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Abstract
Conventional models of data envelopment analysis (DEA) are based on the constant and variable returns-to-scale production
technologies. Any optimal input and output weights of the multiplier DEA models based on these technologies are interpreted as
being the most favorable for the decision making unit (DMU) under the assessment when the latter is benchmarked against the set
of all observed DMUs. In this paper we consider a very large class of DEA models based on arbitrary polyhedral technologies,
which includes almost all known convex DEA models. We highlight the fact that the conventional interpretation of the optimal
input and output weights in such models is generally incorrect, which raises a question about the meaning of multiplier models.
We address this question and prove that the optimal solutions of such models show the DMU under the assessment in the best
light in comparison to the entire technology, but not necessarily in comparison to the set of observed DMUs. This result allows a
clear and meaningful interpretation of the optimal solutions of multiplier models, including known models with a complex
constraint structure whose interpretation has been problematic and left unaddressed in the existing literature.
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Keywords Data envelopment analysis ● Multiplier model ● Polyhedral technology ● Input and output weights ● Supporting
hyperplane

1 Introduction

The two conventional models of data envelopment analysis
(DEA) are based on the assumption that the production tech-
nology is characterized by either constant or variable returns to
scale (CRS and VRS), respectively. The CRS and VRS DEA
models of Charnes et al. (1978) and Banker et al. (1984),
whose earlier statements were introduced in the production
theory literature by Afriat (1972), Shephard (1974) and Färe
et al. (1983), are linear programs that can be stated in two
mutually dual envelopment and multiplier forms.

The interpretation of the CRS and VRS models is well-
established and depends on whether they are solved in the

input or output orientation (Førsund 2018). The optimal value
of these programs is interpreted as, respectively, the input or
output radial efficiency of the decision making unit (DMU)
under the assessment, denoted DMUo. From the envelopment
perspective, the input or output radial efficiency of DMUo

represents the utmost factor by which the input or output
vector of DMUo can be improved in the given technology.

The dual multiplier CRS model is stated in terms of the
input and output weights. As shown by Charnes et al.
(1978), any optimal weights of this model (often also
referred to as the input and output shadow prices) maximize
the ratio of the total weighted output to the total weighted
input of DMUo, under the condition that similar ratios
calculated for all observed DMUs do not exceed the value
of 1. Following this interpretation, the optimal input and
output weights are regarded as the most favorable for
DMUo (represent DMUo in the best light) when it is
benchmarked against the set of all observed DMUs.

A similar interpretation is used for the optimal weights of
the multiplier VRS model. This model also includes an
additional dual variable corresponding to the normalizing
equality (convexity constraint) in the envelopment model.
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Banker and Thrall (1992) show that the range of optimal
values of this variable defines the type of returns to scale
exhibited by the projection of DMUo on the boundary of the
VRS technology. The dual characterization of the CRS and
VRS production technologies and optimal solutions of the
multiplier models based on them have been extensively stu-
died in the literature – see, e.g., Briec and Leleu (2003), Färe
and Primont (1995), Olesen and Petersen (1996, 2015) and
Zelenyuk (2013).

In recent years, a number of new DEA models have been
developed based on various assumptions about the pro-
duction technology. Most of these technologies are modeled
as polyhedral sets and are referred to as polyhedral tech-
nologies (Podinovski et al. 2016). The class of polyhedral
technologies including the standard CRS and VRS tech-
nologies of Charnes et al. (1978) and Banker et al. (1984),
the non-increasing and non-decreasing returns-to-scale
technologies (Färe et al. 1983, Seiford and Thrall 1990),
and their extensions by production trade-offs which are dual
terms to weight restrictions (Podinovski 2004b). Further
examples include the hybrid returns-to-scale technology
based on the idea of selective proportionality between cer-
tain subsets of inputs and outputs (Podinovski 2004a),
technologies with multiple component processes, including
those with joint or shared inputs and outputs (Cherchye
et al. 2013, Podinovski et al. 2018), and models based on
(selective) weak disposability of inputs and outputs (Meh-
diloo and Podinovski 2019). Finally, the underlying tech-
nologies of various network DEA models (Färe and
Grosskopf 2000) are also polyhedral.

Similar to the conventional CRS and VRS models, DEA
models employing any polyhedral technology can be stated
in two mutually dual envelopment and multiplier forms.
While the interpretation of the envelopment models is
usually straightforward and similar to the case of the CRS
and VRS models, the interpretation of the multiplier models
and their optimal solutions (vectors of shadow prices) is
often problematic. Of course, duality theory and standard
interpretation of shadow prices apply to all such models and
their optimal solutions. However, typically, such solutions
include not only the vectors of input and output weights but
also a number of other variables dual to the often complex
constraints of the envelopment model. What the constraints
of the multiplier models mean, whether the optimal input
and output weights (and the optimal values of any other
dual variables) are the most favorable for the DMUo and, if
so, then exactly in what sense, is often unclear.

One example of polyhedral technology that illustrates the
described difficulty is the standard CRS or VRS technology
expanded by the specification of production trade-offs (dual
to weight restrictions in the multiplier models). Such trade-
offs represent permissible substitutions between certain
input and output quantities, and their specification expands

the production technology (Podinovski 2004b). Based on
the earlier example of Podinovski and Athanassopoulos
(1998), in a further development, Podinovski (2016) shows
that the optimal input and output weights of such models
may not necessarily be the most favorable for DMUo among
all nonnegative weights when it is benchmarked against the
observed DMUs. Therefore, the conventional interpretation
of the optimal weights does not apply to models based on
such polyhedral technologies.1

In this paper we give a further example based on the non-
increasing returns-to-scale technology in which the tradi-
tional interpretation of optimal solutions of the multiplier
model is clearly incorrect. These examples show that we do
not have a general meaningful explanation of the multiplier
models for arbitrary polyhedral technologies, except for the
CRS and VRS models and a few other models for which
alternative bespoke interpretations, that apply only to a
particular model, have been developed in the literature (see,
e.g., Cherchye et al. 2013, Podinovski et al. 2018).2

A new way to interpret optimal solutions of the multiplier
model was recently suggested in a special case of polyhedral
technology, namely, for the VRS and CRS technologies
expanded by production trade-offs. Podinovski (2016) proved
that the optimal input and output weights of the corresponding
multiplier models are the most favorable for DMUo among all
nonnegative weights, in comparison not to the set of observed
DMUs (as already shown by Podinovski and Athanassopoulos
(1998)) but in comparison to the infinite set of all DMUs in the
technology expanded by the trade-offs.

In this paper we generalize this result to the whole class
of polyhedral technologies and obtain a unifying inter-
pretation of the multiplier models based on them. We also
reinterpret optimal solutions of multiplier models in terms
of profit maximization, and show that the optimal input and
output weights of the multiplier model based on any poly-
hedral technology maximize the profit efficiency of DMUo

in comparison to all DMUs in the technology.
To achieve this, we first develop a transformation of the

multiplier model based on any polyhedral technology to a
different linear model whose structure is transparent and

1 Podinovski (2016) also considers a different interpretation of the
most favorable weights that, in addition to being nonnegative, are also
required to satisfy the weight restrictions dual to the production trade-
offs. This interpretation, stated as Interpretation 1 on page 921 of
Podinovski (2016), is correct only for weight restrictions of certain
types. It is specific to models with weight restrictions and is not
considered in this paper.
2 For example, Podinovski et al. (2018) consider a technology with
multiple component processes characterized by shared inputs and
outputs. They show that an optimal solution of the corresponding
multiplier model can be seen as the most favorable for DMUo in the
sense that it identifies the most favorable input and output weights and
also the proportions in which the shared inputs and outputs are allo-
cated to the component processes.
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amenable to interpretation. We further suggest two addi-
tional transformations to the linear fractional and maximin
models in which the efficiency of DMUo is measured by the
ratio of its weighted output and input combinations. Using
these restated models, we prove that, irrespective of the
often complex structure of the original multiplier model, its
optimal solutions are the most favorable for DMUo both in
the conventional sense explored by Charnes et al. (1978)
and Banker et al. (1984), and in the sense of profit max-
imization, but with the caveat that DMUo is benchmarked
against the entire technology and not against the set of
observed DMUs. For example, for any polyhedral cone
technology, the optimal input and output weights (which are
generally only a part of the longer vector representing an
optimal solution) maximize the ratio of the total weighted
output to the total weighted input of DMUo and, alter-
natively, the profit of DMUo, in comparison to all DMUs in
the technology, but not necessarily in comparison to the set
of observed DMUs as would be the case for the conven-
tional CRS model.

The new interpretation of optimal solutions obtained in
this paper applies to any polyhedral technology and does
not contradict the established interpretations for the CRS
and VRS models. The optimal weights of the CRS and VRS
multiplier models are the most favorable for the DMUo

under the assessment if it is benchmarked against the finite
set of observed DMUs (as in the standard interpretation)
and also against the entire CRS or VRS technology (as in
the new interpretation obtained in this paper).

We proceed as follows. In Section 2, we consider a moti-
vational example based on the HRS technology of Podinovski
(2004a). We show that the optimal solutions of the standard
multiplier model based on this technology do not allow a
straightforward interpretation. In the subsequent sections, we
obtain their interpretation, and the interpretation in the case of
any other polyhedral technology, by restating the standard
linear multiplier models in three new forms.

We obtain this new universal interpretation not for an
individual technology, but for the whole class of polyhedral
technologies, examples of which were highlighted above, in
one unifying development. To enable this new develop-
ment, in Section 3, we first introduce a general statement of
polyhedral technology and the envelopment and multiplier
models based on it. In Section 4, we develop a universal
transformation that restates the multiplier model based on
an arbitrary polyhedral technology in a transparent linear
form. In section 5, we discuss the hierarchy of three forms
of the multiplier model in the standard case of VRS tech-
nology, which clarifies the direction of further theoretical
investigation. In Section 6, we obtain transformations of the
multiplier model to the linear fractional and maximin forms.
All these transformed models allow us to prove that any
optimal input and output weights (which are often only a

part a full optimal solution of the original multiplier model)
are the most favorable for DMUo when the latter is
benchmarked against all DMUs in the entire technology. In
Section 7, we prove that optimal solutions of the multiplier
CRS and VRS models of Charnes et al. (1978) and Banker
et al. (1984) can be interpreted in two ways, as being the
most favorable for DMUo if it is benchmarked against the
set of observed DMUs and also if it is benchmarked against
the entire technology generated by such DMUs. In Section
8, we consider a numerical example that illustrates the
theoretical results of this paper. In Section 9, we present a
concluding summary of the main results. All mathematical
proofs are given in Appendix A. In Appendix B, we show
the usefulness of our results for the interpretation of mul-
tiplier models based on three different polyhedral
technologies.

2 Motivational example

The hybrid returns-to-scale (HRS) technology was intro-
duced and axiomatically defined by Podinovski (2004a) as a
generalization of the standard CRS technology of Charnes
et al. (1978) based on the concept of selective proportion-
ality. The HRS technology models a situation in which only
a subset of outputs and a subset of inputs are assumed to be
mutually proportional (scalable), while the other inputs and
outputs are not a part of this proportion.

Let ðXj; YjÞ 2 Rmþs
þ be the observed DMUs, where j=

1,…, n. The input and output vectors Xj and Yj, j= 1,…, n,
are the columns of the input and output matrices X and Y
whose dimensions are m × n and s × n, respectively.

We now consider the rows of matrices X and Y corre-
sponding to the nonproportional inputs and outputs, and
replace them by zero rows. Denote the resulting m × n and
s × n matrices ~X and ~Y , respectively. The columns ~Xj and
~Yj, j= 1,…, n, of these matrices are the corresponding
input and output vectors Xj and Yj whose nonproportional
components are replaced by zeros.

As proved by Podinovski (2004a), technology T HRS is
the set of all DMUs ðX; YÞ 2 Rmþs

þ for which there exist
vectors λ; μ; ν 2 Rn and slack vectors SX 2 Rm, SY 2 Rs

and Sλ 2 Rn, such that

Xλþ ~Xμ� ~Xν þ SX ¼ X; ð1aÞ

Yλþ ~Yμ� Yν � SY ¼ Y ; ð1bÞ

λ� ν � Sλ ¼ 0; ð1cÞ

1>λ ¼ 1; ð1dÞ

λ; μ; ν; SX ; SY ; Sλ � 0: ð1eÞ
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In conditions (1), the components of vector μ allow the
selected inputs and outputs of the observed DMUs repre-
sented by the columns of matrices ~X and ~Y to be scaled up.
Similarly, the components of vector ν allow such inputs and
outputs to be scaled down. (As shown by Podinovski
(2004a), in the latter scenario we need to replace the matrix
~Y by Y which appears in the term Yν on the left-hand side
of conditions (1b).) Conditions (1c) allow contraction of
the selected inputs and outputs (assumed proportional) as
long as the difference λj− νj remains nonnegative for all
j= 1,…, n, which in turn guarantees that the resulting
inputs and outputs of the selectively contracted DMUs
remain nonnegative.

Consider assessing the input radial efficiency of DMU
(Xo, Yo) in the HRS technology. Specifying the input-
oriented envelopment model is straightforward. This
requires replacing DMU (X, Y) in conditions (1a) and (1b)
by DMU (θXo, Yo), where θ is a sign-free variable, and
minimizing θ subject to the resulting constraints.

Let v 2 Rm, u 2 Rs, σ 2 Rn and ρ 2 R be dual to the
constraints of the envelopment HRS model. The input-oriented
multiplier HRS models can then be stated as follows:

θ� ¼ max Y>
o uþ ρ

subject to X>
o v ¼ 1;

Y
>
u� X

>
vþ σ þ 1ρ � 0;

~Y
>
u� ~X

>
v � 0;

�Y
>
uþ ~X

>
v� σ � 0;

u; v; σ � 0; ρ sign free:

ð2Þ

The constraints of program (2) have a complex structure,
and direct interpretation of its optimal solutions (u, v, σ, ρ) is
a challenging task. It may be argued that we should obtain
the interpretation of this program by restating it in the linear
fractional form, similar to the interpretation of the CRS
model by Charnes et al. (1978):

θ� ¼ max
Y>
o uþ ρ
X>
o v

Y>
j uþ σj þ ρ

X>
j v

� 1; 8j ¼ 1; :::; n;

~Y>
ju

~X>
jv

� 1; 8j ¼ 1; :::; n;

Y>
j uþ σj

~X>
jv

� 1; 8j ¼ 1; :::; n;

u; v; σ � 0; ρ sign free:

ð3Þ

It is clear that the restatement of program (2) in the linear
fractional form (3) has not made the interpretation any
easier.3

Note that it would be erroneous to simply state that the
optimal solutions to the multiplier models (2) and (3)
represent DMU (Xo, Yo) in the best light compared to the set
of observed DMUs, for several reasons. First, the con-
straints of these programs are stated not only for the
observed DMUs (Xj, Yj) but also for the DMU-like struc-
tures ð~Xj; ~YjÞ and ð~Xj; YjÞ as seen in the conditions of pro-
gram (3). These DMU-like structures are not observed
DMUs but can be seen as parts of them. Second, the optimal
solutions include vector σ and scalar ρ whose role is
unclear.

Third, it is known that the input and output weights that
are the most favorable for DMU (Xo, Yo) in relation to the
observed DMUs are those obtained from the standard
multiplier CRS or VRS models. (The meaning of this
statement is slightly different in the two models.4) Optimal
solutions of the HRS model (2) are not generally optimal in
the CRS or VRS models, and for this reason cannot be the
most favorable for DMU (Xo, Yo) in the same sense.

In summary, the standard HRS multiplier model (2) does
not allow a clear interpretation of its optimal solutions, and
the question arises: what is the meaning of such optimal
solutions?

The described difficulties with the HRS technology are
not unique and arise in the case of many other technologies,
especially those whose statements involve complex condi-
tions. We consider additional examples of such technolo-
gies in Appendix B.

In this paper, we address the noted difficulties and
explain the meaning of optimal solutions of the multiplier
models. We do this in a single development, by considering
a general statement of technology as a polyhedral set. We
then prove that, regardless of the specific conditions and

3 To see the relationship between programs (2) and (3), let
ðu0; v0; σ0; ρ0Þ be any feasible (or optimal) solution of the latter pro-
gram. Then, for any α > 0, ðαu0; αv0; ασ0; αρ0Þ is also a feasible
(respectively, optimal) solution of (3). (This follows from the obser-
vation that the multiplier α appears in the numerators and denomi-
nators of all ratio terms of program (3) and cancels out.) All such
solutions form an open ray from the origin through ðu0; v0; σ0; ρ0Þ. The
value of the objective function of program (3) on this ray is constant.
Program (2) replaces the feasible region of program (3) by a single
representative from each such ray which satisfies the normalizing
equality X>

o v ¼ 1. For all such representatives, the linear fractional
objective function of program (3) becomes the linear objective func-
tion of program (2).
4 In comparison to the multiplier CRS model, the VRS model incor-
porates an additional variable dual to the normalizing (convexity)
constraint of the envelopment program. As discussed in Sections 4 and
7, this leads to two related but slightly different interpretations of the
optimal solutions of the CRS or VRS models as the most favorable for
the DMU (Xo, Yo).
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complexity of their statements, the optimal solutions of the
multiplier model based on any polyhedral technology,
including the HRS technology, are the most favorable for
DMU (Xo, Yo) when it is compared not to the finite set of
observed DMUs but to the infinite set of all DMUs in the
technology. (We further illustrate the difference between the
two interpretations using an example in Section 8.) This
new universal interpretation cannot be observed from the
standard multiplier model such as (2), and we need to
develop alternative multiplier statements that make this new
interpretation clear.

3 DEA models for polyhedral technologies

3.1 Polyhedral technologies

Consider production technology T � Rmþs
þ with m inputs

and s outputs. To be specific, we assume that T satisfies the
assumption of free (strong) disposability of all inputs and
outputs (see, e.g., Färe et al. 1985). The case in which not
all inputs and outputs are freely disposable is similar and is
not discussed.

Most of the convex production technologies developed
in the DEA literature are polyhedral sets. Examples of such
technologies were highlighted in Section 1. Using the
general form of polyhedral technologies suggested by
Podinovski et al. (2016), any freely disposable technology
T is stated as the set of all DMUs ðX; YÞ 2 Rmþs

þ for which
there exist a vector λ̂ 2 Rq and vectors of input and output
slacks SX 2 Rm and SY 2 Rs such that:

X̂λ̂þ SX ¼ X; ð4aÞ

Ŷ λ̂� SY ¼ Y ; ð4bÞ

Ûλ̂ ¼ Uo; ð4cÞ

λ̂; SX ; SY � 0: ð4dÞ

In the above statement, X̂, Ŷ and Û are matrices of
dimensions m × q, s × q, and p × q, respectively, and Uo is a
constant vector of dimension p. The conditions (4c) are
optional and are not always specified. Below we refer to them
as the parameter conditions. These conditions are homo-
geneous if Uo is a zero vector and nonhomogeneous otherwise.

Conditions (4) identify a general form in which any
freely disposable polyhedral technology can be stated. In
each special case of a particular technology, the matrices X̂,
Ŷ and Û, vector Uo and the dimensions p and q are dif-
ferent. As an illustration, consider the following examples.

Let T be the conventional VRS technology of Banker
et al. (1984). In this case, the columns of matrices X̂ and Ŷ

are the input and output vectors of the observed DMUs,
respectively. The parameter condition (4c) is the single
equality 1>λ̂ ¼ 1, i.e., Û is a vector row of ones of
dimension n, and Uo is a scalar equal to 1. In the case of the
CRS technology of Charnes et al. (1978), the equality (4c)
is not used.

For many other polyhedral technologies, the structure of
matrices X̂, Ŷ and Û used in conditions (4) is more com-
plex. Consider, for example, the HRS technology defined
by conditions (1). This technology is a polyhedral tech-
nology and its statement (1) is a special case of (4).

Indeed, we can view the combined vector λ; μ; ν; Sλð Þ in
(1) as the vector λ̂ in (4). We now restate equalities (1a) and
(1b) as follows:

Xλþ ~Xμ� ~Xν þ OXSλ þ SX ¼ X;

Yλþ ~Yμ� Yν þ OYSλ � SY ¼ Y ;

where OX and OY are zero m × n and s × n matrices,
respectively. It is now clear that equality (1a) corresponds to
equality (4a) in which X̂ is the combined matrix
½X; ~X;�~X;OX � of dimension m × q, where q= 4n. Similarly,
condition (1b) corresponds to condition (4b) in which Ŷ is
the combined matrix ½Y; ~Y ;�Y;OY � of dimension s × q. The
equalities (1c) and (1d) are parameter conditions (4c) in
which the vector Uo is of dimension n+ 1. Its first n
components are equal to zero, and its last component is
equal to 1.5

Two further examples of polyhedral technologies with a
complex structure are considered in Appendix B.

Remark 1 Throughout the paper, we distinguish between
the matrices X̂ and Ŷ used in the general statement (4) of a
polyhedral technology, and the matrices X and Y formed by
the input and output vectors of the n observed DMUs, as in
the statement (1) of the HRS technology. We also distin-
guish between the intensity vector λ used to combine
observed DMUs (i.e., the columns of matrices X and Y) and
the generally longer vector λ̂ used to combine the columns
of matrices X̂ and Ŷ in (4).
As shown by the case of HRS technology, X and Y are

generally only submatrices of X̂ and Ŷ , although they
coincide with the latter in the case of standard VRS and
CRS technologies. As another example, in models with
weight restrictions, the matrices X̂ and Ŷ incorporate
columns representing the input and output vectors of the

5 Conditions (1c) and (1d) can be stated as Ûλ̂ ¼ Û λ; μ; ν; Sλð Þ>,
where the matrix Û is of dimension (n+ 1) × 4n and is defined as
follows. Its first n rows correspond to condition (1c) and form the
combined n × 4n matrix [In,On,− In,− In], where In and On are the n ×
n identity and zero matrices, respectively. The last row of matrix Û
corresponds to condition (1d). Its first n elements are equal to 1 and the
last 3n elements are zeros.
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observed DMUs as well as the vectors representing
production trade-offs dual to the weight restrictions
(Podinovski 2004b).

3.2 Envelopment and multiplier DEA models

To be specific, consider assessing the input radial efficiency
of DMUo 2 T , whose input and output vectors are Xo ≠ 0
and Yo ≠ 0, respectively. The case of output radial efficiency
is similar and is not discussed.

The input radial efficiency of DMUo is the optimal value
θ* of the envelopment model

θ� ¼ minfθjðθXo; YoÞ 2 T g:

Using (4), we restate this envelopment program as
follows:

θ� ¼ min θ ð5aÞ

subject to θXo � X̂λ̂� SX ¼ 0; ð5bÞ

Ŷ λ̂� SY ¼ Yo; ð5cÞ

Ûλ̂ ¼ Uo; ð5dÞ

λ̂; SX ; SY � 0; θ sign free: ð5eÞ

Because of the arbitrary nature of technology T , we have
to assume specifically that the optimal value of program (5)
is finite (and therefore is attained) and that θ* > 0. Under this
assumption, which should be valid in any meaningful
application, all inputs and outputs of the input radial pro-
jection (θ*Xo, Yo) are nonnegative and satisfy conditions (4),
together with any optimal solution λ̂

�
, S�X and S�Y of program

(5). Therefore, ðθ�Xo; YoÞ 2 T .
The dual to program (5) is the following multiplier

model:

θ� ¼ max Y>
o uþ U>

o w ð6aÞ

subject to X>
o v ¼ 1; ð6bÞ

Ŷ
>
u� X̂

>
vþ Û

>
w � 0; ð6cÞ

u; v � 0; w sign free vector: ð6dÞ

In model (6), the vectors v 2 Rm
þ and u 2 Rs

þ and the
vector of sign-free variables w 2 Rp are dual to constraints
(5b), (5c) and (5d), respectively. If the parameter condition
(5d) is not specified, its dual vector w and the corresponding
terms in model (6) are omitted.

It is worth noting that the structure of the multiplier
model (6) may be sufficiently complex and make its

interpretation problematic. An example is the multiplier
HRS model (2) which is a special case of model (6). As
highlighted in Section 2, the interpretation of the multiplier
HRS model is unclear.

In the next sections, we overcome the problem with the
interpretation of model (6) by restating it in several more
transparent forms.

4 Restated linear program

In this and the next sections we explore the interpretation of
optimal solutions of the linear multiplier model (6) by
transforming it to the three new useful forms: linear, linear
fractional and maximin models. In contrast to the standard
multiplier model (6), all three new models have intuitively
clear feasible regions which allows straightforward inter-
pretation of their optimal solutions. This series of trans-
formations extends the earlier idea developed by
Podinovski et al. (2016) for the special case of CRS and
VRS technologies expanded by production trade-offs, to the
general case of an arbitrary polyhedral technology.

4.1 The general case

Consider the input-oriented multiplier model (6) based on
any polyhedral technology T . To facilitate the interpretation
of its optimal solutions, we introduce the following program
which has an infinite number of linear constraints:

φ�
1 ¼ max Y>

o uþ u0 ð7aÞ

subject to X>
o v ¼ 1; ð7bÞ

Y>u� X>vþ u0 � 0; 8ðX; YÞ 2 T ; ð7cÞ

u; v � 0; u0 sign free: ð7dÞ

To establish a relationship between the standard multi-
plier program (6) and the above program (7), let u; v;wð Þ be
any feasible solution to the multiplier model (6). Define the
scalar

u0 ¼ U>
o w: ð8Þ

We now generalize the result obtained by Podinovski
et al. (2016) for the special case of the VRS technology
expanded by production trade-offs to the case of an arbi-
trary polyhedral technology T :

Theorem 1 If solution u; v;wð Þ is feasible in program (6),
then solution u; v; u0ð Þ is feasible in program (7). Further-
more, if u�; v�;w�ð Þ is optimal in (6), then u�; v�; u�0

� �
is
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optimal in (7). The maximum in program (7) is attained, and
we have θ� ¼ φ�

1.

It is worth highlighting the differences between the ori-
ginal multiplier program (6) with a finite number of con-
straints and its restatement (7) with the infinite number of
constraints. The former program is stated in terms of the
output and input weights (u, v) and the vector w dual to the
parameter conditions (5d). Because the constraints of pro-
gram (6) often have a complex structure, a direct inter-
pretation of this program and its optimal solutions may be
problematic.

In contrast, the structure of program (7) is much more
transparent. The complex statement (4) of technology T
explicitly incorporated by the standard multiplier model (6)
is employed implicitly in program (7) through the intui-
tively clear (but not really operational) condition ðX; YÞ 2
T of constraints (7c). Also note that the structure of pro-
gram (7) is similar to the structure of the standard VRS
model of Banker et al. (1984). The only difference is that, in
the latter, the full technology T in constraints (7c) is
replaced by the set of observed DMUs.

Remark 2 It may seem surprising that the matrices X̂, Ŷ
and Û, and the vector Uo that define technology T by
conditions (4) and are used in the standard multiplier model
(6) apparently “disappear” in program (7). As already noted,
these conditions are still incorporated in program (7), via
the condition ðX; YÞ 2 T in the inequalities (7c).
To give an intuitive explanation of such transformation,

suppose that we sample a very large number n of DMUs
(Xj, Yj) from the polyhedral technology T stated as in (4).
We can consider the standard VRS technology generated by
this large number of sampled DMUs as a suitable
approximation of technology T . Instead of assessing the
input radial efficiency of DMUo in technology T by solving
program (6), we assess it in the approximate technology, by
solving the standard input-oriented VRS multiplier pro-
gram. It is similar to program (7), except for conditions (7c)
which are replaced by the standard VRS conditions:

Y>
j u� X>

j vþ u0 � 0; 8j ¼ 1; ¼ ; n:

Because n is very large, we can think of these last
conditions as an approximation of condition (7c) stated for
every DMU ðX; YÞ 2 T . We now see that, regardless of the
complexity of the statement (4) of technology T , program
(7) always has the same simple structure similar to the
standard VRS model. The statement of technology T is now
incorporated in the conditions ðX; YÞ 2 T of program (7).
In loose words, we can say that solving the multiplier

program (6) based on any polyhedral technology T
simultaneously solves the multiplier model (7) based on

the VRS technology generated by the infinite number of all
DMUs in technology T .
Of course, the given explanation is not rigorous and does

not substitute the precise statement of Theorem 1 and its
formal proof. In fact, from the given intuitive explanation it
may appear that programs (6) and (7) are equivalent and
that their sets of feasible and optimal solutions are the same
after the transformation (8) is applied. This is not so, and
Theorem 1 only states that any feasible and optimal solution
of program (6) is, after the transformation (8), feasible and
optimal in program (7), respectively. The fact that the
converse is generally not true was demonstrated by
Podinovski (2015, Example 2) in the case of CRS
technology expanded by production trade-offs.

The optimal value θ* of both envelopment and multiplier
programs (5) and (6) is interpretable as the input radial effi-
ciency of DMUo in technology T . Theorem 1 suggests an
alternative interpretation of any optimal solution u�; v�;w�ð Þ
of program (6) in terms of profit maximization, consistent with
the economics literature (see, e.g., Färe and Grosskopf 2004).

Let u and v be regarded as the output and input prices.
Then the difference Y⊤u− X⊤v is the profit generated by
DMU (X, Y). At optimality, at least one constraint in (7c) is
satisfied as equality, as otherwise we could increase the
optimal output prices u or the scalar u0, and the value of the
objective function (7a), which contradicts the assumption of
optimality. Therefore, the negated sign-free term −u0
represents the maximum profit across all DMUs in tech-
nology T (and not only observed DMUs).

Taking into account (7b), we restate the objective func-
tion in (7a) as 1� ½ð�u0Þ � ðY>

o u� X>
o vÞ�. Maximizing this

function is equivalent to minimizing the difference between
the maximum profit −u0 and the actual profit Y>

o u� X>
o v

generated by DMUo. By Theorem 1, the weights u* and v* in
any optimal solution u�; v�;w�ð Þ of program (6) maximize
the profit of DMUo in comparison to the maximum profit of
all DMUs in technology T , equal to �u�0 ¼ �U>

o w
�, subject

to the cost-normalizing condition X>
o v ¼ 1.

Furthermore, the difference

1� θ� ¼ �u�0 � ðY>
o u

� � X>
o v

�Þ ð9Þ

is equal to the shortfall of the profit of DMUo compared to
the maximum profit �u�0. DMUo is profit efficient if 1− θ*

= 0, i.e., θ*= 1. Therefore, the weights u* and v* are the
most favorable for the profit efficiency of DMUo when it is
benchmarked against all DMUs in T . The example given in
Section 8 shows that this is different from the conventional
interpretation according to which DMUo is benchmarked
against the observed DMUs only, and that the conventional
interpretation is generally incorrect in the case of an
arbitrary polyhedral technology.
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Remark 3 As a variant of the given interpretation, we can
also view the optimal value θ* of programs (5) and (6) as the
exact upper bound representing the attainable profit effi-
ciency of DMUo if information about the actual input and
output prices becomes available.6 Indeed, suppose that all
DMUs face the same known prices v0 and u0 normalized by
condition (7b). Denote �u00 ¼ maxðX;YÞ2T fY>u0 � X>v0g,
the maximum profit across all DMUs in technology T for
such prices. Then the triplet ðu0; v0; u00Þ satisfies inequalities
(7c) and is a feasible solution of program (7). By Theorem
1, we have θ� ¼ φ�

1. Because the latter is the optimal value
of program (7), it follows that θ� � Y>

o u
0 þ u00. Therefore,

θ* is an upper bound on the profit indicator Y>
o uþ u0 that

can in principle be achieved by DMUo, taking into account
all possible input and output prices normalized by condition
(7b). This upper bound θ* is exact and is attained at the
prices u* and v* taken from any optimal solution u�; v�;w�ð Þ
of program (6).
Furthermore, as follows from (9), the difference 1− θ* is

interpretable as the optimal (lowest) shortfall of the profit of
DMUo compared to the maximum profit achieved across all
DMUs in technology T , considering all possible (normalized)
input and output prices. Therefore, 1− θ* represents the exact
lower bound on the actual shortfall of the profit of DMUo if
the information about the actual prices becomes available. For
any actual normalized prices, the shortfall of the profit of
DMUo can never be smaller than 1− θ*. This lower bound is
attained for any optimal prices u* and v* of program (6).

The following result generalizes the known fact estab-
lished by Banker et al. (1984) for the VRS technology, to an
arbitrary polyhedral technology. It shows that any optimal
solution of program (6) defines a supporting hyperplane to
technology T at the input radial projection (θ*Xo, Yo) of the
DMU (Xo, Yo). Note the nontrivial way in which the inter-
cept u�0 of this hyperplane is calculated.

Proposition 1 Let u�; v�;w�ð Þ be any optimal solution of
program (6). In accordance with (8), define u�0 ¼ U>

o w
�.

(Alternatively, and more generally, let u�; v�; u�0
� �

be any
optimal solution of program (7).7) Then the set of all pairs
ðX; YÞ 2 Rmþs that satisfy the equation

Y>u� � X>v� þ u�0 ¼ 0 ð10Þ

is a supporting hyperplane to technology T at the input
radial projection (θ*Xo, Yo). The vector (u*,− v*) is the
normal vector of this supporting hyperplane, and u�0 is a
constant scalar. For any DMU ðX; YÞ 2 T , we have
Y>u� � X>v� þ u�0 � 0. For the input radial projection
ðX; YÞ ¼ ðθ�Xo; YoÞ 2 T , this last inequality is satisfied as
equality.

Remark 4 If T is the VRS technology of Banker et al.
(1984), the vector Uo in the parameter condition (4c) has a
single component equal to 1 and, by formula (8), we have
u�0 ¼ w�. As follows from Banker and Thrall (1992) (see also
Førsund and Hjalmarsson 2004), the range of optimal values
of u0 determines the type of returns to scale (RTS) exhibited
by the projection (θ*Xo, Yo). Podinovski et al. (2016) gen-
eralize this result and prove that the range of optimal values of
the scalar u�0 ¼ U>

o w
� defines the type of RTS in an arbitrary

polyhedral technology. However, why this relatively unin-
tuitive formula is responsible for the RTS characterization has
so far remained unclear. Proposition 1 resolves this issue by
demonstrating that u�0 is the constant (intercept) of the sup-
porting hyperplane to the technology evaluated at the projected
DMU, the role of which in the VRS technology has already
been demonstrated by Banker and Thrall (1992).
Let us consider this in greater detail. As follows from the

general result of Podinovski et al. (2016, Endnote 14), if
DMUo is both input and output radial efficient8 in
technology T , the range of optimal values of u�0 ¼ U>

o w
�

defines the left-hand and right-hand scale elasticities ε−(Xo,
Yo) and ε+(Xo, Yo) evaluated at DMUo and, therefore, its
RTS characterization.
More precisely, let umin

0 and umax
0 be, respectively, the

minimum and maximum values of the term U>
o w taken over

the set of all optimal solutions to the multiplier model (6).
(Identifying umin

0 and umax
0 requires solving two linear

programs.) Then

εþðXo; YoÞ ¼
1

1� umin
0

; ε�ðXo; YoÞ ¼
1

1� umax
0

: ð11Þ

The above formulae allow infinite values of ε+(Xo, Yo) and
ε−(Xo, Yo), obtained when their denominators are equal to zero.
Theorem 1 in Podinovski et al. (2016) and its application to
the evaluation of scale elasticity discussed in Section 3.3 of the
same paper show that, in an arbitrary polyhedral technology
T , these cases occur if and only if any marginal proportional
increase or, respectively, reduction of the input vector Xo of
the DMUo leads outside the technology. For this reason,

6 The authors are grateful to the anonymous reviewer for suggesting
this interpretation.
7 According to Theorem 1, every optimal solution u�; v�;w�ð Þ of
program (6) corresponds to an optimal solution u�; v�; u�0

� �
of program

(7), where u�0 is calculated by (8). However, not every optimal solution
of program (7) may generally be obtained in this way—see Example 2
given by Podinovski et al. (2016). Proposition 1 is true for any optimal
solution of program (7), including any solution obtained from the
optimal solution of program (6) by formula (8).

8 It obviously suffices that DMUo be strongly efficient. The output
radial efficiency is required for a correct definition of the one-sided
scale elasticities evaluated at DMUo. Furthermore, if DMUo is output
radial efficient but input radial inefficient, the one-sided scale elasti-
cities calculated by formulae (11) and the corresponding type of RTS
would characterize not the DMUo but its input projection (θ*Xo, Yo).
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the corresponding one-sided scale elasticity is undefined. If
technology T is freely disposable (which is assumed in the
current paper), the right-hand scale elasticity ε+(Xo, Yo) is
always finite and cannot be negative.
This result is similar to the expressions obtained for the

standard VRS technology by Banker and Thrall (1992). The
difference is that, in the case of VRS, the terms umin

0 and
umax
0 are the extreme values of the actual component u0 of

the optimal solution to the multiplier VRS model which is
dual to the normalizing (convexity) constraint of the
envelopment VRS model. For an arbitrary polyhedral
technology, umin

0 and umax
0 are the extreme values of the

term U>
o w, where w is the vector of dual variables to the

parameter conditions (4c). This term is reduced to the single
dual variable u0 in the VRS model.

4.2 Cone technologies

Assume that the parameter conditions (4c) are either
homogeneous or are not specified. In the former case, the
vector Uo is a zero vector, and conditions (4c) are replaced
by the equality

Ûλ̂ ¼ 0: ð12Þ

In both cases it is straightforward to verify that tech-
nology T is a polyhedral cone. Examples of polyhedral
cone technologies whose statements do not include the
parameter condition (4c) are the standard CRS technology
of Charnes et al. (1978) and its extension by production
trade-offs developed by Podinovski (2004b). An example of
polyhedral cone technology with complex homogeneous
parameter conditions (4c) is the cone extension of the
technology with multiple component processes (Podinovski
et al. 2018, p. 287).

Under the stated assumptions, the multiplier model (6)
takes on the following form:

θ� ¼ max Y>
o u

subject to X>
o v ¼ 1;

Ŷ
>
u� X̂

>
vþ Û

>
w � 0;

u; v � 0; w sign free vector:

ð13Þ

Taking into account (8), we have u0= 0 and restate
program (7) as follows:

ψ�
1 ¼ max Y>

o u ð14aÞ

subject to X>
o v ¼ 1; ð14bÞ

Y>u� X>v � 0; 8ðX; YÞ 2 T ; ð14cÞ

u; v � 0: ð14dÞ

The following results is a straightforward restatement of
Theorem 1 for the cone technologies under the
consideration:

Theorem 2 If solution u; v;wð Þ is feasible in program (13),
then u; vð Þ is feasible in program (14). Furthermore, if
u�; v�;w�ð Þ is optimal in (13), then u�; v�ð Þ is optimal in
(14). The maximum in program (14) is attained, and we
have θ� ¼ ψ�

1.

We are now in a position to provide interpretation of
program (13), which is close to the interpretation of the
more general program (6). Namely, let u and v be the output
and input prices and the difference Y⊤u− X⊤v be the profit
of DMU (X, Y). We first consider program (14). According
to constraints (14c), no DMU ðX; YÞ 2 T is allowed to have
a positive profit. Furthermore, for any optimal prices u and v
of this program, at least one inequality in (14c) is satisfied
as equality. (Otherwise, we would be able to increase the
vector of optimal output prices u and the objective function
(14a), which contradicts the assumption of optimality.) This
implies that, at optimality, the maximum profit over all
DMUs in the entire technology T is equal to zero, which is
consistent with the assumption of CRS.

Using (14b), we can restate the objective function in
(14a) as ðY>

o u� X>
o vÞ þ 1. Maximizing this function is

equivalent to maximizing the profit Y>
o u� X>

o v of DMUo.
Let u�; v�;w�ð Þ be any optimal solution of program (13).

By Theorem 2, the solution u�; v�ð Þ is optimal in (14).
Therefore, the vectors of prices u* and v* maximize the
profit of DMUo subject to the condition that all DMUs in
the entire technology T have a nonpositive profit and that
the cost of the input bundle is normalized by the equality
X>
o v ¼ 1.
Note that program (14) requires that the profit of all

DMUs in technology T be nonpositive. For example, the
CRS technology of Charnes et al. (1978) expanded by
production trade-offs (Podinovski (2004b) is a cone tech-
nology. It includes all DMUs in the CRS technology and
their modifications obtained by the application of trade-offs
in different proportions. It would generally be incorrect to
say that the optimal prices u and v in the corresponding
multiplier model maximize the profit of DMUo under the
condition that the profit of all observed DMUs is non-
positive. For this interpretation to be correct, we need the
profit of all DMUs (including observed DMUs and their
modifications by trade-offs) to be nonpositive.

We can also restate Proposition 1 for the technologies
considered in this section as follows:

Proposition 2 Let u�; v�;w�ð Þ be any optimal solution of
program (13). (More generally, let u�; v�ð Þ be any optimal
solution of program (14).) Then the set of all pairs ðX; YÞ 2
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Rmþs that satisfy the equation

Y>u� � X>v� ¼ 0

is a supporting hyperplane to technology T at the input
radial projection (θ*Xo, Yo). The vector (u*,− v*) is the
normal vector of this supporting hyperplane. For any DMU
ðX; YÞ 2 T , we have Y⊤u*− X⊤v*≤0. For the input radial
projection ðX; YÞ ¼ ðθ�Xo; YoÞ 2 T , this last inequality is
satisfied as equality.

5 The hierarchy of multiplier DEA models

In the previous section, we discussed the interpretation of
the linear multiplier program (6) by restating it in the
alternative linear form (7), and their variants (13) and (14)
for cone technologies. Our next step is to obtain additional
interpretation by restating programs (7) and (14) in two
further forms, referred to as the linear fractional and max-
imin models. To add intuition to this development, in this
section we provide preliminary discussion that clarifies the
relationship between these three forms of the multiplier
model, using the standard VRS technology T VRS of Banker
et al. (1984) as an example.9

Let ðXj; YjÞ 2 Rmþs
þ , j= 1,…, n, be the observed DMUs.

To evaluate the input radial efficiency of DMU
ðXo; YoÞ 2 T VRS, we solve the standard linear multiplier
VRS program

~φ1 ¼ max Y>
o uþ u0

subject to X>
o v ¼ 1;

Y>
j u� X>

j vþ u0 � 0; 8j ¼ 1; ¼ ; n;

u; v � 0; u0 sign free:

ð15Þ

Also consider the linear fractional program (Banker
et al. 1984, program (21)):

~φ2 ¼ max ðY>
o uþ u0Þ=X>

o v

subject to ðY>
j uþ u0Þ=X>

j v � 1; 8j ¼ 1; ¼ ; n;

u; v � 0; u0 sign free;

ð16Þ

and the maximin program analogous to the maximin model
(stated for the case of CRS) of Cooper et al. (1996) and

Podinovski and Athanassopoulos (1998):

~φ 3 ¼ max
u; v � 0;

u0 sign free

ðY>
o uþ u0Þ=X>

o v

maxj¼1;¼ ;nfðY>
j uþ u0Þ=X>

j vg

 !

¼ max
u; v � 0;

u0 sign free

min
j¼1;¼ ;n

ðY>
o uþ u0Þ=X>

o v

ðY>
j uþ u0Þ=X>

j v

( ) !
:

ð17Þ

Let us show that the three programs (15), (16) and (17)
are closely related and form a hierarchy in which program
(15) is a normalized variant of program (16), which in turn
is a normalized variant of program (17).

Program (17) maximizes the efficiency ratio ðY>
o uþ

u0Þ=X>
o v of DMUo in relation to the maximum of similar

ratios of all observed DMUs, under the single condition u,
v ≥ 0. Any optimal solution ðu�; v�; u�0Þ of this program is
the most favorable for DMUo (in the sense of maximizing
its efficiency ratio) among all solutions (u, v, u0) with non-
negative vectors u and v and sign-free scalar u0, when
DMUo is benchmarked against the set of observed DMUs.

We now note that, if ðu0; v0; u00Þ is a feasible or optimal
solution of program (17), then, for any α > 0 and β > 0, the
solution ðαu0; βv0; αu00Þ is also feasible or, respectively,
optimal in (17), because the multipliers α and β simulta-
neously appear in the numerator and denominator of the
objective function of this program and cancel out. The value
of the objective function for this parametric family of
solutions remains the same.

By varying α and β, we can make the efficiency ratios
ðY>

j αu
0 þ αu00Þ=ðX>

j βv
0Þ of all DMUs as small (close to

zero) or as large as we want. (For example, these ratios
become very large as β tends to zero.) Because the objective
function of program (17) is the same for all solutions
ðαu0; βv0; αu00Þ, we can limit its maximization to the subset
of the feasible region obtained by the incorporation of the
normalizing condition stating that the efficiency ratio
ðY>

j uþ u0Þ=X>
j v of all observed DMUs does not exceed 1

(in which case the maximum of all such ratios is equal to 1).
Under this normalizing condition, the denominator in the
first line of program (17) becomes equal to 1, and program
(17) is restated as (16). The optimal values of the linear
fractional and maximin programs (16) and (17) are equal,
and any optimal solution of the former program is optimal
in the latter. The converse is true only for the optimal
solutions of (17) (members of the parametric family of
solutions ðαu0; βv0; αu00Þ discussed above) for which the
maximum of all efficiency ratios ðY>

j uþ u0Þ=X>
j v across all

observed DMUs is equal to 1.
Now consider any feasible or optimal solution ðu0; v0; u00Þ

of program (16). For any α > 0, the solution ðαu0; αv0; αu00Þ
is also feasible and, respectively, optimal in (16).

9 Cooper et al. (1996) and Podinovski (2001) discuss a similar hier-
archy of multiplier models in the case of CRS. Its linear, linear frac-
tional and multiplier statements are obtained from programs (15), (16)
and (17) by removing the sign-free variable u0.
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The parametric family of such solutions is an open ray from
the origin through the solution ðu0; v0; u00Þ. The objective
function of program (16) remains constant along this ray.
We next note that, on each such ray of feasible or optimal
solutions, there exists one representative which satisfies the
normalizing equality X>

o v ¼ 1. Therefore, we can limit the
maximization of the objective function of program (16) over
its entire feasible region by its maximization over the set of
such representatives only. This results in program (15). The
linear fractional objective function of program (16)
becomes a linear objective function of program (15).

The optimal values of the linear and linear fractional
programs (15) and (16) are equal, and any optimal solution
of the former program is optimal in the latter. The converse
is true only for the optimal solutions of program (16) that
satisfy the normalizing condition X>

o v ¼ 1. Such solution
obviously exists in each parametric family of optimal
solutions ðαu0; αv0; αu00Þ of program (16).

In summary, we have shown that programs (15) and (16)
can be viewed as progressively normalized variants of the
maximin program (17). Any optimal solution of program (15)
is also optimal in program (16), and any optimal solution of
the latter is also optimal in program (17). The fact that the
maximin program (17) is not normalized and maximizes the
efficiency ratio of DMUo against all observed DMUs subject
to the single constraint u, v ≥ 0 makes the interpretation of its
optimal solutions, as well as optimal solutions of programs
(15) and (16) that are also optimal in (17), straightforward.

In the next section, we show that the discussed hierarchy
of multiplier models can be adapted to the modified mul-
tiplier model (7) with the infinite number of constraints. It
turns out that the latter model also allows the linear frac-
tional and maximin statements useful for interpretation of
its optimal solutions.

6 Further interpretations

Below, we continue the transformation of the multiplier
model (6) started in Section 4, to two further alternative
statements, and consider the interpretation of optimal
solutions arising from them. The relation between these
models is similar to the hierarchy of the three multiplier
VRS models discussed in Section 5.

6.1 The linear fractional model: the general case

Similar to the standard VRS model discussed in Section 5,
we can restate program (7) in the linear fractional form. The
resulting program has an infinite number of constraints:

φ�
2 ¼ max ðY>

o uþ u0Þ=X>
o v ð18aÞ

subject to ðY>uþ u0Þ=X>v � 1; 8ðX; YÞ 2 T ; ð18bÞ

u; v � 0; u0 sign free: ð18cÞ

Theorem 3 If solution u�; v�;w�ð Þ is optimal in program
(6), then u�; v�; u�0

� �
is optimal in program (18), where u�0 is

found by formula (8). The maximum in program (18) is
attained, and we have θ� ¼ φ�

2.

The following statement is a useful analog of
Proposition 1.

Proposition 3 For the projected DMU ðθ�Xo; YoÞ 2 T and
for any optimal solution u�; v�; u�0

� �
of program (18), the

inequality (18b) is satisfied as equality, i.e.,

ðY>
o u

� þ u�0Þ=ðθ�X>
o v

�Þ ¼ 1:

By Theorem 3, any optimal solution u�; v�;w�ð Þ to the
multiplier model (6) maximizes the efficiency ratio ðY>

o uþ
u0Þ=X>

o v of DMUo, where the scalar u0 is calculated by
formula (8), with respect to the efficiency ratios of all
DMUs in technology T , under the condition that no such
ratio exceeds the value of 1. Furthermore, according to
Proposition 3, the latter condition can be replaced by the
condition that the maximum of all efficiency ratios across
all DMUs in the technology is equal to 1. This maximum is
attained at the input radial projection θ�Xo; Yoð Þ 2 T .

The above interpretation is different from the traditional
interpretation of optimal solutions in the conventional
multiplier VRS model stated in the linear fractional form
(16). In the latter model, the inequalities (18b) are required
only for the finite number of observed DMUs, and not for
all DMUs in the technology.

To see the economic meaning of Theorem 3, let u and v
be interpreted as the output and input prices. Because at
optimality at least one of the constraints (18b) is satisfied as
equality, the negated sign-free term− u0 is interpretable as
the maximum profit across all DMUs in the technology.
Restate the objective function in (18a) as follows:

1� ð�u0Þ � ðY>
o u� X>

o vÞ
X>
o v

: ð19Þ

The second term in (19) is the Nerlovian profit indicator
of DMUo normalized by the input combination X>

o v
(Chambers et al. 1998, Färe and Grosskopf 2004).
According to Theorem 3, the optimal prices u* and v* in any
optimal solution u�; v�;w�ð Þ of program (6) minimize this
profit indicator, i.e., maximize the profit efficiency of
DMUo in comparison to all DMUs in technology T .
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For these optimal prices, the maximum profit across all
DMUs in T is equal to �u�0 ¼ �U>

o w
�.

6.2 The maximin model: the general case

The efficiency ratios of all DMUs in program (18) are
bounded above by 1. It may be argued that this condition
complicates the interpretation of its optimal solutions.
Below we remove this condition by restating program (18)
in the maximin form:

φ�
3 ¼ max

u;v�0;
u0 sign free

ðY>
o uþ u0Þ=X>

o v

supðX;YÞ2T fðY>uþ u0Þ=X>vg

 !

¼ max
u;v�0;

u0 sign free

inf
ðX;YÞ2T

ðY>
o uþ u0Þ=X>

o v

ðY>uþ u0Þ=X>v

� �� �
:

ð20Þ

Note that, in contrast to the linear fractional model (18),
program (20) does not specify any upper bounds on the
efficiency ratios of the DMUs.

Theorem 4 If solution u�; v�;w�ð Þ is optimal in program
(6), then u�; v�; u�0

� �
is optimal in program (20), where u�0 is

found by formula (8). The maximum in program (20) is
attained, and we have θ� ¼ φ�

3.

Theorem 4 allows us to give an interpretation of any
optimal solution of program (6) in terms that are indepen-
dent of the normalizing conditions of the linear and linear
fractional programs (7) and (18). Namely, any optimal
solution u�; v�;w�ð Þ to the multiplier model (6) maximizes
the efficiency ratio of DMUo in comparison to the max-
imum of the efficiency ratios of all DMUs in technology T ,
under the single condition u, v ≥ 0, without the upper bounds
on such ratios specified in the linear fractional model (18)
and without the additional input-normalizing condition
X>
o v ¼ 1 of the linear model (7).

6.3 Interpretations for cone technologies

Consider a special case in which T is a cone technology for
which the parameter condition (4c) is either not specified or is
the homogeneous condition (12). This allows us to restate the
results obtained for the general technology in a simpler form.

Taking into account formula (8) in which Uo is a zero
vector, we restate the general linear fractional program (18)
as follows:

ψ�
2 ¼ max Y>

o u=X
>
o v ð21aÞ

subject to Y>u=X>v � 1; 8ðX; YÞ 2 T ; ð21bÞ

u; v � 0: ð21cÞ

Theorem 5 If solution u�; v�;w�ð Þ is optimal in program
(13), then u�; v�ð Þ is optimal in program (21). The max-
imum in program (21) is attained, and we have θ� ¼ ψ�

2.

The following statement is a useful analog of
Proposition 2.

Proposition 4 For the projected DMU ðθ�Xo; YoÞ 2 T and
for any optimal weights u�; v�ð Þ of program (21), the
inequality (21b) is satisfied as equality, i.e.,

Y>
o u

�� �
= θ�X>

o v
�� �

¼ 1:

Program (14) can also be restated as the maximin pro-
gram which does not specify an upper bound on the effi-
ciency ratios:

ψ�
3 ¼ max

u;v�0

Y>
o u=X

>
o v

supðX;YÞ2T Y>u=X>v
� 	

 !

¼ max
u;v�0

inf
ðX;YÞ2T

Y>
o u=X

>
o v

Y>u=X>v

� �� �
:

ð22Þ

Theorem 6 If solution u�; v�;w�ð Þ is optimal in program
(13), then u�; v�ð Þ is optimal in program (22). The max-
imum in program (22) is attained, and we have θ� ¼ ψ�

3.

Let u�; v�;w�ð Þ be any optimal solution of program (13).
As follows from Theorems 5 and 6, the optimal weights
(u*, v*) in this solution maximize the efficiency ratio
Y>
o u=X

>
o v of DMUo compared to the maximum of such ratios

of all DMUs in technology T .10 This statement is valid if the
efficiency ratios are bounded above by 1 as in the linear
fractional program (21), or if no such bounds are specified as
in the maximin program (22). In this sense, the optimal
weights (u*, v*) are the most favorable for DMUo when it is
benchmarked against all DMUs in the technology.11

The above interpretation is different from the conven-
tional interpretation of the linear fractional CRS model
(Charnes et al. 1978) according to which the efficiency ratio
of DMUo is explicitly maximized only in comparison to the
observed DMUs.

10 In the economics literature, the ratio Y⊤u/X⊤v is often referred to as
the return to the dollar of the firm (X, Y) for the given input and output
prices v and u (Färe and Grosskopf 2004). The weights u�; v�ð Þ taken
from any optimal solution u�; v�;w�ð Þ of program (13) can therefore be
interpreted as the most favorable for representing the return to the
dollar of DMUo in comparison to all DMUs in technology T .
11 Program (21) is also stated in Lemma 1 of Kuosmanen et al. (2004)
for the general case in which T is a (not necessarily polyhedral) cone
technology. However, this result does not imply the exact relationship
between the optimal solutions of this program and the standard mul-
tiplier model (13) in the sense explored by our Theorem 5, together
with Theorems 2 and 6.
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7 The special case of VRS and CRS
technologies

In this section, we formally show that, for the multiplier
VRS and CRS models, both the traditional and new inter-
pretations of their optimal solutions are correct.

7.1 The VRS technology

Let T VRS be the standard VRS technology of Banker et al.
(1984). As shown in Section 5, any optimal solution
ðu�; v�; u�0Þ of the standard multiplier VRS program (15) is
optimal in the corresponding linear fractional program (16)
and is, in turn, optimal in the maximin program (17). This
last program maximizes the efficiency ratio ðY>

o uþ
u0Þ=X>

o v of DMUo when it is benchmarked against the set
of observed DMUs. Therefore, any optimal solution
ðu�; v�; u�0Þ of the standard multiplier VRS model (15) is the
most favorable for DMUo when it is compared to the set of
observed DMUs only.

It is interesting to note that, although the optimal solution
ðu�; v�; u�0Þ is identified by program (15) under the two
normalizing conditions discussed in Section 5 (the effi-
ciency ratio of all DMUs is bounded above by 1 and the
input weights are normalized by the equality X>

o v ¼ 1), this
solution is also optimal in the maximin program (17) which
does not have any such conditions. Therefore, the solution
ðu�; v�; u�0Þ is the most favorable for benchmarking DMUo

against the set of observed DMUs among all triplets (u, v,
u0) under the only condition that u ≥ 0 and v ≥ 0.

Now consider the statement of Theorem 4. For the VRS
technology, the vector Uo in the statement (4) is the scalar
equal to 1, and we have u�0 ¼ w�. According to Theorem 4,
the optimal solution ðu�; v�; u�0Þ of the standard multiplier
VRS model (15) is also optimal in program (20) and is
therefore the most favorable for DMUo when it is bench-
marked against all DMUs in technology T VRS. It is worth
pointing out that, although the optimal solution ðu�; v�; u�0Þ
satisfies the normalizing conditions of program (15) men-
tioned above, it is the best solution among all triplets (u, v,
u0) such that u, v ≥ 0, which is the only condition of the
maximin program (20).

In summary, we have shown that any optimal solution
ðu�; v�; u�0Þ of the standard multiplier VRS program (15) is
simultaneously the most favorable for DMUo when it is
benchmarked against the observed DMUs only and also
against all DMUs in the VRS technology generated by
these DMUs.

Remark 5 Benchmarking DMUo against the set of
observed DMUs (in the sense of maximizing its efficiency
ratio ðY>

o uþ u0Þ=X>
o v) does not depend on the specification

of technology T and requires solving the maximin program

(17) whose statement does not refer to any technology. In
contrast, benchmarking DMUo against the entire technology
T requires solving the maximin program (20) which
depends on T . For T ¼ T VRS, program (20) is equivalent
to (17). Indeed, as shown in Section 5, solving the maximin
program (17) is equivalent to solving the linear multiplier
VRS model (15) (with a caveat that solving the latter model
identifies only the normalized solutions among the multiple
optimal solutions of the maximin model). Taking into
account that u�0 ¼ w�, by Theorem 4, this is in turn
equivalent to solving the maximin program (20) with
T ¼ T VRS.
This observation puts the VRS technology T VRS in a

unique position in that it allows the two interpretations
discussed above. Namely, benchmarking DMUo against the
set of observed DMUs is equivalent to benchmarking
DMUo against the technology T VRS generated by such
observed DMUs.

7.2 The CRS technology

The case of CRS technology is similar. Let T CRS be the
standard CRS technology of Charnes et al. (1978). As
mentioned in Footnote 9, similar to the multiplier VRS
model, the linear multiplier CRS model can also be stated in
the linear fractional and maximin forms. These three forms
are models (15), (16) and (17) from which we remove the
sign-free variable u0.

Suppose that the solution (u*, v*) is optimal in the linear
CRS model (model (15) with u0 removed). Then (u*, v*) is
optimal in the other two forms, including the maximin model
obtained from program (17) by removing variable u0. The
meaning of the last program is clear: the optimal solution (u*,
v*) maximizes the efficiency ratio Y>

o u=X
>
o v of DMUo when

it is benchmarked against the set of observed DMUs. Because
the solution (u*, v*) is optimal in the maximin model, the
weights u and v are the best for DMUo among all nonnegative
weights, and not only among the normalized feasible solu-
tions of the linear multiplier program.

Similarly, by Theorem 6, the solution (u*, v*) is also
optimal in the maximin program (22) where T ¼ T CRS.
This means that it maximizes the efficiency ratio Y>

o u=X
>
o v

of DMUo when this DMU is benchmarked against the entire
technology T CRS.

We have shown that, for any optimal solution (u*, v*) of
the standard multiplier CRS program, both interpretations
are correct. Namely, any such solution is the most favorable
for DMUo (in the sense of maximization of the efficiency
ratio Y>

o u=X
>
o v) when it is benchmarked against the set of

observed DMUs and against the entire CRS technology
generated by these DMUs.

We conclude by making a similar observation to Remark
5. Benchmarking DMUo against the set of observed DMUs
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(in the sense of maximizing its efficiency ratio Y>
o u=X

>
o v)

does not depend on the assumed technology T and requires
solving the appropriately specified maximin program (pro-
gram (17) with u0 removed). In contrast, benchmarking
DMUo in the same sense against the whole technology leads
to the maximin program (22) stated with T ¼ T CRS.
Similar to the case of VRS discussed in Remark 5, it is
straightforward to show that these two maximin programs
are equivalent. This puts the CRS technology in a unique
position in that benchmarking DMUo against the set of
observed DMUs (in the sense of maximizing the efficiency
ratio Y>

o u=X
>
o v) is equivalent to benchmarking DMUo

against the technology T CRS generated by such
observed DMUs.

8 Clarifying example

This example illustrates the difference between the max-
imization of the efficiency ratio ðY>

o uþ u0Þ=X>
o v of the

DMUo with respect to the maximum of such ratios taken
over all DMUs in the entire technology T and, alternatively,
over the set of observed DMUs only.12 It also illustrates a
similar difference in the evaluation of profit efficiency of
DMUo.

8.1 Technology

Consider the non-increasing returns-to-scale (NIRS) tech-
nology T NIRS with a single input and a single output gen-
erated by the three observed DMUs A, B and C shown in
Table 1. (The additional DMU D in this table is not con-
sidered observed but is used in the discussion below.) For
reference, we also consider the standard VRS technology
T VRS generated by the same three observed DMUs.

To keep consistency with the general statement of
polyhedral technology (4), we state technology T NIRS as the
set of all DMUs ðX; YÞ 2 Rmþs

þ for which there exist an

intensity vector ðλA; λB; λCÞ> and the scalar slacks SX, SY
and Sλ such that

2λA þ 3λB þ 4λC þ 0Sλ þ SX ¼ X; ð23aÞ

1λA þ 3λB þ 2λC þ 0Sλ � SY ¼ Y; ð23bÞ

1λA þ 1λB þ 1λC þ 1Sλ ¼ 1; ð23cÞ

λA; λB; λC; SX ; SY ; Sλ � 0: ð23dÞ

It is clear that (23) is a special case of (4). Indeed, vector
λ̂ in (4) corresponds to the extended vector λ̂ ¼
ðλA; λB; λC; SλÞ> in (23). The scalar Uo is equal to 1 and the
three matrices X̂, Ŷ and Û have a single row and 4 columns,
and are defined as follows:

X̂ ¼ ð2; 3; 4; 0Þ; Ŷ ¼ ð1; 3; 2; 0Þ; Û ¼ ð1; 1; 1; 1Þ:

Technology T NIRS is shown in Fig. 1 as the shaded area
below its boundary OBW. The smaller VRS technology
T VRS generated by the same observed DMUs is shown in
darker shading.

8.2 The multiplier models and their solutions

Consider assessing the input radial efficiency of DMU C in
the specified technologies. For technology T NIRS, the input-
oriented multiplier model is stated as follows:

θ� ¼ max 2uþ 1u0
subject to 4v ¼ 1;

1u� 2vþ 1u0 � 0;

3u� 3vþ 1u0 � 0;

2u� 4vþ 1u0 � 0;

v; u � 0; u0 � 0:

ð24Þ

For technology T VRS, we use the statement (24) from
which we remove the condition u0 ≤ 0, i.e., declare u0 a
sign-free variable.

Program (24) is a special case of the general statement
(6) of the multiplier model based on an arbitrary polyhedral
technology T . Note that, in line with the statement of
program (6), we should be using notation w for the dual
variable to the primal equality (23c) and distinguish it from
the variable u0 defined by the transformation (8) as
u0 ¼ U>

o w. However, because in this example the scalar
Uo= 1, we have w= u0. To simplify discussion, we use the
same notation u0 in all models in this example. (Note that
the condition u0 ≤ 0 of program (24) is dual to the primal
variable Sλ in equality (23c).)

The input radial efficiency of DMU C in technology
T NIRS is equal to 0.5, and its input projection is F.

Table 1 The data set

DMU Input Output

A 2 1

B 3 3

C 4 2

D 1 1

12 A similar example is discussed in Podinovski et al. (2016). It
involves a cone technology obtained by an extension of the standard
CRS technology by production trade-offs. This example demonstrates
the difference between the maximum of the efficiency ratio Y>

o u=X
>
o v

evaluated over the entire technology and over the set of observed
DMUs only.
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The multiplier program (24) has the unique optimal solution
ðu�; v�; u�0Þ ¼ ð0:25; 0:25; 0Þ. In line with Proposition 1, it
defines the supporting hyperplane HNIRS to technology
T NIRS at the input projection F. This hyperplane satisfies the
equation 0.25Y− 0.25X= 0 and includes the line OB as a
subset. All DMUs in technology T NIRS are located to one
side of HNIRS, more precisely, for any DMU
ðX; YÞ 2 T NIRS, we have 0.25Y− 0.25X ≤ 0.

Similarly, the input radial efficiency of DMU C in
technology T VRS is equal to 0.625. The multiplier VRS
model for this DMU has the unique optimal solution
ðû; v̂; û0Þ ¼ ð0:125; 0:25; 0:375Þ which defines the support-
ing hyperplane HVRS to technology T VRS at the input
projection G. This hyperplane satisfies the equation 0.125Y
− 0.25X+ 0.375= 0 and includes the line segment AB as a
subset. All DMUs in technology T VRS are located to one
side of the hyperplane HVRS, i.e., for any DMU
ðX; YÞ 2 T VRS, we have 0.125Y− 0.25X+ 0.375 ≤ 0.

8.3 Benchmarking efficiency ratio against the
observed DMUs only

Consider the following question: what are the best input and
output weights v ≥ 0 and u ≥ 0, and the sign-free constant u0
that maximize the efficiency ratio (Y⊤u+ u0)/X

⊤v of DMUo

= C in relation to the maximum of such ratios of all
observed DMUs? Note that this question does not refer to
any technology. We are simply interested in the triplet (u, v,
u0), where u ≥ 0 and v ≥ 0, which is the most favorable for
DMU C in comparison to the observed DMUs. This ques-
tion does not require that we assume any production
technology.

Note that the above question is in line with the original
motivation of the CRS model by Charnes et al. (1978). This
model is first introduced in the linear fractional multiplier

form, without a reference to any particular technology. It is
presented as a model that maximizes the efficiency ratio
Y⊤u/X⊤v of DMUo when it is benchmarked against the finite
set of observed DMUs.

For ease of reference, Table 2 shows the efficiency ratios
(Y⊤u+ u0)/X

⊤v of different DMUs (including the unob-
served DMU D) evaluated at the optimal solutions
ðu�; v�; u�0Þ and ðû; v̂; û0Þ of the NIRS and VRS multiplier
models that assess the input radial efficiency of DMU C.

As noted in Remark 5, the answer to the above question
is obtained by solving the standard input-oriented multiplier
VRS model. In our example, this is model (24) in which the
condition u0 ≤ 0 is removed and the variable u0 is declared
sign free. The solution ðû; v̂; û0Þ optimal in the VRS model
shows DMU C in the best light in comparison the set of
observed DMUs only. As seen from Table 2, for this
solution, the ratio of the efficiency ratio of DMU C to the
maximum of such ratios of all observed DMUs A, B and C
(but not D) is equal to 0:625=maxf1; 1; 0:625g ¼ 0:625.

Note that the solution ðu�; v�; u�0Þ obtained in the NIRS
model is worse in this respect because
0:5=maxf0:5; 1; 0:5g ¼ 0:5< 0:625. Therefore, the optimal
solution of the NIRS model is not the most favorable for
DMU C when it is benchmarked against the set of observed
DMUs. Note that the solution ðu�; v�; u�0Þ is also feasible in
the VRS model, but this is not required and is unrelated to
the stated question.

8.4 Benchmarking efficiency ratio against the NIRS
technology

We now consider a question the answer to which depends
on the assumed technology: what is the most favorable
triplet (u, v, u0), where v ≥ 0, u ≥ 0 and u0 is sign-free, that
maximize the efficiency ratio (Y⊤u+ u0)/X

⊤v of DMUo= C
in relation to the maximum of such ratios of all DMUs in
technology T NIRS?

In contrast to the question answered in Section 8.3, we
now have to compare the efficiency ratio of DMUo with the
efficiency ratios of all DMUs in technology T NIRS. For
example, this includes DMU D which is not observed but
belongs to the technology by the assumption of NIRS.
However, exactly as in Section 8.3, the only condition on

Fig. 1 Technologies T NIRS and T VRS

Table 2 Efficiency ratios for different solutions

DMU Optimal in NIRS model:
u*= 0.25, v*= 0.25,
u�0 ¼ 0

Optimal in VRS model:
û ¼ 0:125, v̂ ¼ 0:25,
û0 ¼ 0:375

A 0.5 1

B 1 1

C 0.5 0.625

D 1 2
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the vectors v and u is that they should be nonnegative. In
particular, the triplet (u, v, u0) is not required to satisfy any
other conditions of the multiplier NIRS program (24),
which is simply a normalized form of the corresponding
maximin program (20)—see a related discussion in
Section 5.

It is clear that any most favorable triplet (u, v, u0) in the
described setting is an optimal solution of the maximin
program (20), stated for DMUo= C, where we take
T ¼ T NIRS. By Theorem 4, and because in our example
u�0 ¼ w�, the optimal solution ðu�; v�; u�0Þ of the standard
multiplier NIRS program (24) is also optimal in the max-
imin program (20). Therefore, ðu�; v�; u�0Þ is the most
favorable triplet for DMU C when it is benchmarked against
the entire technology T NIRS.

Furthermore, by Theorem 4, the optimal value θ*= 0.5
of program (24) is equal to the optimal value φ�

3 of the
corresponding program (20) and represents the maximal
ratio of the efficiency ratio of DMU C to the maximum of
similar efficiency ratios calculated for all DMUs in tech-
nology T NIRS.

Now consider the optimal solution ðû; v̂; û0Þ of the
VRS multiplier model. It is clear that this solution is
feasible in the maximin program (20) stated for DMUo=
C, with T ¼ T NIRS. However, it is not its optimal solu-
tion and is, therefore, not the most favorable for DMU C
when it is compared to the entire technology T NIRS, in the
sense of maximizing its efficiency ratio. Indeed, to see
this, it suffices to find a DMU ðX0; Y 0Þ in technology
T NIRS such that the ratio of the efficiency ratios of DMUs
C and ðX0; Y 0Þ, calculated for ðû; v̂; û0Þ, is strictly less
than 0.5.

As an example of the required DMU ðX0; Y 0Þ, consider
DMU D. As shown in Table 2, for the optimal solution
ðû; v̂; û0Þ of the VRS multiplier model, the efficiency ratio
of DMU C is equal to 0.625, and the same ratio of DMU D
is equal to 2. The ratio of these efficiency ratios is equal to
0.625/2= 0.3125, which is lower than the optimal value 0.5
achieved at the solution ðu�; v�; u�0Þ. Therefore, the optimal
solution ðû; v̂; û0Þ of the VRS multiplier model is not the
most favorable for DMU C when it is compared to all
DMUs in technology T NIRS.

Remark 6 It may be noted that the optimal solution
ðû; v̂; û0Þ of the VRS multiplier model, as shown in Table 2,
does not satisfy the constraints of the multiplier NIRS
model (24), for example, because û0 ¼ 0:375>0. It is also
clear from Fig. 1 that the corresponding supporting hyper-
plane HVRS to the VRS technology is not a supporting
hyperplane to the NIRS technology. However, these
observations are unrelated to the question asked at the
beginning of this section. The only condition imposed by
the question is the nonnegativity of the weights u and v.

Therefore, any triplet (u, v, u0) that satisfies this condition is
an eligible candidate for the maximization of the efficiency
ratio of DMU C by the maximin program (20). The optimal
solution ðû; v̂; û0Þ of the VRS multiplier program is feasible
in the maximin program (20) but, as shown, is not optimal.
In contrast, by Theorem 4, the optimal solution ðu�; v�; u�0Þ
of the multiplier NIRS program (24) is also optimal in
program (20), and provides the answer to the stated
question.

8.5 Benchmarking profit efficiency against the NIRS
technology

Let us reinterpret the same example in terms of profit effi-
ciency. Let v ≥ 0 and u ≥ 0 represent the input and output
prices. The second column of Table 3 shows the profit of
the observed DMUs A, B and C, and the unobserved DMU
D, calculated for the input and output prices v*= u*= 0.25
taken from the optimal solution ðu�; v�; u�0Þ of the multiplier
NIRS model (24). For example, the profit of DMU C is
equal to 2 × 0.25− 4 × 0.25=− 0.5. The last column
shows the profit of these DMUs calculated for the prices
v̂ ¼ 0:25 and û ¼ 0:125 taken from the optimal solution
ðû; v̂; û0Þ of the VRS multiplier model.

Consider the following question: what input and output
prices v and u minimize the difference between the max-
imum profit across all (observed and unobserved) DMUs in
technology T NIRS and the profit of DMU C, under the
normalizing condition that the cost of the input bundle of
DMU C is equal to 1 (i.e., 4v= 1 in our example)? In other
words, what input and output prices are the most favorable
for DMU C in the sense of profit efficiency evaluated in
comparison to the entire technology?

The general answer to this question was obtained in
Section 4.1. In the context of our example, such most
favorable prices v* and u* are taken from the optimal
solution ðu�; v�; u�0Þ of the multiplier NIRS program (24),
i.e., v*= u*= 0.25. As shown in Section 4.1, for these
prices, the maximum profit achievable across all DMUs in
technology T NIRS is equal to �u�0 ¼ 0. (Note that this
maximum is consistent with the profits of all four DMUs
shown in the second column of Table 3, although of course

Table 3 Profits for different solutions

DMU Optimal in NIRS model:
u*= 0.25, v*= 0.25,
u�0 ¼ 0

Optimal in VRS model:
û ¼ 0:125, v̂ ¼ 0:25,
û0 ¼ 0:375

A −0.25 −0.375

B 0 −0.375

C −0.5 −0.75

D 0 −0.125
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these DMUs do not represent the whole technology T NIRS.)
The difference between this maximum profit and the profit
of DMU C is calculated as 0−(−0.5)= 0.5.

It is easy to show that the input and output prices v̂ ¼
0:25 and û ¼ 0:125 taken from the optimal solution
ðû; v̂; û0Þ of the VRS model do not maximize the profit
efficiency of DMU C benchmarked against the entire
technology T NIRS. (Note that such prices satisfy the con-
ditions stated in the question about profit efficiency max-
imization: both prices are positive and the cost of the input
bundle of DMU C is equal to 1.) Indeed, it suffices to
identify a DMU ðX0; Y 0Þ 2 T NIRS such that the difference
between the profits of DMUs ðX0; Y 0Þ and C for the prices v̂
and û is greater than 0.5.

As an example of DMU ðX0; Y 0Þ, consider DMU D. As
follows from the last column of Table 3, the difference
between the profits of DMUs D and C is equal to −0.125−
(−0.75)= 0.625 > 0.5. Therefore, the optimal prices v̂ and û
of the multiplier VRS model do not maximize the profit
efficiency of DMU C when it is benchmarked against the
entire technology.

8.6 Benchmarking profit efficiency against the
observed DMUs

Now suppose that we want to identify the input and output
prices that maximize the profit of DMU C in comparison to
the maximum profit among the three observed DMUs only.
Similar to the question considered in Section 8.3, the
answer to this new question does not depend on the
assumed technology.

The prices that answer the stated question are the ones
given by the optimal solution ðû; v̂; û0Þ of the VRS model.
(To prove this, we need to repeat the discussion of profit
maximization in Section 4.1, with the technology T
replaced by the set of observed DMUs (Xj, Yj), j= 1,…, n,
and program (7) replaced by program (15).) For the optimal
solution ðû; v̂; û0Þ, the difference between the maximum
profit and the profit of DMU C is equal to −0.375−
(−0.75)= 0.375. This represents a smaller shortfall com-
pared to the shortfall of 0.5 in the case of benchmarking
DMUo against the entire NIRS technology considered in
Section 8.5.

Note that, if we used the prices v*= u*= 0.25 identified
by the multiplier NIRS program (24), the profit of DMU C
would be equal to −0.5 and the maximum profit among the
observed DMUs would be equal to 0 (the profit of DMU B),
with the difference equal to 0− (−0.5)= 0.5, which is
greater than the difference 0.375 achieved at the optimal
prices in the VRS model. Therefore, the optimal prices
obtained by solving the multiplier NIRS program (24) do
not maximize the profit efficiency of DMUo when it is
benchmarked against the observed DMUs only.

8.7 Summary and discussion

This numerical example illustrates the theoretical results
obtained in the previous sections. It shows that it would be
incorrect to interpret the optimal solution ðu�; v�; u�0Þ of the
multiplier NIRS model as being the most favorable for
DMU C when it is compared to the observed DMUs only,
both in the context of maximizing its efficiency ratio and in
the context of profit efficiency maximization. Instead, in
line with the theory, this solution is the most favorable for
DMU C when it is benchmarked against the entire tech-
nology T NIRS.

We can also look at our results from a different per-
spective. The difference between the input radial effi-
ciencies of DMU C in the multiplier VRS and NIRS
models, equal to 0.625− 0.5= 0.125, or the ratio of such
efficiencies, may be viewed as a measure of the difference
between benchmarking DMU C against the observed
DMUs only (equivalent to solving the VRS model) and
against the entire NIRS technology. Such measure repre-
sents the value of the assumption of non-increasing returns
to scale, or, alternatively, the value of unobserved DMUs
included in the NIRS technology, in addition to the
observed DMUs.

Remark 7 In some applications of DEA, multiplier models
are used for the benchmarking of DMUs against the set of
observed DMUs only, without assuming any production
technology or considering the meaning of the dual envel-
opment model—see the discussion in Cook et al. (2014).
The standard multiplier CRS and VRS models in this
approach are often modified in order to incorporate addi-
tional information relevant for the benchmarking purposes.
Examples include traditional use of weight restrictions
(Allen et al. 1997) or incorporation of a particular
mechanism for the allocation of shared inputs and outputs
between component production processes, by using addi-
tional variable allocation factors in the multiplier model
(Cook et al. 2000).13 Some of these modified multiplier
models cannot easily be stated in the standard form (6) and
their dual programs do not reveal a clear production tech-
nology in the same way as the envelopment model (5).
The benchmarking approaches based entirely on the

multiplier DEA models have important limitations. Because
no technology is assumed, the traditional interpretation of
efficiency as the ultimate feasible (possible) improvement
factor for the DMUo under the assessment becomes
unsubstantiated. Because the production frontier is

13 The alternative approaches of Podinovski (2004b) and Podinovski
et al. (2018) allow the specification and interpretation of weight
restrictions and multi-component processes in terms of the underlying
production technology T and both envelopment and multiplier models
based on it.
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undefined, the various scale characteristics such as scale
efficiency, most productive scale size and returns to scale
are not defined rigorously and can be interpreted only
heuristically. Finally, the notions of productivity and
productivity change remain undefined.
In contrast with such benchmarking approaches that are

based entirely on the multiplier model, in this paper, we
start by assuming a production technology T stated by
conditions (4). This means that all DMUs in technology T
are considered producible and, together with the observed
DMUs, are intended to be used for the benchmarking of the
DMUo. If we still want to evaluate the efficiency of DMUo

against the set of observed DMUs only, we can do so by
solving the standard CRS or VRS model, but not the
multiplier model (6) based on technology T , which, as
shown, would benchmark DMUo against all, observed and
unobserved, DMUs in T . However, apart from some cases
of special interest (for example, in order to compare the
efficiency scores in technologies T VRS and T ), assuming a
particular technology T (different from the standard VRS or
CRS technologies) and, at the same time, benchmarking
DMUo against the set of observed DMUs would appear to
be two inconsistent tasks.

9 Conclusion

A clear and rigorous interpretation of optimal input and
output weights is important for explaining the meaning of
multiplier DEA models and the efficiency of DMUs
obtained from them. According to the standard interpreta-
tion given by Charnes et al. (1978), any optimal weights of
the multiplier CRS model are the most favorable for the
DMUo under the assessment if it is benchmarked against the
set of all observed DMUs. Such weights maximize the ratio
of the total weighted output to the total weighted input of
DMUo in relation to the maximum of similar ratios taken
across all observed DMUs. This ratio may be bounded
above by the value of 1, as in the linear fractional model, or
not bounded, as in the maximin DEA model. The VRS
model allows a similar interpretation and also includes an
additional sign-free variable interpretable in terms of the
type of RTS exhibited by the radial projection of DMUo.

The CRS and VRS technologies are examples of a very
large class of polyhedral technologies. The multiplier
models based on such technologies often have a complex
structure which makes the interpretation of their optimal
solutions problematic. As highlighted in our paper, the
conventional interpretation of optimal solutions as being the
most favorable for DMUo, which is often used heuristically
by analogy to the CRS and VRS models as the default
interpretation, is generally incorrect in the class of poly-
hedral technologies.

In this paper we obtain new results that give us a uni-
fying interpretation of the multiplier models and their
optimal solutions. We show that the optimal solutions of the
multiplier model based on any polyhedral technology are
the most favorable for DMUo when it is benchmarked
against all DMUs in the entire technology, but not neces-
sarily in comparison to the set of observed DMUs as the
conventional interpretation would imply. We explore the
precise meaning of this interpretation by transforming the
multiplier DEA model to its alternative linear, linear frac-
tional and maximin forms which have a transparent
structure.

To summarize these results, consider the input-oriented
multiplier model (6) based on any polyhedral technology T
stated in the form (4). Let (u*, v*,w*) be any of its optimal
solutions. Further define u�0 ¼ U>

o w
�, where Uo is the vector

on the right-hand side of the parameter conditions (4c). As
proved in this paper, the following two interpretations are
always valid.

Interpretation 1 The triplet ðu�; v�; u�0Þ ¼ ðu�; v�;U>
o w

�Þ
maximizes the efficiency ratio ðY>

o uþ u0Þ=X>
o v of DMUo

relative to (divided by) the maximum of efficiency ratios of
all DMUs in the entire technology T . This maximization is
performed over the set of all triplets (u, v, u0) under the
single condition u, v ≥ 0 and treating u0 as a sign-free
variable.
This interpretation remains true if the set of feasible

triplets (u, v, u0) is additionally limited by the requirement
that the efficiency ratios of all DMUs in technology T are
bounded above by 1, as in the linear fractional model (18).
A special case arises if the parameter conditions (4c) in

the statement of technology T are not specified (as, for
example, in the standard CRS technology) or if the vector
Uo in these parameter conditions is a zero vector. In this
case, T is a cone technology and the scalar u0 is either
omitted or is equal to zero. In both cases, the optimal
weights u* and v* maximize the efficiency ratio Y>

o u=X
>
o v of

DMUo relative to the maximum of efficiency ratios of all
DMUs in the entire technology T . This interpretation is true
if the maximization is performed over all vectors u and v,
subject to the single condition u, v ≥ 0, or under the
additional requirement that the efficiency ratios of all
DMUs in technology T are bounded above by 1, as in the
linear fractional model (21).

Interpretation 2 Let v and u be viewed as the vectors of
input and output prices. Then the components of any opti-
mal solution (u*, v*,w*) of the multiplier model (6) allow
the following interpretation. The vectors of prices v* and u*

minimize the difference between the maximum profit
achieved in technology T and the profit made by DMUo,
subject to the condition that the cost of the input bundle Xo

is normalized by 1 (i.e., X>
o v ¼ 1). In other words, the
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optimal prices v* and u* maximize the profit efficiency of
DMUo when it is benchmarked against all DMUs in tech-
nology T . Furthermore, for the vectors of prices v* and u*,
the maximum profit among all DMUs in technology T is
equal to �u�0 ¼ �U>

o w
�.

As noted in Interpretation 1, in the special case of cone
technologies in which vector Uo is either omitted or is a zero
vector, the scalar u0 is also either omitted or is equal to zero.
In this case the maximum profit in the entire technology T
is always equal to zero (which is consistent with the
assumption of CRS), and the optimal vectors of prices v*

and u* simply maximize the (nonpositive) profit made by
DMUo, among all nonnegative v and u.

For the multiplier CRS and VRS models of Charnes et al.
(1978) and Banker et al. (1984), both the conventional inter-
pretation of their optimal solutions and the new Interpretations
1 and 2 are correct. In the case of CRS and VRS technologies,
benchmarking DMUo against the set of observed DMUs and
against the entire technology is the same task.

In contrast, for an arbitrary polyhedral technology, only
the new Interpretations 1 and 2 are generally correct. This is
because, as demonstrated by an example in Section 8, the
optimal weights that are the most favorable for DMUo when
it is compared to the observed DMUs are not necessarily the
most favorable when it is benchmarked against the entire
technology, and vice versa.

Interestingly, the interpretations obtained in this paper
also remove the apparent disparity between the conven-
tional interpretations of the envelopment and multiplier
models. Namely, the envelopment DEA model benchmarks
DMUo against the entire technology. (For example, in the
input-oriented envelopment model (5), the input improve-
ment factor θ is minimized as long as the improved DMU
(θXo, Yo) remains in technology T .) However, the multiplier
DEA model (e.g., the CRS model as originally motivated by
Charnes et al. (1978)) is traditionally explained as bench-
marking DMUo against the observed DMUs only. Our
results show that the multiplier model always benchmarks
DMUo against the entire technology, exactly as the envel-
opment model. (In the case of VRS and CRS technologies,
it also benchmarks against the set of observed DMUs, but
for an arbitrary technology, this is generally not so.)

Another result obtained in our paper concerns the
mathematical statement of the supporting hyperplanes to the
technology at the radial projection of DMUo under the
assessment. Because any polyhedral technology is a convex
set, there always exists a supporting hyperplane at the
projection point of any DMU. In the case of conventional
CRS and VRS technologies, such hyperplanes are easily
identified by the optimal solutions to the multiplier CRS and
VRS models (Banker et al. 1984). However, in the general
case of polyhedral technology, because of the often

complex structure of constraints and solutions of the mul-
tiplier model, the mathematical statement of the supporting
hyperplanes is not obvious. In our paper we overcome this
problem and obtain an explicit equation of the supporting
hyperplane corresponding to any optimal solution of the
multiplier model. This new result is useful for the returns-
to-scale characterization of efficient frontiers of arbitrary
polyhedral technologies and clarifies the meaning of the
previously published results in this field (Podinovski et al.
2016).

The approach developed in this paper should also be
applicable to models employing nonradial efficiency mea-
sures, for example, the nonparametric directional distance
function models (Chambers et al. 1998) and slack-based
measures (Tone 2001). Another potential research avenue
involves models of cost and revenue efficiency (Färe et al.
1994). Detailed exploration of the multiplier forms of these
models within the suggested framework and the inter-
pretation of optimal solutions arising from this approach is
left outside the scope of our paper for future research.
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10 Appendix A: Proofs

The proofs given below extend the idea of the proofs given
by Podinovski et al. (2016) for a special case of technology
T to the case of an arbitrary polyhedral technology.

Lemma 1 The maximum in program (7) is attained and
θ� ¼ φ�

1.
Proof of Lemma 1. Because T is a polyhedral set, it is

generated by a finite number of points ðAk;BkÞ 2 Rmþs,
k ¼ 1; ¼ ; ~k, and directions ðAk;BkÞ 2 Rmþs, k ¼
~k þ 1; ¼ ; k0 (Rockafellar 1970, Theorem 19.1). More
precisely, T consists of all DMUs (X, Y) for which there
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exists a vector μ 2 Rk0

þ such that:

X ¼
Xk0
k¼1

μkAk; Y ¼
Xk0
k¼1

μkBk;
X~k
k¼1

μk ¼ 1: ð25Þ

Using (25), we restate program (5) as follows:

θ� ¼ min θ ð26aÞ

subject to θXo �
Xk0
k¼1

μkAk ¼ 0; ð26bÞ

Xk0
k¼1

μkBk ¼ Yo; ð26cÞ

X~k
k¼1

μk ¼ 1; ð26dÞ

μ � 0; θ sign free: ð26eÞ

Because technology T is freely disposable, we can
replace the equality signs in (26b) and (26c) by the “≥”
inequalities. Consider the dual to (26):

θ� ¼ max Y>
o uþ u0 ð27aÞ

subject to X>
o v ¼ 1; ð27bÞ

B>
k u� A>

k vþ u0 � 0; k ¼ 1; ¼ ; ~k; ð27cÞ

B>
k u� A>

k v � 0; k ¼ ~k þ 1; ¼ ; k0; ð27dÞ

u; v � 0; u0 sign free: ð27eÞ

Any DMU ðX; YÞ 2 T satisfies equalities (25) with some
vector μ ≥ 0. Multiply constraints k ¼ 1; ¼ ; k0 in (27c) and
(27d) by μk ≥ 0 and add together. We have

Y>u� X>vþ u0 � 0; 8ðX; YÞ 2 T : ð28Þ

We have proved that constraints (27c) and (27d) imply
(28). We can therefore incorporate constraint (28) in pro-
gram (27) without affecting its feasible region. Furthermore,
because ðAk;BkÞ 2 T , for all k ¼ 1; ¼ ; ~k, in the resulting
program constraints (27c) now follow from (28) and can be
removed as redundant.

Let us prove that constraints (27d) also follow from (28).
Consider any k ¼ ~k þ 1; ¼ ; k0. By (25), we have
ðX; YÞ ¼ ðA1 þ μkAk;B1 þ μkBkÞ 2 T , ∀ μk > 0. Then (28)
implies

B1 þ μkBkð Þ>u� A1 þ μkAkð Þ>vþ u0 � 0; 8μk > 0: ð29Þ

Suppose that the triplet (u, v, u0) satisfies inequalities (28)
and, as proved, (29). Divide both sides of inequality (29) by
μk > 0. Taking μk→+∞, at the limit we obtain inequality k
in constraint (27d). We have proved that constraint (28)
implies constraints (27d). Removing the latter as redundant,
we obtain program (14).

Proof of Theorem 1. Let u; v;wð Þ be feasible in (6). Let
us prove that u; v; u0ð Þ is feasible in (7), where u0 is as
defined by (8). It suffices to prove that condition (7c) is
satisfied. Any DMU ðX; YÞ 2 T can be stated in the form
(4) with some λ̂; SX ; SY � 0. Multiply each inequality j= 1,
…, q in (6c) by the corresponding λ̂j and add together.
Noting that SX, SY ≥ 0 and taking into account (4c), we have

Y>u� X>vþ U>
o w � 0:

By definition of u0, the latter inequality is the same as
(7c). Therefore, u; v; u0ð Þ is feasible in (7). Finally, let
u�; v�;w�ð Þ be an optimal solution of (6). Then, as proved,
u�; v�; u�0
� �

is feasible in (7). From (6a), we have
Y>
o u

� þ u�0 ¼ θ�. By Lemma 1, θ� ¼ φ�
1. Therefore,

u�; v�; u�0
� �

is optimal in program (7).
Proof of Proposition 1. Because u�; v�; u�0

� �
is optimal

in (7), we have Y>
o u

� þ u�0 ¼ θ�. Multiplying (7b) by θ*, we
have θ�X>

o v
� ¼ θ�. Then Y>

o u
� � θ�X>

o v
� þ u�0 ¼ 0. There-

fore, the projection (θ*Xo, Yo) satisfies (10). By (7c), we also
have Y>u� � X>v� þ u�0 � 0, for all ðX; YÞ 2 T .

Proof of Theorem 2 and Proposition 2. These results
are obtained as special cases of Theorem 1 and Proposition
1, respectively, by noting that the vector Uo in (8) is a zero
vector.

Lemma 2 The feasible region of program (7) remains the
same if constraints (7c) are changed to

Y>u� X>vþ u0 � 0; 8ðX; YÞ 2 T : X>v>0; ð30Þ

i.e., if constraints (7c) are required only for the DMUs
ðX; YÞ 2 T such that X⊤v > 0.

Proof of Lemma 2. It suffices to prove that, if solution
u; v; u0ð Þ satisfies constraints (7b), (7d) and (30), then it also
satisfies (7c). Let ð~X; ~YÞ 2 T . If ~X

>
v > 0 then (7c) follows

from (30). If ~X
>
v ¼ 0, define DMUs (Xk, Yk), k= 1, 2,… ,

as follows:

ðXk; YkÞ ¼ ð1� 1=kÞð~X; ~YÞ þ ð1=kÞðXo; YoÞ: ð31Þ

Technology T is a polyhedral set. Therefore, T is a convex
set and ðXk; YkÞ 2 T , ∀ k. Taking into account (7b) and
(31), we have ðXkÞ>v>0, ∀ k. By (30),
ðYkÞ>u� ðXkÞ>vþ u0 � 0, ∀ k. Taking k→+∞, at the
limit we have ~Y

>
u� ~X

>
vþ u0 � 0, which proves (7c).
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Proof of Theorem 3. Define the feasible region of pro-
gram (18) as the set of all triplets (u, v, u0) such that 1)
X>
o v > 0, 2) constraints (18b) are true for all DMUs ðX; YÞ 2

T such that X⊤v > 0, and 3) conditions (18c) are true. By
Theorem 1, u�; v�; u�0

� �
is optimal in (7) and θ� ¼ φ�

1.
Furthermore, u�; v�; u�0

� �
is feasible in (18). In particular, for

all DMUs ðX; YÞ 2 T such that X⊤v* > 0, the inequalities
(7c) imply (18b).

Assume that u�; v�; u�0
� �

is not an optimal solution of
program (18). Then there exists a feasible solution
u0; v0; u00
� �

to (18) for which ðY>
o u

0 þ u00Þ=X>
o v

0 ¼ θ0 and
θ0>φ�

1. For any α > 0, solution αu0; αv0; αu00
� �

is also feasible
in (18). At this solution, the objective function (18a) is
equal to ðY>

o αu
0 þ αu00Þ=ðX>

o αv
0Þ ¼ θ0. Define α0 so that

X>
o α

0v0 ¼ 1, i.e., let α0 ¼ 1=ðX>
o v

0Þ. Note that
α0u0; α0v0; αu00
� �

is feasible in (18). To see this, note that
constraints (18b) are satisfied for all ðX; YÞ 2 T such that
X⊤v > 0, and conditions (30) are proved. By Lemma 2, this
implies (18c). The objective function (18a) at
α0u0; α0v0; αu00
� �

is equal to θ0 >φ�
1 which is impossible

because φ�
1 is the optimal value of (18).

Proof of Proposition 3. Define u0; v0; u00
� �

¼
αu�; αv�; αu�0
� �

, where α ¼ 1=ðX>
o v

�Þ> 0. Then u0; v0; u00
� �

is optimal in (18). Note that u0; v0; u00
� �

is also feasible in
(7). Indeed, for any ðX; YÞ 2 T such that X>v0 > 0, the
inequality (7c) follows from (18b). For any ðX; YÞ 2 T such
that X>v0 ¼ 0, the inequality (7c) follows from Lemma 2.
Because φ�

2 ¼ ðY>
o u

0 þ u00Þ=ðX>
o v

0Þ ¼ Y>
o u

0 þ u00 and
φ�
2 ¼ φ�

1, u0; v0; u00
� �

is optimal in (7). By Proposition 1, we
have Y>

o u
0 þ u00 ¼ θ�X>

o v
0. Dividing this equality by α, we

have Y>
o u

� þ u�0 ¼ θ�X>
o v

�.
Proof of Theorem 4. We first use the approach of

Podinovski et al. (2016) and restate program (20) in a more
precise form that explicitly disallows division by zero:

φ�
3 ¼ max

u;v;u0ð Þ2Ω

ðY>
o uþ u0Þ=X>

o v

supðX;YÞ2T v
fðY>uþ u0Þ=X>vg

 !
; ð32Þ

where the set Ω is defined as follows:

Ω ¼ u; v; u0ð Þju; v � 0;X>
o v>0; Y

>
o uþ u0 > 0

� 	
;

and the definition of the set T v depends on the vector v of
the solution (u, v, u0)∈ Ω:

T v ¼ ðX; YÞ 2 T jX>v > 0
� 	

:

Note that u�; v�; u�0
� �

2 Ω and Ω ≠+. Indeed, (6b)
implies X>

o v
� ¼ 1> 0, and (6a) implies

Y>
o u

� þ u�0 ¼ θ� > 0. Also, for any u; v; u0ð Þ 2 Ω, DMU
ðXo; YoÞ 2 T v. Therefore, for all u; v; u0ð Þ 2 Ω, the set T v is
not empty and the supremum in the denominator of (32) is
strictly positive. If, for some triplet u; v; u0ð Þ 2 Ω, this

supremum is unbounded (equal to+∞), the objective
function of program (32), i.e., the expression in the big
parentheses on the right-hand side of (32), is formally
assumed to be equal to zero. This possibility was illustrated
in Example 3 in Podinovski et al. (2016).

By Proposition 3, the objective function of program (32)
evaluated at u�; v�; u�0

� �
is equal to θ*. Therefore, φ�

3 � θ�.
Suppose that u�; v�; u�0

� �
is not an optimal solution of

program (32). Then there exists a triplet u0; v0; u00
� �

2 Ω

such that

φðu0; v0; u00Þ ¼
ðY>

o u
0 þ u00Þ=X>

o v
0

supðX;YÞ2T v0
fðY>u0 þ u00Þ=X>v0g

¼ θ0 > θ�:

ð33Þ

Clearly, for any α > 0, we have u0; αv0; u00
� �

2 Ω and
φðu0; αv0; u00Þ ¼ φðu0; v0; u00Þ ¼ θ0. Let

α0 ¼ supðX;YÞ2T v0
ðY>u0 þ u00Þ=X>v0
� 	

:

From (33), we have 0< α0 < þ1. Consider the triplet
~u;~v; ~u0ð Þ ¼ u0; α0v0; u00

� �
.

Note that supðX;YÞ2T ~v
fðY>~uþ ~u0Þ=X>~vg ¼ 1 and

φð~u;~v; ~u0Þ ¼ ðY>
o ~uþ ~u0Þ=X>

o ~v ¼ θ0. Therefore, ~u;~v; ~u0ð Þ is
a feasible solution of program (18), and the objective
function (18a) at this solution is equal to θ0. By (33), θ0 > θ�.
This is, however, impossible because, by Theorem 3, θ* is
the optimal value of program (18).

Proof of Theorems 5, 6 and Proposition 4. All three
results are special cases of Theorems 3 and 4, and Propo-
sition 3, respectively.

11 Appendix B: Examples of interpretation
for polyhedral technologies

Below we consider multiplier models based on three dif-
ferent polyhedral technologies. We show how the suggested
unifying interpretation of optimal solutions applies to these
models.

11.1 The hybrid returns-to-scale (HRS) technology

Consider the HRS technology T HRS introduced in Section
2. As shown, a direct interpretation of the multiplier HRS
model (2) and its optimal solutions is problematic. We
simply do not know what the constraints and optimal
solutions of this model mean, except that it is the dual to the
input-oriented envelopment model based on the HRS
technology (1).

Let us show that the results obtained in this paper make
the interpretation of the multiplier HRS model straightfor-
ward. As shown in Section 3.1, T HRS is a polyhedral
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technology and its statement (1) is a special case of (4).
Therefore, all results and interpretations obtained in this
paper are applicable to this technology.

Let (u*, v*, σ*, ρ*) be any optimal solution of program (2).
Using formula (8) with w*= (σ*, ρ*) and noting the struc-
ture of the vector Uo (see Section 3.1), we have
u�0 ¼ U>

o w
� ¼ ρ�. We now have the following two alter-

native ways to interpret the optimal solution.
(i) By Theorems 3 and 4, the triplet ðu�; v�; u�0Þ maximizes

the efficiency ratio ðY>
o uþ u0Þ=X>

o v of DMUo with respect to
the maximum of similar efficiency ratios of all DMUs in
technology T HRS. This statement is true if the maximum of all
such ratios is bounded above by 1, as in the linear fractional
model, or is unbounded, as in the maximin model.

(ii) By Theorem 1 and in line with the discussion in
Sections 4.1 and 6.1, the vectors v* and u* are interpretable
as the vectors of input and output prices that maximize the
profit efficiency of DMUo compared the entire HRS tech-
nology, subject to the cost-normalizing condition X>

o v ¼ 1.
As shown in Section 4.1, for these most favorable prices,
the maximum profit in the HRS technology is equal to �u�0.
For the optimal value θ* of the multiplier HRS model (2),
the difference 1� θ� ¼ �u�0 � ðY>

o u
� � X>

o v
�Þ is equal to

the shortfall of the profit made by DMUo in comparison to
the maximum profit �u�0. If θ

*= 1, there is no shortfall and
DMUo is profit efficient.

Both of the above interpretations clarify and substantiate
the meaning of the optimal solution (u*, v*, σ*, ρ*) as being
the most favorable for DMUo when it is benchmarked
against all DMUs in technology T HRS. It is worth empha-
sizing that this interpretation involves all DMUs in the
technology and becomes incorrect if we narrow it by
benchmarking DMUo against the observed DMUs only.

Furthermore, by Proposition 1, the equation

Y>u� � X>v� þ ρ� ¼ 0

defines a supporting hyperplane to technology T HRS at the
input radial projection (θ*Xo, Yo). As follows from Remark
4, if DMUo is both input and output radial efficient (for
which its strong efficiency is sufficient), the range of
optimal values of u�0 ¼ U>

o w
� ¼ ρ� defines the left-hand

and right-hand scale elasticities ε−(Xo, Yo) and ε+(Xo, Yo)
evaluated at DMUo and its RTS characterization.

11.2 A two-stage network technology

Consider the following simple two-stage network DEA
model (Färe and Grosskopf 2000). In the first stage of the
production process, the vector of inputs X 2 Rm

þ is used to
produce the vector of intermediate outputs Z 2 Rl

þ. In the
second stage, the same vector Z is used as an input vector to
produce the vector of final outputs Y 2 Rs

þ.

Denote observed DMUs (Xj, Zj, Yj), where j= 1,…, n.
Let X, Z and Y be the m × n, l × n and s × n matrices whose
columns are the vectors Xj, Zj and Yj, j= 1,…, n,
respectively.

Consider the VRS network technology T N stated in the
input and final output dimensions X and Y only. It is defined
as the set of all DMUs ðX; YÞ 2 Rmþs

þ for each of which
there exist vectors λ; μ 2 Rn, the vector of intermediate
outputs Z 2 Rl and slack vectors SX 2 Rm, SY 2 Rs and
S1Z ; S

2
Z 2 Rl such that

Xλþ SX ¼ X; ð34aÞ

Yμ� SY ¼ Y ; ð34bÞ

Zλ� Z � S1Z ¼ 0; ð34cÞ

Zμ� Z þ S2Z ¼ 0; ð34dÞ

1>λ ¼ 1; ð34eÞ

1>μ ¼ 1; ð34fÞ

λ; μ; Z; SX ; SY ; S
1
Z ; S

2
Z � 0: ð34gÞ

The above statement is a special case of the general
statement of polyhedral technology (4) in which vector λ̂
corresponds to the combined vector λ; μ; Z; S1Z ; S

2
Z

� �
in (34).

The equalities (34c)–(34f) are the parameter conditions (4c)
in which Uo= (0, 0, 1, 1)⊤, where the first two zero com-
ponents are vectors of dimension l, and the last two com-
ponents are scalars equal to 1.

Consider assessing the input radial efficiency of DMUo

in technology T N by the envelopment program (5). Let
vectors v 2 Rm, u 2 Rs, ρ 2 Rl, σ 2 Rl and scalars τ and
ν be dual to the constraints of this envelopment program.
Note that the dual constraint to the primal vector S2Z is the
vector inequality σ ≤ 0. Substituting σ0 ¼ �σ � 0 and sup-
pressing the "prime” symbol, we state the dual input-
oriented multiplier program as follows:

θ� ¼ max Y>
o uþ τ þ ν

subject to X>
o v ¼ 1;

Z
>
ρ� X

>
vþ 1τ � 0;

Y
>
u� Z

>
σ þ 1ν � 0;

�ρþ σ � 0;

u; v; σ; ρ � 0; τ; ν sign free:

ð35Þ

Because of the complex structure of program (35), the
direct interpretation of its optimal solutions appears pro-
blematic. This task is, however, easily resolved by the
general results obtained in this paper. Let (u*, v*, σ*, ρ*, τ*, ν*)
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be any optimal solution to program (35). By formula (8), we
have u�0 ¼ τ� þ ν�.

We can now repeat the two interpretations given for the
HRS model in Section 11.1. Namely, (i) the triplet
ðu�; v�; u�0Þ maximizes the efficiency ratio ðY>

o uþ u0Þ=X>
o v

of DMUo against all DMUs in technology T N; (ii) inter-
preting v and u as the vectors of input and output prices, the
optimal prices v* and u* maximize the profit efficiency of
this DMU compared to the entire technology T N. The
maximum profit across all DMUs in technology T N

achieved for the prices v* and u* is equal to
�u�0 ¼ �τ� � ν�.

In summary, as in any other polyhedral technology, the
optimal solutions to the multiplier model (35) are the most
favorable for the DMU under the assessment when it is
benchmarked against the entire technology T N.

Furthermore, by Proposition 1, the equation

Y>u� � X>v� þ τ� þ ν� ¼ 0

defines a supporting hyperplane to technology T N at the
input radial projection (θ*Xo, Yo). As noted in Remark 4, if
DMUo is both input and output radial efficient, the range of
the optimal values of the intercept u�0 ¼ τ� þ ν� defines the
type of RTS exhibited by this DMU.

11.3 Technologies with bounded measures

The bounded CRS technology T B was introduced by
Cooper et al. (2011) and further extended by Pastor et al.
(2015). Let X 2 Rm

þ and Y 2 Rs
þ be the input and output

vectors, respectively. Let (Xj, Yj), j= 1,…, n, be the
observed DMUs. Define X and Y the matrices of dimen-
sions m × n and s × n whose columns are the vectors Xj and
Yj, j= 1,…, n, respectively.

Technology T B assumes a bounded variant of CRS. It
models the situation in which each input has a lower bound
and each output has an upper bound. The vectors of lower
input bounds and upper output bounds are denoted x 2 Rm

þ
and y 2 Rs

þ, respectively.
Technology T B is stated as the set of all DMUs ðX; YÞ 2

Rmþs
þ for which there exist a vector λ 2 Rn and slack

vectors SX ; S0X 2 Rm and SY ; S
0
Y 2 Rs such that

Xλþ SX ¼ X; ð36aÞ

Yλ� SY ¼ Y ; ð36bÞ

Xλ� S0X ¼ x; ð36cÞ

Yλþ S0Y ¼ y; ð36dÞ

λ; SX ; SY ; S
0
X ; S

0
Y � 0: ð36eÞ

It is clear that technology T B is a special case of the general
polyhedral technology (4). Indeed, vector λ̂ in (4) is the
combined vector λ; S0X ; S

0
Y

� �
in (36). Conditions (36a) and

(36b) correspond to conditions (4a) and (4b). The non-
homogeneous conditions (36c) and (36d) are parameter con-
ditions (4c) in which vector Uo is the combined vector ðx; yÞ.

Consider assessing the input radial efficiency of DMU
ðXo; YoÞ 2 T B by the multiplier program. Let vectors v, u, ~v
and ~u be the dual vectors to the equalities (36a)–(36d),
restated in the form used in the envelopment program (5),
respectively. (Note that the dual constraint to the vector S0Y
is ~u � 0.) We have the following multiplier program:

θ� ¼ max Y>
o uþ x>~vþ y>~u

subject to X>
o v ¼ 1;

Y
>
u� X

>
vþ Y

>
~uþ X

>
~v � 0;

u; v;~v � 0; ~u � 0:

ð37Þ

Because of the complex structure of program (37), its
meaning is not immediately clear and the interpretation of
its optimal solutions appears problematic.

Let u�; v�; ~u�;~v�ð Þ be any optimal solution to program
(37). Using formula (8), define u�0 ¼ x>~v� þ y>~u�. Based on
the results obtained in this paper and similar to the inter-
pretation of the HRS model given in Section 11.1, we
interpret the optimal solution of program (37) as being the
most favorable for DMUo when it is benchmarked against
the entire technology. More precisely, the optimal vectors of
weights u* and v*, together with u�0 defined above, maximize
the efficiency ratio ðY>

o uþ u0Þ=X>
o v of DMUo against

similar ratios of all DMUs in technology T B. Alternatively,
interpreting u and v (but not ~u and ~v) as the vectors of
prices, we conclude that the optimal vectors u* and v*

maximize the profit efficiency of DMUo when it is bench-
marked against the entire technology T B. The maximum
profit for these optimal prices attained over the entire
technology is equal to �u�0 ¼ �x>~v� � y>~u�.

Finally, by Proposition 1, we obtain the supporting
hyperplane to technology T B at the input radial projection
(θ*Xo, Yo):

Y>u� � X>v� þ x>~v� þ y>~u� ¼ 0:

As noted in Remark 4, if DMUo is both input and output
radial efficient, its RTS characterization is obtained by
considering the full range of possible values of the optimal
intercept u�0 ¼ x>~v� þ y>~u�.

References

Afriat SN (1972) Efficiency estimation of production functions.
Internat Econom Rev 13(3):568–598

Journal of Productivity Analysis (2021) 56:45–68 67



Allen R, Athanassopoulos A, Dyson RG, Thanassoulis E (1997)
Weights restrictions and value judgements in data envelopment
analysis: evolution, development and future directions. Ann Oper
Res 73:13–34

Banker RD, Charnes A, Cooper WW (1984) Some models for esti-
mating technical and scale inefficiencies in data envelopment
analysis. Manage Sci 30(9):1078–1092

Banker RD, Thrall RM (1992) Estimation of returns to scale using data
envelopment analysis. Eur J Oper Res 62(1):74–84

Briec W, Leleu H (2003) Dual representations of non-parametric
technologies and measurement of technical efficiency. J Prod
Anal 10(1):71–96

Chambers RG, Chung Y, Färe R (1998) Profit, directional distance
functions, and Nerlovian efficiency. J Optim Theory Appl 98
(2):351–364

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of
decision making units. Eur J Oper Res 2(6):429–444

Cherchye L, De Rock B, Dierynck B, Roodhooft F, Sabbe J (2013)
Opening the "black box” of efficiency measurement: Input allo-
cation in multioutput settings. Oper Res 61(5):1148–1165

Cook WD, Hababou M, Tuenter HJH (2000) Multicomponent effi-
ciency measurement and shared inputs in data envelopment
analysis: an application to sales and service performance in bank
branches. J Prod Anal 14(3):209–224

Cook WD, Tone K, Zhu J (2014) Data envelopment analysis: prior to
choosing a model. Omega 44:1–4

Cooper WW, Pastor JT, Borras F, Aparicio J, Pastor D (2011) BAM: a
bounded adjusted measure of efficiency for use with bounded
additive models. J Prod Anal 35(2):85–94

Cooper WW, Thompson RG, Thrall RM (1996) Introduction: exten-
sions and new developments in DEA. Ann Oper Res 66(1):3–45

Färe R, Grosskopf S (2000) Network DEA. Soc Econ Plan Sci 34
(1):35–49

Färe R, Grosskopf S (2004) New directions: efficiency and pro-
ductivity. Kluwer Academic Publishers, Boston

Färe R, Grosskopf S, Logan J (1983) The relative efficiency of Illinois
electric utilities. Resour Energy 5(4):349–367

Färe R, Grosskopf S, Lovell CAK (1985) The measurement of effi-
ciency of production. Kluwer Academic Publishers, Boston

Färe R, Grosskopf S, Lovell CAK (1994). Production frontiers.
Cambridge University Press: Cambridge

Färe R, Primont D (1995) Multi-output production and duality: theory
and applications. Kluwer Academic Publishers, Boston

Førsund FR (2018) Economic interpretations of DEA. Soc Econ Plan
Sci 61(10):9–15

Førsund FR, Hjalmarsson L (2004) Calculating scale elasticity in DEA
models. J Oper Res Soc 55(10):1023–1038

Kuosmanen T, Post T, Sipïlainen T (2004) Shadow price approach to
total factor productivity measurement: with an application to
Finnish grass-silage production. J Prod Anal 22(1-2):95–121

Mehdiloo M, Podinovski VV (2019) Selective strong and weak dis-
posability in efficiency analysis. Eur J Oper Res 276
(3):1154–1169

Olesen OB, Petersen NC (1996) Indicators of ill-conditioned data sets
and model misspecification in data envelopment analysis: an
extended facet approach. Manage Sci 42(2):205–219

Olesen OB, Petersen NC (2015) Facet analysis in data envelopment
analysis. In: Zhu J (ed) Data envelopment analysis: a handbook of
models and methods. Springer Science + Business Media, New
York, p. 145–190

Pastor JT, Aparicio J, Alcaraz J, Vidal F, Pastor D (2015) An enhanced
BAM for unbounded or partially bounded CRS additive models.
Omega 56:16–24

Podinovski VV (2001) DEA models for the explicit maximisation of
relative efficiency. Eur J Oper Res 131(3):572–586

Podinovski VV (2004a) Bridging the gap between the constant and
variable returns-to-scale models: selective proportionality in data
envelopment analysis. J Oper Res Soc 55(3):265–276

Podinovski VV (2004b) Production trade-offs and weight restric-
tions in data envelopment analysis. J Oper Res Soc 55
(12):1311–1322

Podinovski VV (2016) Optimal weights in DEA models with weight
restrictions. Eur J Oper Res 254(3):916–924

Podinovski VV, Athanassopoulos AD (1998) Assessing the relative
efficiency of decision making units using DEA models with
weight restrictions. J Oper Res Soc 49(5):500–508

Podinovski VV, Chambers RG, Atici KB, Deineko ID (2016) Mar-
ginal values and returns to scale for nonparametric production
frontiers. Oper Res 64(1):236–250

Podinovski VV, Olesen OB, Sarrico SC (2018) Nonparametric pro-
duction technologies with multiple component processes. Oper
Res 66(1):282–300

Rockafellar RT (1970) Convex analysis. Princeton University Press,
Princeton

Seiford LM, Thrall RM (1990) Recent developments in DEA: the
mathematical programming approach to frontier analysis. J
Econometrics 46(1–2):7–38

Shephard RW (1974) Indirect production functions. Mathematical
Systems in Economics No. 10. Anton Hain, Meisenheim am Glan

Tone K (2001) A slacks-based measure of efficiency in data envel-
opment analysis. Eur J Oper Res 130(3):498–509

Zelenyuk V (2013) A scale elasticity measure for directional distance
function and its dual: theory and DEA estimation. Eur J Oper Res
228(3):592–600

68 Journal of Productivity Analysis (2021) 56:45–68


	Optimal solutions of multiplier DEA models
	Abstract
	Introduction
	Motivational example
	DEA models for polyhedral technologies
	Polyhedral technologies
	Envelopment and multiplier DEA models

	Restated linear program
	The general case
	Cone technologies

	The hierarchy of multiplier DEA models
	Further interpretations
	The linear fractional model: the general case
	The maximin model: the general case
	Interpretations for cone technologies

	The special case of VRS and CRS technologies
	The VRS technology
	The CRS technology

	Clarifying example
	Technology
	The multiplier models and their solutions
	Benchmarking efficiency ratio against the observed DMUs only
	Benchmarking efficiency ratio against the NIRS technology
	Benchmarking profit efficiency against the NIRS technology
	Benchmarking profit efficiency against the observed DMUs
	Summary and discussion

	Conclusion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	Appendix A: Proofs
	Appendix B: Examples of interpretation for polyhedral technologies
	The hybrid returns-to-scale (HRS) technology
	A two-stage network technology
	Technologies with bounded measures

	References




