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Abstract
This paper considers the maximum likelihood estimation of a stochastic frontier production function with an interval
outcome. We derive an analytical formula for calculating the likelihood function of interval stochastic frontier models.
Monte Carlo experiments reveal that the finite sample performance of our method is promising even when the sample size is
relatively moderate. We also provide an exact formula for evaluating technical efficiency with interval outcome and apply
our method to measure information inefficiency in the labor market for newly graduated college students in Taiwan.
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1 Introduction

Consider a stochastic frontier model with the following
matrix form:

y ¼ X>β þ ε; ð1Þ

where y and ε are N × 1 vectors of observations on the
dependent variable and the random disturbance, respec-
tively; X is an N × K matrix of observations on a constant
term and K− 1 regressors; and β is a K × 1 vector of

unknown regression coefficients to be estimated. The error
specification is:

ε ¼ vþ Su; ð2Þ

where the elements of v are independent and identically
distributed (iid) as Nð0; σ2vÞ, and the elements of u are the
absolute value of the variables that are iid as Nð0; σ2uÞ. Here,
S is a pre-specified number that equals –1 for the production
frontier or 1 for the cost frontier. All v0s and u0s are
independent of each other and are also independent of X.
We follow the reparameterization of Aigner et al. (1977,
ALS hereafter):

σ2 ¼ σ2u þ σ2v ; λ ¼ σu=σv: ð3Þ

ALS show that the log-likelihood function for the
aforementioned stochastic frontier model is:

L ¼ N

2
ln

2
π

� �
� Nln ðσÞ þ

XN
i¼1

ln Φ
Sλ

σ
εi

� �� �
� 1
2σ2

XN
i¼1

ε2i : ð4Þ

Here, εi ¼ yi � x>i β, x
>
i is the ith row of X, and Φ(⋅) is

the standard normal cumulative distribution function (cdf).
The maximum likelihood estimator (MLE) is obtained
by maximizing Eq. (4) with respect to the parameters
ðβ; σu; σvÞ>.
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This paper extends the analysis of ALS to the scenario
where the dependent variable y�i is an ordered interval
variable located in J+ 1 regimes:

y�i ¼ x>i β þ εi; i ¼ 1; 2; ¼ ;N;

yi ¼ 0; if y�i � w0;

yi ¼ 1; if w0 < y�i � w1;

..

.

yi ¼ J; if y�i > wJ�1;

8>>>>>>><>>>>>>>:
ð5Þ

i.e., the cell limits w0 < w1 < w2 <⋯ <wJ− 1 are observable
even though y�i is unobservable. For example, as regularly
found in survey questionnaires, we are unable to observe
the exact value of some variable, rather just the range of it.
This kind of survey structure is ubiquitously prevalent in the
literature.

This paper thus suggests an analytic and highly accurate
formula for evaluating the likelihood function of the SFA
model in Eq. (5) and proposes an exact formula to measure
the technical efficiency of the model by extending the
method in Jondrow et al. (1982, JLMS hereafter). Since
neither a numerical integration nor simulation-based tech-
niques are required in the two formulae proposed in this
paper, the computational burden of our approach is lowered
to the limit. Amsler et al. (2019, AST hereafter) also pro-
vide a detailed discussion of the importance of using highly
accurate formula to evaluate the distribution function of ε.
We focus on the case where the elements of u are the
absolute value of the variables that are iid as Nð0; σ2uÞ,
because it is directly linked to the distribution assumption of
ALS1. Interval stochastic frontier model can also be tackled
with the Bayesian estimation strategy of Griffiths et al.
(2014) given that u is an exponential distribution, but its
implementation is not trivial. Moreover, the Monte Carlo
experiments conducted herein show that the finite sample
performance of our formulae is very promising.

We apply our method to the wage rates of newly grad-
uated college students in Taiwan. The empirical results
reveal the phenomenon of “school quality matters,” in
which a worker graduating from a higher quality school has
a higher potential wage. We also find that the undergraduate
major affects the level of potential wage. Furthermore, the
students of private universities are found to attain the
highest efficiency score, implying private university stu-
dents perform the best in their job market information
search.

The remaining parts of this paper are arranged as follows.
“Interval stochastic frontier model” presents the model and
analytic formula of the likelihood function. “Interval effi-
ciency estimate” provides an exact formula for measuring
the technical efficiency when the conditional variable ε is
only observed in a range. “Monte Carlo experiment”
investigates the performance of our formulae via Monte
Carlo experiments. “Empirical application” applies the
proposed method to data on the wage rates of newly
graduated college students in Taiwan. “Conclusion”
concludes.

2 Interval stochastic frontier model

Defining f( ⋅ ) and F( ⋅ ) as the probability density and dis-
tribution functions of εi, respectively, the probability of y�i
in each regime is:

Fi0 ¼ F w0 � x>i β
� �

; if y�i � w0;

Fi1 ¼ F w1 � x>i β
� �� F w0 � x>i β

� �
; if w0 < y�i � w1;

..

.

FiJ ¼ 1� F wJ�1 � x>i β
� �

; if y�i > wJ�1:

8>>>>><>>>>>:
ð6Þ

Consequently, the log-likelihood function for the model in
Eq. (5) is:

ln L ¼
XN
i¼1

XJ
j¼0

1ðyi ¼ jÞlnFij; ð7Þ

where 1(⋅) is the indicator function.
The major difficulty for the maximum likelihood esti-

mation centers on computing the associated cdf functions in
Eq. (7). For example, we have:

F wj � x>i β
� � ¼ Z wj�x>i β

�1
f ðεiÞdεi ¼ 2

σ

Z Qij

�1

Z aεi

�1
ϕðζÞdζ

� �
ϕðbεiÞdεi ¼ 2

σ
I Qij; a; b
� �

;

ð8Þ

where j= 0, 1,…, J− 1, Qij ¼ wj � x>i β, a ¼ S λ
σ, b ¼ 1

σ,
and ϕ(⋅) stands for the standard normal density function.
Provided that we have a good approximation formula for
the value of I Qij; a; b

� �
in Eq. (8), we can accurately

evaluate the likelihood function in Eq. (7). The first
contribution of this paper is to derive such an approximation
formula by extending the methodology of Tsay et al.
(2013), who only deal with the cases S= 1 in Eq. (8). Since
the formula developed in this paper does not impose a
constraint on the value of S, it can be used for both cost and
production function scenarios encountered in interval
stochastic frontier models. Before presenting Iapp(Qij, a, b)

1 Other distribution assumptions for u have also been discussed in the
literature, including truncated normal distribution (Stevenson 1980),
gamma distribution (Greene 1990), and Weibull distribution (Tsionas
2007). Recently, Badade and Ramanathan (2020) propose a prob-
abilistic frontier model using a logit model specification.
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in the following Proposition 1, we define an error function
as:

Erf ðzÞ ¼ 2ffiffiffi
π

p
Z z

0
e�t2dt ¼ 2

Z ffiffi
2

p
z

0
ϕðtÞdt: ð9Þ

Proposition 1 I(Qij, a, b) in Eq. (8) can be approximated
by Iapp(Qij, a, b):

IappðQij; a; bÞ ¼
exp

a2c2
1

4b2�4a2c2

	 

1þErf

ffiffiffi
a2

p
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2
ffiffiffiffiffiffiffiffiffiffi
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�ac1þ

ffiffi
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Qij b2�a2c2ð ÞsignðSQijÞ
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p
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þ
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bQijffiffi
2

p
	 

2b

1þsignðSQijÞ
2

where c1= –1.0950081470333 and c2= –0.75651138383854.2

Proof of Proposition 1 is in the Appendix. AST and
Amsler et al. (2020) address the issues of evaluating the cdf
of the skew normal distribution or the composed error ε in
Eq. (2). In the upper tail of the cdf of ε, the approximation
formula of Tsay et al. (2013) and the formula APS-UT of
APS works really well. In the lower tail, the approximation
formula APS-LT of APS is recommended. We thus have
the following proposition.

Proposition 2 I(Qij, a, b) in Eq. (8) can also be
approximated by the formula APS-LT of APS

IðQij; a; bÞ �
2Φ Qij

σ

	 

Φ λQij

σ

	 

1

1þλ2
; if S ¼ 1;

1� 2Φ �Qij

σ

	 

Φ �λQij

σ

	 

1

1þλ2
; if S ¼ �1;

8><>:
when the value of Qij approaches the lower tail of the
distribution.

For detailed simulations and discussions of Proposition
2, readers are referred to APS. With the combination of Iapp
(Qij, a, b) or APS-LT, the cdf of ε in Eq. (8) can be easily
evaluated with a standard statistical package. This implies
that the computation of the associated likelihood function in
Eq. (7) is straightforward when using these formulae.

3 Interval efficiency estimate

This section addresses the important issue of ranking the
relative efficiency level of different decision units given that
the parameters in Eq. (5) are estimated. ALS defined the
efficiency level of different units as exp Suið Þ. Since ui is
unobservable, JLMS propose to estimate the efficiency level

of each unit for the case S=−1 as:

exp �buið Þ; bui ¼ E uijεið Þ ¼ S
σ2u
σ2

εi þ σuσv
σ

ϕ λ εi
σ

� �
Φ Sλ εi

σ

� � : ð10Þ

This result is widely used in the literature. Nevertheless, it
only can be used when the dependent variable is
continuous. The interval nature of the dependent variable
in Eq. (5) requires a new formula to evaluate the conditional
mean of ui when εi is only observed in a range. In particular,
for yi= 0 in Eq. (5), we observe the upper bound of εi as:

bεi � w0 � x>i bβ; ð11Þ

where bβ are the maximum likelihood estimates. For yi ∈ {1,
…, J− 1}, we observe both the upper and the lower bound
of εi as:

wj�1 � x>i bβ � bεi � wj � x>i bβ; j ¼ 1; ¼ ; J � 1 ð12Þ

For yi= J, we observe the lower bound of εi as:

bεi � wJ�1 � x>i bβ: ð13Þ

Because we can only observe the boundary of εi, the
conditional expectations cannot be directly evaluated with
the method of JLMS. We thus fill the gap in the literature by
providing an exact formula to fulfill our goal.

Without loss of generality, we assume the censoring
interval of dependent variable is at a; bð Þ, and the conditional
expectation denotes E(ui∣a < εi < b). Defining ½Dð:Þ�ba ¼ DðbÞ
�DðaÞ, we state our theoretical finding in the following
proposition.

Proposition 3 Let λ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
. E(ui∣a < εi < b) is

expressed as:

S σ2u
σ �σ f εð Þ½ �ba þ 2λffiffiffiffi

2π
p

λ�
Φ Sλ�

σ ε
� �� �b

a

n o
þ σuσvffiffiffiffi

2π
p

λ�σ
erf λ�ffiffi

2
p

σ
ε

	 
h ib
a

½F εð Þ�ba
:

Derivations of Proposition 3 are in the Appendix. The
formula in Proposition 3 is exact and can be easily computed
with standard statistical packages, given that the denominator,
½F εð Þ�ba, can be evaluated with the results in Proposition 1 and
Proposition 2. We also establish that the results in Proposition
3 are identical to those in JLMS when the censoring interval
degenerates to 0 in the following corollary.

Corollary 1 Let c and ξ be any finite constant such that:

lim
ξ!0

E uijc < εi < cþ ξð Þ ! E uijεi ¼ cð Þ;

where E uijεi ¼ cð Þ is the formula in JLMS.
Proof of the above Corollary is also put in the Appendix.

2 For discussion and evaluation of c1 and c2, readers are referred to
page 261 of Tsay et al. (2013).
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4 Monte Carlo experiment

We consider two sets of Monte Carlo experiments in this
section: (1) the finite sample performance of MLE when
the data-generating processes (DGP) are the form in Eq.
(5), and (2) the accuracy of the interval efficiency esti-
mate in Proposition 3. All the programs are written
in GAUSS.

4.1 Finite sample performance of MLE

Following Olson et al. (1980, p. 76) and Tsay et al. (2013),
we consider a set of experiments with a two-regressor
model:

y�li ¼ β0 þ β1xi þ εli; i ¼ 1; 2; ¼ ;N; l ¼ 1; 2; ¼ ; 1000;

ð14Þ

where l denotes the lth replication of the data, and the
regressors xi are only drawn once from N(0,1) and kept fixed
throughout the simulation. Without loss of generality, we
consider the case where J= 3; i.e., we divide the data into
four regimes depending on whether y�li is less than w0,
between w0 and w1, between w1 and w2, or greater than w2.
We consider three sets of (w0,w1,w2, β0, β1, σu, σv) to check
the robustness of the simulation results and four sample sizes,
N= 100, 400, 1600, and 6400. Since our model is directly
linked to the model in ALS and y�li is known to us, we also
estimate Eq. (14) using the log-likelihood function in Eq. (4)
for comparison purpose. The optimization algorithm used to
implement MLE for both models is the quasi-Newton
algorithm of Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) contained in the GAUSS MAXLIK library. The
maximum number of iterations for each replication is 200.

The results in Tables 1 and 2 show the bias and mean
squared errors (MSE) of the maximum likelihood estimates
of ALS’s model and our model, respectively. For all the
combinations of parameters presented in Tables 1 and 2, we
find the bias is small and the MSE always decreases with an
increasing sample size. The results confirm the promising
performance of the proposed Iapp approximation formula,
and enhance our confidence in using Iapp for the interval
SFA models. We also find that the bias and MSE in Table 2
are larger than those in Table 1. This is consistent with the
fact that our dependent variable is limited and thus contains
less information than the continuous variable y�li .

4.2 Accuracy of the interval efficiency estimate

This subsection illustrates the accuracy of the interval effi-
ciency estimator proposed in Proposition 3. Following
Kumbhakar and Lothgren (1998), we obtain 100 million
draws of ui and vi, which are generated from Nþ 0; σ2u

� �
and

N 0; σ2v
� �

, respectively. We control the variance of two error
terms, σu and σv, and the variance ratio, λ, that reflects the
contribution of the variance of u to the total variance of the
error term ε. In particular, three different variance ratios λ=
(0.5, 1, 2) and six censoring intervals of ε,
a; bð Þ ¼ �4;�2ð Þ, �2;�1ð Þ; �1;�0:5ð Þ; �0:5; 0ð Þ; 0; 1ð Þ,
and 1; 3ð Þ, are employed.

Table 3 presents the simulation results. For all 18 com-
binations of parameters and censoring intervals, the largest
difference between the values calculated by Proposition 3
and the values calculated by 100 million draws is 0.0006.
The results again confirm the accuracy of Proposition 3.

Table 1 Finite sample properties of MLE for ALS’s model in Eq. (4)

N β0 β1 σu σv

DGP 1: β0= 1.28, β1= 1, σu= 1, σv= 0.5

Bias

100 0.0518 –0.0053 0.0670 0.0098

400 0.0074 –0.0016 0.0121 0.0031

1600 0.0009 0.0000 0.0028 0.0007

6400 –0.0005 –0.0002 –0.0004 0.0006

MSE

100 0.0621 0.0073 0.0908 0.0168

400 0.0088 0.0013 0.0127 0.0037

1600 0.0018 0.0003 0.0027 0.0009

6400 0.0004 0.0001 0.0006 0.0002

DGP 2: β0= 1.37, β1= 1, σu= 1, σv= 0.67

Bias

100 0.1001 –0.0060 0.1283 0.0116

400 0.0266 –0.0022 0.0368 0.0003

1600 0.0034 –0.0003 0.0063 0.0002

6400 –0.0002 –0.0002 0.0001 0.0005

MSE

100 0.1331 0.0102 0.1965 0.0245

400 0.0286 0.0018 0.0426 0.0063

1600 0.0042 0.0004 0.0064 0.0014

6400 0.0010 0.0001 0.0014 0.0003

DGP 3: β0= 1.56, β1= 1, σu= 1, σv= 1

Bias

100 0.1519 –0.0074 0.1951 0.0377

400 0.1050 –0.0031 0.1365 –0.0012

1600 0.0293 –0.0011 0.0395 –0.0026

6400 0.0033 –0.0004 0.0047 0.0003

MSE

100 0.2857 0.0175 0.4209 0.0402

400 0.1329 0.0031 0.2053 0.0119

1600 0.0316 0.0008 0.0498 0.0037

6400 0.0048 0.0002 0.0072 0.0009

All the results are based on 1000 replications. MSE denotes mean
squared errors
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5 Empirical application

This paper applies the proposed method to the earning
frontier analysis of newly graduated students in Taiwan.
The data used in the empirical example reported below are
drawn from a survey conducted by Peng (2005) on Tai-
wanese college graduates who graduated in 2003. The
survey employed a proportionate stratified two-stage

random sampling framework in which schools and majors
were used as the stratum. To serve the purpose of this study,
the survey data are further screened to include only full-time
workers, excluding part-time workers, self-employed,
family workers, and graduates in military service or in
prison. The above screening of the survey data yields a total
of 3973 sample workers.

Following the literature of the human capital theory and
the framework of Hofler and Polachek (1985), we develop a
stochastic earning frontier function to empirically measure
the labor market inefficiency of recent Taiwanese college
graduates. Hofler and Polachek (1985) define the wage
differential between the maximum potential wage that any
given individual can attain and the wage the person actually
earns to be the inefficiency that may be attributed to
incomplete worker information. To accommodate the pro-
blem that the wage differential may include pure ineffi-
ciency as well as unobserved heterogeneity, previous
studies have suggested to include demographic data in the
earning function (Hofler and Polachek 1985; Polachek and
Yoon 1996).

The dependent variable is the natural logarithm of a
worker’s monthly wage (measured by New Taiwan Dollar).

Table 2 Finite sample properties of MLE with the analytic formula in
Proposition 1

N β0 β1 σu σv

DGP 1: w0= 0, w1= 0.55, w2= 1.03

β0= 1.28, β1= 1, σu= 1, σv= 0.5

Bias

100 0.1615 –0.0349 0.2015 0.0112

400 0.0464 –0.0085 0.0600 –0.0012

1600 0.0072 –0.0017 0.0104 –0.0006

6400 –0.0004 –0.0008 –0.0005 0.0012

MSE

100 0.1842 0.0340 0.2969 0.0646

400 0.0508 0.0061 0.0843 0.0163

1600 0.0063 0.0016 0.0113 0.0037

6400 0.0013 0.0004 0.0023 0.0008

DGP 2: w0= 0, w1= 0.62, w2= 1.2

β0= 1.37, β1= 1, σu= 1, σv= 0.67

Bias

100 0.1829 –0.0297 0.2239 0.0371

400 0.0983 –0.0111 0.1268 –0.0052

1600 0.0303 –0.0028 0.0404 –0.0053

6400 0.0027 –0.0008 0.0036 0.0006

MSE

100 0.2545 0.0337 0.4138 0.0842

400 0.1142 0.0066 0.1894 0.0227

1600 0.0258 0.0017 0.0446 0.0067

6400 0.0035 0.0004 0.0062 0.0015

DGP 3: w0= 0, w1= 0.79, w2= 1.56

β0= 1.56, β1= 1, σu= 1, σv= 1

Bias

100 0.1341 –0.0225 0.1505 0.1012

400 0.1578 –0.0076 0.1961 0.0195

1600 0.1294 –0.0015 0.1641 –0.0091

6400 0.0469 –0.0009 0.0595 –0.0058

MSE

100 0.3681 0.0375 0.6079 0.1274

400 0.2560 0.0074 0.4229 0.0362

1600 0.1475 0.0020 0.2436 0.0139

6400 0.0479 0.0005 0.0789 0.0047

All the results are based on 1000 replications. MSE denotes mean
squared errors

Table 3 Accuracy of interval efficiency estimate

Censoring interval Exact Simulation

DGP 1: σv= 1.00, σu= 1.50, λ= 1.50

(–4, –2) 0.1461 0.1462

(–2, –1) 0.3001 0.2999

(–1, –0.5) 0.4089 0.4089

(–0.5, 0) 0.4789 0.4795

(0, 1) 0.5640 0.5636

(1, 3) 0.6642 0.6643

DGP 2: σv= 1.00, σu= 1.00, λ= 1.00

(–4, –2) 0.2567 0.2568

(–2, –1) 0.3958 0.3956

(–1, –0.5) 0.4842 0.4844

(–0.5, 0) 0.5404 0.5409

(0, 1) 0.6091 0.6086

(1, 3) 0.6899 0.6905

DGP 3: σv= 2.00, σu= 1.00, λ= 0.50

(–4, –2) 0.3809 0.3808

(–2, –1) 0.4340 0.4345

(–1, –0.5) 0.4619 0.4625

(–0.5, 0) 0.4804 0.4809

(0, 1) 0.5069 0.5064

(1, 3) 0.5500 0.5494

Exact is computed based on Proposition 3. Simulation is simulated
from the Accept-Reject algorithm based on 100 million
independent draws

Journal of Productivity Analysis (2021) 56:33–44 37



It is located in four possible categories3: less than
ln ð22800Þ, between ln ð22800Þ and ln ð28800Þ, between
ln ð28800Þ and ln ð36300Þ, and more than ln ð36300Þ. The
explanatory variables (X) used in estimating the maximum
potential wage cover a set of socio-demographic factors.
More specifically, the explanatory variables are related to
education or work experience, gender, work status, school
type, and individual majors in college.

Education/Work experience:
Experience= 1 if a worker ever had a part-time job

during undergraduate schooling; Experience= 0, otherwise.
Since all subjects are recent graduates (with one year of
work experience), they all have the same education level
and number of working years. However, those who had a
part-time work experience during college are expected to
have more labor market information, which may lead to a
better paying job.

Gender:
Male= 1 if male; and Male= 0, otherwise. Females are

usually paid less due to sex discrimination in the job
market.

Work Status:
Hours=Worker’s weekly working hours. Workers with

longer working hours are expected to earn more.
Knowledge Match:
Knowledge Match= 1 if a worker’s undergraduate

major matches the job requirement; Knowledge Match= 0,
otherwise. The knowledge match is postulated to have a
positive impact on the wage rate.

Public Sector:
Public Sector= 1 if working for the government; and

Public Sector= 0, otherwise. Government employees in
Taiwan on average are better paid than their private
counterparts.

School Type:
Public University= 1 if a worker graduated from a

public (comprehensive) university; and Public University=
0, otherwise.

Public Vocational College= 1 if a worker graduated
from a public vocational college; and Public Vocational
College= 0, otherwise.

Private Vocational College= 1 if a worker graduated
from a private vocational college; and Private Vocational
College= 0, otherwise.

Taiwan’s higher education institutions can be classified
by types into public/private or comprehensive/vocational.
Among the four different types, Private University is used
as the base for regression measurement. School type may
reflect school quality. Workers who graduated from better
quality schools are expected to earn more (Card and
Krueger, 1992). In Taiwan, public schools are found to be
of better quality than private schools, whereas comprehen-
sive universities are on average better than vocational col-
leges in school quality (Fu, 2011).

Undergraduate Major:
Social Science= 1 if a worker graduated with a major in

social science; Social Science= 0, otherwise.
Technology= 1 if a worker graduated with a major in

engineering and technology; Technology= 0, otherwise.
The majors of undergraduates are classified into Social

Science, Technology and Engineering, and Humanities. The
Humanities category is used as the base for the regression
analysis. In Taiwan’s labor market, workers with a tech-
nology major are generally paid well, followed by Huma-
nities and Social Science.

It is worth to note that our control variables did not
include the variables of workers’ seniority, i.e., age and
experience of working, as our dataset does not provide the
observations of these two variables. Nevertheless, this will
not cause much loss of information, because the respon-
dents of our dataset are newly graduated college students
who have very little formal working experience, and they
are about of the same age4.

Table 4 shows the mean statistics of variables used in the
interval SFA model. Among all 3973 subjects of the four
types of schools, 68.92% of them (38.54% from Private
University and 30.38% from Private Vocational College)
graduated from private schools. Public schools make up
only 31.08% of the subjects, with 21.02% from Public
University and 10.07% from Public Vocational College.
Public University has a relatively high mean value in wage,
knowledge match, and working in the public sector, as
compared to the other three types of schools. The mean
wages of public schools are averagely higher than those in
private schools. We also find that the sample graduates from
both Public and Private Vocational Schools have a higher
percentage (46–55%) of obtaining a Technology and

3 The original survey conducted by Peng (2005) has nine categories for
worker’s monthly wage: (1) less than 15,840, (2) between 15,840 and
22,800, (3) between 22,800 and 28,800, (4) between 28,800 and 36,300,
(5) between 36,300 and 45,800, (6) between 45,800 and 57,800, (7)
between 57,800 and 72,800, (8) between 72,800 and 83,900, and (9)
more than 83,900. However, some categories contain only small amount
of observations. For example, there are only 39 observations in the first
category and only 213 observations in total in categories (6)–(9). To
keep the number of observations in each category more balanced, we
merge the first two categories, and we combine categories (5)–(9)
into one.

4 The efficiency estimates certainly depend on the specification of
model used for empirical analysis and the distribution assumption
imposed on composite error. Therefore, we treat our empirical results
as a starting point of analyzing the market inefficiency of recent Tai-
wanese college graduates. More empirical works and data collection
are useful to enhance our knowledge about this important issue.
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Engineering degree than those from general comprehensive
schools, whereas private schools are found to have a higher
percentage of graduates who majored in Social Science than
do public schools.

Table 5 shows that the sign of the estimates in the
earning frontier function matches our expectations.
Workers obtain a higher potential wage when working in
the public sector, taking a job with a knowledge match,
and having more working hours. The positive sign of
Male indicates the existence of gender discrimination in
Taiwan’s labor market. The school type variables show a
positive sign for Public University and negative signs for
both types of vocational schools, as compared to Private
University.

School type variables are proxies for school quality, and
it is widely recognized in Taiwan that the quality of public
schools is on average higher than that of private schools, as
are general comprehensive universities versus vocational
colleges. Therefore, the empirical results indicate the phe-
nomenon of "quality matters," in which a worker graduating
from a higher quality school will have a higher potential
wage. In our study, the sample graduates from public uni-
versities have the highest potential wage. Table 4 also
shows that undergraduate major affects the level of potential
wage. Those who majored in technology and engineering
(social science) have a higher (lower) potential wage than
those with a humanities major.

Given that the parameters are estimated, we now apply
the results in Proposition 3 to measure the relative efficiency
level of different units. The summary statistics and histo-
grams of the resulting estimates are displayed in Table 6
and Figs. 1–4, respectively. From these efficiency estimates,
we find that private university graduates achieve the highest
average efficiency of 0.8406 as compared to the value of
0.8380 for public university graduates, but the difference is
quite small. This implies that private universities try to help
their graduates to get a better payoff so as to raise their
ability of enrolling new students when facing the difficulty
of attracting the best students in Taiwan. Interestingly, the
lowest value of efficiency found is 0.5217, which is from
graduates of a public university.

6 Conclusion

This paper extends the analysis of ALS to the scenario
where the dependent variable is an ordered interval variable
by recognizing that the interval coding data are commonly
collected in surveys to individuals or decision units. In such
surveys, the subjects are often asked to answer questions on
their performance by choosing among some ordered interval
coding values. We thus provide an analytic formula for
evaluating the associated likelihood function and propose

Table 4 Summary statistics
(sample mean)

Variable Total sample Pub Uni Pri Uni Pub Col Pri Col

Wage 31,824 37,381 32,076 32,099 27,570

Hours 45.38 44.46 45.26 46.71 45.72

Knowledge Match 0.44 0.66 0.39 0.44 0.36

Experience 0.86 0.90 0.88 0.80 0.83

Public Sector 0.19 0.55 0.12 0.11 0.06

Male 0.19 0.22 0.17 0.29 0.15

Social Science 0.43 0.25 0.53 0.35 0.47

Technology 0.36 0.25 0.29 0.55 0.46

Observations 3973 835 1531 400 1207

Average of wage is calculated based on mid-point of each category

Table 5 Estimating log wage equation with the interval SFA model

Variable Estimate

Public University 0.0955 (0.0199)***

Public Vocational College –0.0252 (0.0131)*

Private Vocational College –0.1150 (0.0089)***

Hours 0.0031 (0.0005)***

Knowledge Match 0.1124 (0.0078)***

Experience 0.0089 (0.0107)

Public Sector 0.1810 (0.0122)***

Male 0.1079 (0.0104)***

Social Science –0.0676 (0.0109)***

Technology 0.0285 (0.0117)***

Constant 10.2775 (0.0283)***

σu 0.2252 (0.0176)***

σv 0.1619 (0.0085)***

Observation 3973

Log-Likelihood –3971.86

The number in parenthesis denotes the standard error

The dependent variable, ln ðwageÞ, is located in four possible
categories: less than ln ð22800Þ, between ln ð22800Þ and ln ð28800Þ,
between ln ð28800Þ and ln ð36300Þ, and more than ln ð36300Þ
*p < 0.10; ***p < 0.01 (two-tailed tests)
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an exact formula to measure the technical efficiency by
generalizing the method in JLMS. Our approaches do not
depend on any numerical integration or simulation-based
techniques and thus can be implemented straightforwardly.

The current paper illustrates an application of the pro-
posed model for measuring labor market information inef-
ficiency when the earning variable is measured by interval

outcomes. Other potential applications are abundant,
including survey studies that adopt contingency valuation
methods to examine the values of hypothetical quality
improvement of public goods or non-market goods (Carson
2012). In particular, we can use the willingness to pay
(WTP) for quality improvement of environmental goods
such as water, air, or any such amenity. Studies on WTP for

Table 6 Summary statistics of
the efficiency estimates

Mean SD 25th Pctl. 50th Pctl. 75th Pctl.

Public University 0.8380 0.0682 0.8098 0.8687 0.8773

Public Vocational College 0.8375 0.0696 0.8098 0.8516 0.8907

Private University 0.8406 0.0629 0.8062 0.8454 0.8884

Private Vocational College 0.8373 0.0659 0.7729 0.8505 0.8826

Mean and SD refer to the sample mean and standard deviation of the estimated relative efficiency,
respectively, and 25th, 50th, and 75th Pctl. are sample percentiles of the estimated relative efficiency

Fig. 1 The wage efficiency of
public vocational college
graduates

Fig. 2 The wage efficiency of
public university graduates
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hypothetical non-market goods such as national security,
conservation of public parks or natural resources, and new
medical treatments are also abundant in both the environ-
ment and health-related literature. Since WTP is often
expressed in an interval form due to the contingency
valuation survey design, our proposed model can therefore
be used to measure the inefficiency of WTP reporting.
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7 Appendix

For convenience of exposition, we suppress subindex
throughout the Appendix, and two equations from (Abra-
mowitz and Stegun, 1970, Eqs. 7.11 and 7.4.32) are given:

Erf ðzÞ ¼ 2ffiffiffi
π

p
Z z
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expð�t2Þ ¼ 2

Z ffiffi
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p
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where C denotes a finite constant.

Fig. 3 The wage efficiency of
private vocational college
graduates

Fig. 4 The wage efficiency of
private university graduates
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7.1 Derivation of Proposition 1

Given that (Q, a, b)∈ R, b > 0, Erf(− x)=− Erf(x), and
define ε ¼ ffiffiffi

2
p

v, we have:
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Tsay et al. (2013) show that Erf(x) can be well approxi-
mated by a function, gðxÞ ¼ 1� exp c1xþ c2x2ð Þ for x ≥ 0,
where c1 and c2 are discussed in “Interval stochastic frontier
model.” We divide the derivation into four cases: (Q ≥ 0, a ≥
0), (Q ≤ 0, a ≥ 0), (Q ≥ 0, a ≤ 0), and (Q ≤ 0, a ≤ 0).

Case 1. (Q ≥ 0, a ≥ 0):
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When we use (7.4.32) of Abramowitz and Stegun
(1970), I(Q, a, b) in this case can be approximated by:
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Case 2. (Q ≤ 0, a ≥ 0):
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When we use (7.4.32) of Abramowitz and Stegun
(1970), I(Q, a, b) in this case can be approximated by:
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When we use (7.4.32) of Abramowitz and Stegun
(1970), I(Q, a, b) in this case can be approximated by:
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Combining the results in Cases 1–4, we obtain the result
in Proposition 1.

7.2 Derivation of Proposition 3
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As we can see, the integral part in E1 is a censored
conditional expectation of f εð Þ given that ε∈ (a, b). Using
Proposition 1 in Flecher et al. (2009), we can evaluate E1 as:
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Using (7.4.32) of Abramowitz and Stegun (1970), we
can evaluate E2 as:
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With the above results, we now obtain the JLMS interval
efficiency estimate.

7.3 Proof of Corollary 1

We express the limit of Proposition 3 as:
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where the second equality is based on L’hospital Rule, and
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