACDF is convex.
Let us now illustrate the statement of Theorem 1. The set

of all observed DMUs is J= {A, B}. The set J of all non-
empty subsets of J contains three elements:

J ¼ fAg; fBg; fA;Bgf g: ð9Þ
For the single-element sets J 0 2 J , i.e., for J 0 ¼ fAg and

J 0 ¼ fBg, the modified DMUs ðX0
j; Y

0
jÞ defined by (5)

coincide with the observed DMUs A and B, respectively.
We now have the following observations.
In the case J 0 ¼ fAg, technology TVRSðJ 0Þ is the standard

VRS technology generated by DMU A. It consists of all
DMUs located on and below the surface HAEF. Similarly,
in the case J 0 ¼ fBg, TVRSðJ 0Þ is the standard VRS
technology generated by DMU B. It consists of all DMUs
located on and below the surface PBKL.
Now let J 0 ¼ fA;Bg. According to (5), we first modify

the observed DMUs A and B by replacing their ratio output
by its minimum across the observed DMUs. In our example,
DMU A has the lowest ratio output and remains unchanged,
and DMU B is changed to DMU C. Therefore, in this case,
TVRSðJ 0Þ is the standard VRS technology generated by
DMUs A and C. It consists of all DMUs located on and
below the surface HACDF. (It is worth noting that, in this
case, technology TVRSðJ 0Þ for J 0 ¼ fA;Bg includes tech-
nology TVRSðJ 0Þ for J 0 ¼ fAg as a subset.)

In line with Theorem 1, the union of the three VRS
technologies TVRSðJ 0Þ, where J 0 is taken as {A}, {B} and
{A, B}, coincides with the R-VRS technology TR

VRS.

Example 3 As a further illustration to Theorem 1, consider
the R-VRS technology with a single ratio input XR and a
single ratio output YR generated by the observed DMUs A,
B, C and D shown in Fig. 2. We assume that no bounds (1)
are specified.
In this case, technology TR

VRS is stated by conditions
(2a)–(2h) from which the inequalities (2a), (2b), (2f) and
(2g) are removed. As noted by Olesen et al. (2015),
because there are no volume measures and no bounds on
the ratio measures, the R-VRS technology TR

VRS coincides
with the free disposal hull (FDH) TFDH of Deprins et al.
(1984).
It is clear that TFDH is the union of four trivial standard

VRS technologies each generated by the single observed
DMU A, B, C and D. (For example, the VRS technology
generated by DMU A is the area QAUZ.)
Note that Theorem 1 remains true in this case as well.

Indeed, the set J consists of 24− 1= 15 non-empty subsets
of observed DMUs, including the single element sets {A},
{B}, {C} and {D}. Furthermore, for any subset J 0 � J that
consists of more than one observed DMU, the resulting
VRS technology TVRSðJ 0Þ defined by conditions (6a)–(6f) is
a subset of the VRS technology generated by any observed
DMU in J 0.
For example, consider J 0 ¼ A;Cf g. After modifying both

DMUs according to (5), it is straightforward to verify that
the VRS technology TVRSðJ 0Þ in this case is the set QKVZ.
This technology is a subset of the VRS technologies
generated by the single DMUs A and C.
Similarly, if J 0 ¼ B;Df g, the VRS technology TVRSðJ 0Þ is

the set PMWZ. If J 0 includes all observed DMUs, i.e.,
J 0 ¼ J ¼ A;B;C;Df g, the VRS technology TVRSðJ 0Þ is the
set QLWZ. The latter is a subset of the VRS technology
generated by any of the observed DMUs.
It is now clear that the union of all technologies TVRSðJ 0Þ,

J 0 2 J , in (7) can be replaced by their union taken over the
single element sets J 0 and omitting any other sets J 0

consisting of two or more observed DMUs. We note that the
same treatment cannot be applied to any R-VRS technol-
ogy. A counterexample is the R-VRS technology consid-
ered in Example 2.

5 The structure of the R-CRS technology with
fixed ratio inputs and outputs

In this section we obtain a decomposition of the R-CRS
technology TF

CRS with fixed ratio inputs and outputs into a
finite union of polyhedral sets.

1

2

3

4

5

6

1 2 3 4 5 60

Ra�o output 

Ra�o input 

Fig. 2 The FDH technology in Example 3
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As in Section 4, let J be the set of all non-empty subsets
of the set J. For each set J 0 2 J , we first define the vectors
XR� ðJ 0Þ and YR� ðJ 0Þ according to (4). We subsequently
define the modified observed DMUs ðX0

j; Y
0
jÞ as in (5), by

replacing the vectors of ratio inputs and outputs of all
observed DMUs (Xj, Yj), j 2 J 0, by the same vectors XR� ðJ 0Þ
and YR� ðJ 0Þ, respectively.

Similar to the case of the R-VRS technology considered
in Section 4, we first assume that no bounds (1) on the ratio
measures are specified. For each J 0 2 J , define the partial
cone extension CðIV ;OV ; J 0Þ of technology TVRSðJ 0Þ taken
with respect to its volume inputs and outputs only, while
keeping the ratio measures unchanged.7 This partial cone is
defined as follows:8

CðIV ;OV ; J 0Þ ¼ ðXV ;XR;YV ;YRÞ 2 Rmþsj�
9ð~XV

; ~X
R
; ~Y

V
; ~Y

RÞ 2 TVRSðJ 0Þ; α � 0 :

ðXV ; YVÞ ¼ αð~XV
; ~Y

V Þ; ðXR;YRÞ ¼ ð~XR
; ~Y

RÞ�:
ð10Þ

It is straightforward to show that the partial cone
CðIV ;OV ; J 0Þ is generally not a closed set. Define technol-
ogy TPConeðJ 0Þ as its closure (the subscript “PCone” in this
notation stands for “partial cone”):

TPConeðJ 0Þ ¼ clCðIV ;OV ; J 0Þ:

It can be shown that technology TPConeðJ 0Þ is the set of
all DMUs ðX; YÞ 2 Rm

þ �Rs
þ for which there exists a

vector λ 2 RjJ 0 j whose components λj correspond to the
observed DMUs (Xj, Yj), j 2 J 0, such that

X
j2J 0

λjY
V
j � YV ; ð11aÞ

X
j2J 0

λjX
V
j � XV ; ð11bÞ

YR� ðJ 0Þ � YR; ð11cÞ

XR� ðJ 0Þ � XR; ð11dÞ

λ � 0: ð11eÞ

Let us compare the statement (11a)–(11e) of technology
TPConeðJ 0Þ with the statement (6a)–(6f) of technology
TVRSðJ 0Þ. As discussed, the latter is the standard VRS
technology generated by the modified set of observed
DMUs (5). In contrast, the statement (11a)–(11e) of tech-
nology TPConeðJ 0Þ does not have a normalizing equality (6e)
on the vector λ. Its components are used to scale and
combine the volume inputs and outputs of the observed
DMUs in conditions (11a) and (11b), resulting in their
conical combinations. At the same time, the vectors of ratio
inputs and outputs XR� ðJ 0Þ and YR� ðJ 0Þ in conditions (11c)
and (11d) are fixed and not scaled.

Any DMU ðX; YÞ 2 TVRSðJ 0Þ satisfies conditions (6a)–
(6f) with some vector λ0. Then DMU (X, Y) satisfies (11a)–
(11e) with the same λ0 and is in technology TPConeðJ 0Þ.
Therefore, TVRSðJ 0Þ � TPConeðJ 0Þ. The omission of the
normalizing equality (6e) in the statement (11a)–(11e)
defines TPConeðJ 0Þ as the closed partial cone extension of the
VRS technology TVRSðJ 0Þ.9 In this closed partial cone, the
scaling applies only to the volume measures, while keeping
the vectors of ratio inputs and outputs fixed. Example 4
considered below provides an illustration to this
observation.

The next result shows that the R-CRS technology TF
CRS

generated by the set of observed DMUs (Xj, Yj), j∈ J, is the
union of the 2n− 1 closed partial cone technologies
TPConeðJ 0Þ generated by the modified DMUs ðX0

j; Y
0
jÞ, j 2 J 0,

and stated by conditions (11a)–(11e).

Theorem 2 Suppose that the bounds (1) are not specified.
Then

TF
CRS ¼

[
J 02J

TPConeðJ 0Þ:

Let us now consider the general case in which the bounds
(1) are specified. Define the set B as in (8).

Corollary 3 Let the bounds (1) be specified. Consider the
R-CRS technology TF

CRS stated by conditions (3a)–(3h).
Then

TF
CRS ¼

[
J 02J

TPConeðJ 0Þ
 !

\ B ¼
[
J 02J

TPConeðJ 0Þ \ Bð Þ:

ð12Þ

The next result uses the fact that the sets TPConeðJ 0Þ \ B
in (12) are polyhedral sets. This leads to the following
statement.

7 The specification of the sets IV and OV with respect to which the
partial extension is obtained uniquely defines the specification of the
fixed sets IR= I⧹IV and OR=O⧹OV—see Section 2.
8 If DMU ð~XV

; ~X
R
; ~Y

V
; ~Y

RÞ in definition (10) is one of the modified
observed DMUs ðX0

j;Y
0
jÞ, j= 1,… , n, defined by (5), or is their con-

vex combination, then ~X
R ¼ XR� ðJ 0Þ and ~Y

R ¼ YR� ðJ 0Þ, where XR� ðJ 0Þ
and YR� ðJ 0Þ are defined by (4). Otherwise, DMU ð~XV

; ~X
R
; ~Y

V
; ~Y

RÞ is
dominated by DMUs in (5) or their convex combinations, and we
generally have ~X

R � XR� ðJ 0Þ and ~Y
R � YR� ðJ 0Þ.

9 The fact that TPConeðJ 0Þ is closed also follows from the fact that
TPConeðJ 0Þ is a polyhedral set. The latter is established by Corollary 4.
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Corollary 4 Technology TF
CRS is the union of a finite

number (more precisely, 2n− 1) of polyhedral (and there-
fore closed convex) sets.

Example 4 Figure 3 shows technology TF
CRS generated by

the two observed DMUs A and B as in Example 2. For
reference, this figure also outlines the technology TR

VRS

considered in Example 2. It is clear that TF
CRS is the partial

(taken with respect to the volume measures only) closed
cone extension of technology TR

VRS.
As in Example 2, the set J consists of three elements as

stated in (9). If J 0 ¼ fAg, the set TPConeðJ 0Þ includes the
points located on and below the surface WVF. If J 0 ¼ fBg,
TPConeðJ 0Þ consists of the points on and below the surface
MUL. If J 0 ¼ fA;Bg, we first modify DMUs A and B
according to (5). As in the same scenario in Example 2, this
keeps DMU A unchanged and replaces DMU B by DMU C.
The set TPConeðJ 0Þ generated by DMUs A and C includes the
points located on and below the surface WVF, which in this
case coincides with the set TPConeðJ 0Þ obtained with
J 0 ¼ fAg. In line with Theorem 2, technology TF

CRS is the
union of technologies TPConeðJ 0Þ obtained, as described, for
the three different sets J 0.

6 Implications of the representation results

The geometric structure of the R-VRS and R-CRS tech-
nologies TR

VRS and TF
CRS may not be clear from their

mathematical statements (2a)–(2h) and (3a)–(3h). Theorems
1 and 2 clarify this issue. As proved, both technologies,
although being nonconvex, can be represented as the unions
of a finite number of convex polyhedral technologies. In
addition to providing clarity and intuition, these repre-
sentations are useful in addressing various theoretical
issues, e.g., those arising in frontier analysis of the R-VRS
and R-CRS technologies.

It is worth emphasizing that the results obtained in
our paper are not intended for their direct

implementation in computational approaches. In parti-
cular, we are not suggesting the evaluation of efficiency
of DMUs in the R-VRS technology by assessing their
efficiency in each of the 2n − 1 VRS technologies
TVRSðJ 0Þ used in the representation (7). For this purpose,
much more efficient and practical linear and mixed
integer linear programming methods were discussed in
Olesen et al. (2017).

Below we discuss three examples demonstrating the
usefulness of our results.

6.1 Properties of technologies and production
frontiers

The representation of technologies TR
VRS and TF

CRS as finite
unions of polyhedral sets could be useful in exploring their
axiomatic properties and characterizing their efficient
frontiers.

For example, from a theoretical perspective, it is
important to verify that the R-VRS and R-CRS technologies
are closed sets, which is one of the basic assumptions in
production theory (Färe et al. 1985). Olesen et al. (2015)
provide a rather complex bespoke proof of this (especially
in the case of the R-CRS technology). The new Theorems 1
and 2 proved in this paper help us establish the closedness
with less effort. Indeed, any polyhedral set is known to be a
closed set. As shown, the R-VRS and R-CRS technologies
TR
VRS and TF

CRS are finite unions of polyhedral sets and are
therefore both closed.

There are large areas of theoretical research that rely on
the clear structure of the technology. An example is the
extensive literature exploring the structure of efficient
frontiers of the standard VRS and CRS technologies and
classification of their efficient points—see, e.g., Bougnol
and Dulá (2009), Charnes et al. (1986, 1991), Fukuyama
and Sekitani (2012), Krivonozhko et al. (2005, 2015),
Mehdiloozad et al. (2017). A related field of research is
concerned with the sensitivity and stability of efficiency
classifications (see, e.g., a review in Cooper et al. (2004))
and stability of RTS characterizations (Podinovski &
Bouzdine-Chameeva 2020, Seiford & Zhu 2005). The
structure of the production technology is also important for
exploring the effect of aggregation of DMUs into larger
entities on the efficiency and scale efficiency measures
(Briec et al. 2003, Färe and Grosskopf 1985, Zelenyuk
2015).

The decomposition of technologies TR
VRS and TF

CRS into
finite unions of polyhedral sets obtained in this paper opens
up further research avenues concerned with the structure of
their efficient frontiers, sensitivity analysis of efficiency
scores and RTS characterizations, and effects of aggregation
on different notions of efficiency.

Volume input 

Ra�o output 

Volume output 

Fig. 3 The R-CRS technology in Example 4
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6.2 The most productive scale size

Following Banker (1984), the most productive scale size
(MPSS) of a DMU (X, Y) in the VRS technology TVRS is
defined by a DMU (α*X, β*Y) such that the scalars α* and β*

maximize the ratio β/α under the condition that (αX, βY)∈
TVRS. In the case of a single input and a single output, the
MPSS simply maximizes the ratio of the output to the input.

It is well known that, in the standard VRS technology,
the MPSS of any DMU (X, Y) exists (although it may not be
unique). For example, the MPSS of DMU (X, Y) may be
found by identifying its output radial projection in the
corresponding CRS technology and subsequently scaling it
back to the VRS technology, by dividing both the input and
output vectors of the projected DMU by the sum of com-
ponents of the optimal intensity vector λ in the output-
oriented CRS model.

The notion of MPSS can be correctly defined and eval-
uated in many other technologies, for example, in FDH.
However, in the general case of an arbitrary technology T
(even assuming that T is a closed convex technology),
DMU (X, Y) may have no MPSS, i.e., the maximum average
productivity represented by MPSS may not be attained,
although, by the definition of supremum, it can always be
approximated. For an example of such situation, see Fig. 6
in Podinovski (2004a) and Fig. 6 in Podinovski (2004b).

The following example shows that MPSS may not exist
even in a simple polyhedral technology.

Example 5 As a starting point, consider the VRS tech-
nology generated by a single DMU A with a single input
X= 2 and single output Y= 2. This technology is shown in
Fig. 4 as the area in the non-negative orthant spanned by
KAL. Let us further assume the following trade-off between
the input and output: an increase of the input by one unit is
sufficient for the increase of the output by two units.
Implementing this trade-off once, we move from DMU A to

DMU B. Applying this trade-off in an arbitrary nonnegative
proportion, we obtain the half-line AW. We also add the
area in the nonnegative orthant below (or to the right) of AW
by free disposability of the output and the input.
The resulting technology is the shaded area below the

half-line AW. This technology is a polyhedral technology
but it is not a standard VRS technology. (This technology
is not a nondecreasing returns-to-scale technology either
because its efficient boundary AW is steeper than the ray
from the origin through point A.) Note that the specifica-
tion of the above trade-off is equivalent to the weight
restriction 2u ≤ v in the dual multiplier models in which u
and v are the output and input weights, respectively
(Podinovski 2004c).
It is clear that there exists no MPSS for DMU A (and for

any other DMU in the described technology) and that DMU
A exhibits increasing returns to scale. Indeed, the average
productivity Y/X at DMU A is equal to 2/2= 1. It gradually
increases as we move away from A along the half-line AW.
For example, the average productivity at DMU B is equal to
4/3. The average productivity then asymptotically tends to 2
which is the slope of the lines AW and OC. It is clear that
this asymptotic value represents the supremum of the
average productivity in the described technology, and that
this supremum is not attained.

Let us use the results established in our paper to show
that the MPSS of any DMU (X, Y) in the R-VRS technology
TR
VRS is attained and therefore is correctly defined. For

simplicity, we first assume that no bounds (1) on the ratio
measures are specified. By Theorem 1, technology TR

VRS is
the union of a finite number of VRS technologies TVRSðJ 0Þ,
where J 0 is an arbitrary nonempty subset of observed
DMUs. Denote J o the set of all subsets J 0 such that
ðX; YÞ 2 TVRSðJ 0Þ. Because ðX; YÞ 2 TR

VRS, we have
J o≠+.

For every subset J 0 2 J o, the MPSS of DMU (X, Y) in
the VRS technology TVRSðJ 0Þ exists and can be stated as
ðα0X; β0YÞ, with the corresponding average productivity
β0=α0. Then the maximum ratio β0=α0 taken across the finite
number of VRS technologies TVRSðJ 0Þ, J 0 2 J o, corre-
sponds to the MPSS of DMU (X, Y) in technology TR

VRS.
This MPSS is therefore correctly defined and is attained.

The case in which the bounds (1) are specified is similar.
By Corollary 1, technology TR

VRS is the union of a finite
number of technologies TVRSðJ 0Þ \ B. It is straightforward
to prove that, in each such technology, the MPSS of DMU
(X, Y) is attained (provided DMU (X, Y) belongs to it). The
rest of the proof repeats the previous case and is omitted.

6.3 Marginal frontier characteristics

Theorems 1 and 2 show that we can correctly define and
evaluate various marginal rates and scale characteristics on

1

2

3

4

1 2 3 4
Fig. 4 Example of polyhedral technology in which there is no MPSS
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the production frontiers of technologies TR
VRS and TF

CRS.
Such characteristics include, for example, (generally one-
sided) marginal rates of transformation and substitution
between different outputs and inputs, partial and full scale
elasticities, and the local RTS characterization based on the
latter. For arbitrary polyhedral technologies, a general lin-
ear programming approach to the evaluation of such char-
acteristics is unproblematic and was developed by
Podinovski et al. (2016).

To be specific, let us consider the case of the R-VRS
technology TR

VRS. (The case of R-CRS technology TF
CRS is

similar and is not discussed.) Note that all marginal char-
acteristics and RTS are well-defined for convex technolo-
gies (Podinovski (2017)) but are generally undefined for
arbitrary nonconvex technologies. Because technology
TR
VRS is not convex, a question arises whether all marginal

characteristics can be correctly defined in this technology.
Theorem 1 allows us to give a positive answer to this
question.

Indeed, as proved, technology TR
VRS is a finite union of

polyhedral technologies TVRSðJ 0Þ defined by (6a)–(6f). Let
us consider two possible cases. Suppose that a DMU (X, Y)
is efficient in the R-VRS technology and is located on the
efficient boundary of a single polyhedral technology
TVRSðJ 0Þ. An example of this is DMU B in the technology
depicted in Fig. 1 which is located on the efficient boundary
of technology TVRS({B}), i.e., in this case, we have
J 0 ¼ fBg. In this case, the required marginal characteristics
at the DMU (X, Y) can be evaluated in the single polyhedral
technology TVRSðJ 0Þ, for example, by the standard methods
of Podinovski et al. (2016).

Now suppose that DMU (X, Y) is located on the efficient
boundary of several polyhedral technologies TVRSðJ 0Þ
defined by different sets J 0. An example of this is DMU A
which, as shown in Example 2, is on the efficient boundary
of two technologies TVRSðJ 0Þ, where J 0 ¼ fAg or
J 0 ¼ fA;Bg. In this case, we can evaluate the required
marginal characteristics in a way similar to their evaluation
in nonconvex metatechnologies considered by Afsharian
and Podinovski (2018). According to this approach, we first
evaluate the required one-sided marginal value in all tech-
nologies TVRSðJ 0Þ on whose boundary DMU (X, Y) is
located and then, depending on the characteristic in ques-
tion, select either the minimum or the maximum among
these values.

It is now clear that we can (at least conceptually) extend
the notions of various marginal rates and scale character-
istics to the R-VRS technology TR

VRS (and, in a similar way,
to the R-CRS technology TF

CRS). Given the large number of
sets J 0 and the corresponding technologies TVRSðJ 0Þ, a
direct practical implementation of the described procedure
may be computationally challenging.

An exception is the case in which we are concerned
with a marginal rate involving only volume measures. It
is straightforward to show that this task is equivalent to
the evaluation of the marginal rate in question in the
VRS technology generated by the vectors of volume
inputs and outputs only, by keeping all ratio measures
fixed as in the DMU under the consideration. For
example, the evaluation of the marginal rate of trans-
formation between the volume input and volume output
at DMU A in the R-VRS technology in Fig. 1 is
equivalent to the evaluation of this marginal rate in the
section HACDF, which is a VRS technology in the two
volume dimensions.

Operationalizing the concept of RTS and developing
practically acceptable computational approaches in the
general case involving both volume and ratio measures (for
example, by developing an efficient way of selecting a small
number of relevant sets J 0) is left outside the scope of this
paper for future research.

7 Conclusion

The R-VRS and R-CRS technologies developed by Olesen
et al. (2015) are first defined axiomatically and then stated
in an equivalent form by certain sets of mathematical con-
ditions such as (2a)–(2h) and (3a)–(3h). These sets of
conditions are useful for computational purposes and for
establishing mathematical properties of the two technolo-
gies, but are less useful in helping us to think of the two
technologies as geometric structures.

Theorems 1 and 2 establish an intuitively clear decom-
position of the R-VRS and R-CRS technologies (the latter
assuming the fixed nature of the ratio inputs and outputs) into
the finite unions of polyhedral technologies. In addition to
clarifying the structure of these technologies, the new results
have various implications important for conceptual and theo-
retical exploration of their frontiers. In turn, these are important
for the interpretation of the results of analysis involving
applications of the R-VRS and R-CRS technologies.

For example, these results imply that any efficient DMU
(X, Y) in the R-VRS technology is located on the boundary
of a specially constructed VRS technology, one of those
whose union becomes the R-VRS technology. In some rare
cases the DMU (X, Y) may be located at the intersection of a
finite number of efficient frontiers of such VRS technolo-
gies. A similar intuitive interpretation is true in the case of
the R-CRS technology.

We outlined several areas in which the new results are
either immediately useful or could facilitate additional
research. First, the obtained representations of the two
technologies as unions of polyhedral sets should be useful
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for exploring their properties. For example, the fact that
both R-VRS and R-CRS technologies are closed sets is now
obvious and follows directly from the decomposition of
these technologies established in this paper.

Second, the new results suggest that the efficient frontiers
of the R-VRS and R-CRS technologies could be explored
using approaches similar to those already employed in the
literature in the standard cases of the VRS and CRS pro-
duction frontiers. This concerns various areas of research,
including the classification of efficient DMUs, sensitivity and
stability of efficiency measures and RTS characterizations,
and effects of aggregation of DMUs into larger entities.

Third, we highlighted the fact that the notion of most pro-
ductive scale size (MPSS) in an arbitrary production technol-
ogy may be undefined. However, we used our main result
stated by Theorem 1 to prove that the MPSS of any DMU in
the R-VRS technology is defined correctly and always exists.

Fourth, we showed that the new representation results for
the R-VRS and R-CRS technologies (the latter with the
fixed type of ratio inputs and outputs) imply that we can
correctly define various marginal characteristics of their
frontiers.

This paper leaves as unresolved the possibility of
representing the general R-CRS technology defined by
Olesen et al. (2015) as a finite union of polyhedral sets.
Such technology allows the specification of different types
of ratio inputs and outputs and has a more complex structure
than the technologies considered in this paper. Simple
graphical examples of this general technology in different
special cases considered by Olesen et al. (2015) suggest that
its statement as the union of a finite number of polyhedral
sets might also be possible. Whether this conjecture is true
and could be proved formally remains an open question.
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8 Appendix: Proofs

Proof of Theorem 1 and Corollary 1. Denote
W ¼ SJ 02J TVRSðJ 0Þ. We need to prove that TR

VRS ¼ W .
Consider any ðX; YÞ ¼ ðXV ;XR; YV ; YRÞ 2 TR

VRS. Then (X,
Y) satisfies (2a)–(2h) with some vector λ0, with the excep-
tion of conditions (2f) and (2g) which are omitted. Define
J 0 ¼ fj 2 Jjλ0j > 0g. Because λ0j>0, 8j 2 J 0, the inequalities
(3c) and (3d) imply that YR

j � YR and XR
j � XR, 8j 2 J 0.

Further define vectors XR� ðJ 0Þ and YR� ðJ 0Þ as in (4) and
observe that the inequalities (6b) and (6d) follow from (2c)
and (2d). The inequalities (6a) and (6c) stated with λ0 follow
from (2a) and (2b), respectively. Therefore, (X, Y)∈W.

Conversely, consider any (X, Y)= (XV, XR, YV, YR)∈W.
Then there exists a set J 0 � J such that (X, Y) satisfies (6a)–
(6f) with some vector λ 2 RjJ 0 j. Define vector λ0 2 Rn such
that λ0j ¼ λj, for all j 2 J 0, and λ0j ¼ 0, for all j 2 J n J 0. Then
conditions (6a)–(6f) imply that (X, Y) and λ0 satisfy (2a)–
(2h). Therefore, ðX; YÞ 2 TR

VRS.
For the proof of Corollary 1, we repeat the proof of

Theorem 1 with the inequalities (2f) and (2g) included in
(2a)–(2h) and additionally incorporated in (6a)–(6f).

Proof of Theorem 2 and Corollary 3. Denote
W ¼ SJ 02J TPConeðJ 0Þ. We need to prove that TF

CRS ¼ W .
Consider any ðX; YÞ ¼ ðXV ;XR; YV ; YRÞ 2 TF

CRS. Then (X,
Y) satisfies (3a)–(3h) with some vectors λ0 and σ0, with the
exception of conditions (3f) and (3g) which are omitted.
Define J 0 ¼ fj 2 Jjλ0j > 0g and let λ̂j ¼ λ0jσ

0
j, 8j 2 J 0. Then

(3a) and (3b) imply (11a) and (11b). Because λ0j > 0, 8j 2 J 0,
the inequalities (2c) and (2d) imply (11c) and (11d).
Therefore, (X, Y)∈W.

Conversely, consider any (X, Y)= (XV, XR, YV, YR)∈W.
Then there exists a subset J 0 � J such that (X, Y) satisfies
(11a)–(11e) with some vector λ� 2 RjJ 0 j. Two cases arise.
First, let YV ≠ 0. Then (11a) implies that λ* ≠ 0. Denote Λ=
1⊤λ* > 0. Define vector λ0 2 Rn such that λ0j ¼ λ�j =Λ, for all
j 2 J 0, and λ0j ¼ 0, for all j 2 J n J 0. Then (X, Y) satisfies
(3a)–(3h) with the vectors λ0 and σ=Λ1.

Second, let YV= 0. Recall that J 0≠+. Define vector λ0 2
Rn such that λ0j ¼ 1=jJ 0j, for all j 2 J 0, and λ0j ¼ 0, for all
j 2 J n J 0. Then (X, Y)= (XV, XR, YV, YR) satisfies (3a)–(3h)
with λ0 and σ= 0. Therefore, ðX; YÞ 2 TF

CRS.
To prove Corollary 3, we repeat the proof of Theorem 2

with the inequalities (3f) and (3g) incorporated in (3a)–(3h)
and additionally incorporated in (11a)–(11e).

Proof of Corollary 4. Technology TPConeðJ 0Þ defined by
conditions (11a)–(11e) is a special case of the general
polyhedral technology introduced by Podinovski et al.
(2016) and is, as shown in the latter paper, a polyhedral set.
Technology TPConeðJ 0Þ \ B is polyhedral as the intersection
of two polyhedral sets.
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