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Abstract

We present a new, single-parameter distributional specification for the one-sided error components in single-tier and two-tier
stochastic frontier models. The distribution has its mode away from zero, and can represent cases where the most likely
outcome is non-zero inefficiency. We present the necessary formulas for estimating production, cost and two-tier stochastic
frontier models in logarithmic form. We pay particular attention to the use of the conditional mode as a predictor of
individual inefficiency. We use simulations to assess the performance of existing models when the data include an
inefficiency term with non-zero mode, and we also contrast the conditional mode to the conditional expectation as measures

of individual (in)efficiency.
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1 Introduction and motivation

In the founding papers of stochastic frontier analysis (SFA),
Aigner et al. (1977) and Meeusen and van den Broeck
(1977), the authors considered two distributions for the
inefficiency term, the Half Normal and the Exponential,
creating organically the Normal-Half Normal (NHN) and the
Normal-Exponential (NE) specifications for the composite
error term. The first would go on and have a spectacular
future outside SFA also, after Azzalini (1985) baptized it as
the Skew Normal distribution and presented it to the statis-
tical community. The second had already a well established
past, since a variant of it under the name “Exponentially
modified Gaussian” was being used already from the *60s in
chromatography (for a review see Grushka, 1972).

But no one is a prophet in their own land: Stevenson
(1980) noted that in both specifications the inefficiency
distribution had its mode at zero, imposing a specific eco-
nomic/structural assumption: that the most likely occurrence
was near-zero inefficiency. While such an assumption could
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be justified to a degree by invoking purposeful optimizing
behavior as well as the forces of competition, Stevenson
linked inefficiency to managerial competence and argued
that the latter is not distributed monotonically in the popu-
lation (of managers at least). Based on this argument, the
author proposed the use of the Truncated Normal distribu-
tion for the inefficiency term as an alternative, as well as the
Gamma distribution, restricting the values of its shape
parameter so as to obtain a closed-form density for the
composite error term.' To this day, these are the main spe-
cifications that allow for a non-zero mode of the inefficiency
component.” But both these distributions have issues: the
maximum likelihood estimator (MLE) has often difficulties
converging under a Truncated Normal specification, while
the Gamma specification in its general formulation has a non
closed-form density that makes it less appealing for
empirical implementations. Moreover, Ritter and Simar
(1997) found that the shape parameter of the Gamma dis-
tribution is weakly identified and imprecisely estimated
when the sample size is not really large. But this is the very
parameter that allows us to have a non-zero mode.

' Greene (1980, 1990) studied the Normal-Gamma specification in
much more depth.

2 Other distributions have been proposed for the inefficiency term, see
Parmeter and Kumbhakar (2014) and Stead et al. (2019).
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In this paper we present production and cost stochastic
frontier models as well as the two-tier extension (2TSF),
where we specify the one sided component(s) to follow the
Generalized Exponential distribution, which is a single-
parameter distribution that has always a non-zero mode.
Assuming in addition that the noise term follows a zero-
mean Normal distribution, we obtain the Normal-
Generalized Exponential specification (NGE).

Since concerns related to the mode of the inefficiency
distribution is what generated this research, it is fitting that
we will also pay particular attention to the conditional mode
as a measure of individual inefficiency. These measures are
sometimes called “JLMS” measures from the paper of
Jondrow et al. (1982) where both the conditional expected
value and the conditional mode were considered as pre-
dictors of individual inefficiency.” In fact this paper dealt
with predicting the error component of the logarithmic
specification. It was Battese and Coelli (1988) that pre-
sented the conditional expectation expressions for the
exponentiated error, i.e. for a prediction at the original
measurement scale. We extend the approach by examining
the conditional modes for the exponentiated case. In prac-
tice, the conditional expectation, being an optimal predictor
under the Mean-Squared Error criterion, appears to have
prevailed as the inefficiency measure of choice. But by
considering the mode of the inefficiency distribution we
essentially propose a more elaborate investigation of the
inefficiency terms, since by having available their (marginal
and conditional) distributions, we can go beyond obtaining
some predictor of their value and instead form a more
complete picture of their stochastic behavior. In addition,
the mode always exists and it may also be easier to derive.

In most cases the regression specification used in
empirical SFA papers has the dependent variable in loga-
rithmic form, and it is for this equation that distributional
assumptions are made. This implies that inefficiency mea-
sures ultimately relate to the exponentiated variables. We
will focus on this model and present JLMS measures only
for the exponentiated inefficiency terms. This is also a way
to contain to some degree the sprawling mass of mathe-
matical expressions, since we will develop in detail three
different models.

In Section 2 we present the distribution for the one-sided
error components that we will use, and provide its main
properties. In Section 3, we address certain concerns that are
often raised when new specifications for SF models are
proposed. In Sections 4 and 5 we present the production and
cost SF models respectively, and in Section 6 the two-tier
stochastic frontier model. Section 7 concludes with

3 This approach was first presented in Materov (1981), that is written
in Russian and it is a good example of the universality of the language
of mathematics.
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simulations that explore how the familiar NHN and NE
specifications perform when the data come from an NGE
process and vice-versa, but also, how the conditional
expectation and the conditional mode fare as measures of
individual inefficiency.

2 The Generalized Exponential distribution

We consider the distribution that has the following density:

Fuu) = Fexp{—u/0, }(1 —exp{—u/0, }), (1)
0,>0, u >0
Note that the density is two times an Exponential density
times the Exponential distribution function with the same
scale parameter. Let hg(u; 6,) denote the Exponential den-
sity with scale parameter 6,. Then we can write equiva-
lently,

Julu) = 2hg(u; 0,) — hie(u;0,/2). (2)

This additive form will prove convenient in calculating
expressions that involve integration, exploiting the linearity
of integrals and the already known results from the NE
specification. The distribution function is

Fu(u)=(1- exp{—u/Gu})z. (3)

There are at least three ways to obtain the above dis-
tribution. First, as a general consequence of the Probability
Integral Transform that states that for every continuous
random variable X with support Sy, distribution function Fy
(x) and density fx(x), we have that Fx(X) ~ U(0, 1). This
then implies that

E[Fx(X)] = [ fx(x)Fx(x)dx =}
= fsxzfx<x>FX(x)dx =1.

So the function 2fy(x)Fx(x) is non-negative in the
support of X and integrates to unity over it, therefore it is a
density. We take this general result and apply it to the
Exponential distribution.

Second, 2fy(x)Fx(x) is the density of the maximum of
two i.i.d. random variables—indeed, since its distribution
function is [Fx(x)]>. This representation provides a
straightforward way of generating draws from the dis-
tribution for simulation purposes.

Third, it can be seen as a special case of the “Generalized
Exponential” distribution introduced by Gupta and Kundu
(1999), with shape parameter equal to 2 (their a), scale
parameter equal to 8, (their 1) and location parameter equal
to zero (their u). We will write u ~ GE(2,6,,0), and use
this name to identify our distribution.
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2.1 Moments and other properties

Yet another representation of this distribution, based on
results from Gupta and Kundu (1999) and for the specific
values of the parameters, is the following: let ¢;, i =1, 2 be
two i.i.d. Exponentials with scale parameter equal to 1. Then

u~ 0,e; + 91462/2.

This makes the derivation of the basic moments of u very
simple by using cumulants «, for which we have k,(cz) = ¢’k
(z), and under independence, k. (e; + ;) = k. (e1) + k,(ep). It
follows that

kr(u) = (1 4+27")k. ()b,

ki(e) =Ka(e) =1, k3(e) =2, ka(e) = 6.

Then
3 5,
E(u) = ki (u) = 59”, Var(u) = k2(u) = 29‘“
K3 (u) 18
Skewness(u) =y, (u) = =——=~r 161,
= P VIS
. ka(u) 102
Ex. Kurtosis(u) = y,(u) = K‘%(M) =25 = 4.08.

We see that the distribution has lower skewness and
excess kurtosis compared to the Exponential distribution
(for which they are 2 and 6 respectively), but exceeds in
both the Half-Normal (0.995 and 0.869 respectively). Paired
with a Normal error component, these values represent the
maximum skewness and kurtosis the composed SF error can
accommodate under an NGE specification. Papadopoulos
and Parmeter (2021) presented the empirical skewness and
kurtosis of the OLS residuals for eight representative SF
empirical studies, and in none of them did they exceeded
the values of the GE distribution. This is an indication that
although lower than the corresponding values for the
Exponential distribution, they do not restrict in practice the
applicability of the GE distribution.

Further, it is a simple exercise to find the argmax of the
density,

mode(u) = 6,In2.

The mode of this distribution is equal to the median of an
Exponential distribution with the same scale parameter, and it
locates the point where 0.25 of probability mass lies to the left
of it. In other words, it is equal to the 1st quartile. We also see
that the mode cannot be zero, and in that sense the labeling of
the distribution as “Generalized Exponential” could be con-
sidered as a misnomer, since it does not nest the Exponential.

The quantile function is

Q,(p) = —6,In (1 - \/ﬁ)a

from which we can obtain the median and other quantiles.
Finally, by using the additive expression eq. (2) for the
density, it is easy to determine that it is log-concave (and
therefore so is its distribution function). Since we will com-
bine this distribution with a Normal random-noise compo-
nent, the resulting composite error density will also be log-
concave, since the Normal density is log-concave, and con-
volutions of log-concave functions retain the property.

pel0,1),

3 Why use yet another distributional
specification?

Now that we have familiarized ourselves with the aspiring
newcomer, it is time to confront certain issues that are
routinely raised in relation to distributional specifications
like the one we propose here: a fully parametric specifica-
tion with a log-concave density.

The first issue is the risk that, in case of distributional
mis-specification, inference would be unreliable. But this is
an argument in favor of abandoning parametric inference
altogether. For those scholars that find a net benefit in using
it though, increasing the number of available specifications
mitigates this problem since it increases the diversity of
available models and so our ability to get within tolerable
distance from the true data generating process (DGP).

Still under the spectre of distributional misspecification,
we can avoid this particular risk when “determinants of
inefficiency” are available. Then we can model the dis-
tribution parameters of the inefficiency components as
functions of observed data (as long as a valid economic
argument supports it). Moreover, one can exploit the
“scaling property” (see Wang and Schmidt, 2002, for the
single-tier and Parmeter, 2018, for the two-tier SF model
respectively), that always holds for single-parameter dis-
tributions, and, instead of using maximum likelihood esti-
mation, implement non-linear least squares (NLLS) that
does not require distributional assumptions. An issue in this
approach is the finite-sample reliability of the NLLS esti-
mates: in his simulations, Parmeter (2018) has found a
persistent upward bias in the estimates of the coefficients for
the determinants of inefficiency for small and medium
samples, which would lead to an wunder-estimation of
technical efficiency, if we were to calculate the corre-
sponding exponentiated measure: firms appear less efficient
than they actually are.*

4 The under-estimation of technical efficiency here depends on the
determinants of inefficiency being positive variables, and they
usually are.

@ Springer
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A third issue relates to all SF models that assume a log-
concave density for the random noise component: in standard
notation, in an SF production model we would have a com-
posite error term e=v—u, E(v)=0, ©>0. Ondrich and
Ruggiero (2001) have proven that, if the random noise com-
ponent has a log-concave density, then the expected value of
the inefficiency term conditional on the composite error, E
(ule), is a monotonic function of the conditioning variable.’
This has the implication that as regards ranking of the
observations in the sample with respect to inefficiency, we
might as well use the estimation residuals instead of E(ule),
and anticipate negligible differences (under correct specifica-
tion). Moreover, the OLS residuals are more robust in ranking
observations according to inefficiency, since they are free of
possible misspecification from distributional assumptions.

We respond here by noting that ranking may be impor-
tant and more safe as an inferential result, but there is more
to efficiency analysis than a beauty contest to congratulate
the more efficient firms and frown at the less efficient ones.
The actual quantitative measurement of inefficiency is what
matters as regards the efficient use of scarce resources, and
for this we need to go beyond the estimation residuals.

In any case, the result of Ondrich and Ruggiero (2001)
relates to the conditional expectation. We will provide proof
that it holds also for the conditional mode of the production
NGE frontier, and we will obtain simulation evidence as
regards differences in ranking.

From a technical point of view, the NGE specification
responds to the Stevenson (1980) critique of the NHN and
NE specifications by offering a more convenient and, let’s
say a more “user-friendly” solution to the non-zero mode
desideratum, compared to the specifications involving the
Truncated Normal or the Gamma distributions: in single-
tier SF models the unknown parameters of the NGE
specification are only two and not three, while in the 2TSF
NGE model they are only three and not five. Moreover,
the fixed investment cost in time and intellectual energy
that the NGE specification requires (as any new tool does)
is modest.

A weakness of the GE distribution is that it does not nest
the zero-mode case. This in theory is an undesirable
inflexibility, but the existence of a non-zero mode for the
one-sided component is mostly an issue for economic
debate rather than a statistical matter. We may not “let the
data decide”, but knowledge of the particular industry/
market under study in each case should allow for a con-
vincing argument and a safe choice on this matter.

From a statistical point of view, the NGE specification,
in addition of having a non-zero mode, is characterized by

> The authors proved this for the variable in levels. Using intuition but
also the formal results in Egozcue (2015), it also holds for

E(exp{—u}e).
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higher values of skewness and excess kurtosis in the
composed error term compared to the NHN specification,
and so it can accommodate a larger set of real-world data
samples.

Finally, from an economics point of view, by repre-
senting the maximum of two ii.d. underlying random
variables it allows us to picture the economic mechanism as
operating at high intensity: if notionally there are two
possible inefficiency values, the GE specification “selects”
the strongest one to affect the outcome. To some, this may
appear as unjustified negative bias; to others it would be
classified as prudential, connected informally with the
concept of entropy and the tendency of things to get to a
lower state of energy, which in business terms translates
into disorganization and loss of efficiency.

4 The production frontier

In a production frontier setting, the original model is
v, =f(x;))exp{vi—u;}, i=1,...n.

Typically, y is some measure of output and the regressors
are production inputs. We focus on its estimation in loga-
rithms, so the composite error term is e =v —u and we
assume v ~ N0, o,), u~GE(2, 6,, 0).

The additive representation of the density of u, eq. (2),
means that the density of & can be obtained as the difference of
two convolutions of the Normal density with the Exponential,
each being nothing else than the familiar Normal-Exponential
SF specification, (see e.g. Kumbhakar and Lovell 2000, for the
density formula). So we can easily obtain

fee) = g lexplan}@(by) "
— exp{Zau + Z—g}fb(bu - g—)},

where @ is the standard Normal distribution function, and

8+03 b €+av
auzi A0 0 « — — |\ n |
0, 267 ‘ on Oy

This formula is nested in the formulas for the 2TSF
model presented in Section 6, by setting there 8,, = 0. The
same holds for the distribution function, which in the pro-
duction frontier case is

Fole) = ®(2) +2exp{a}@(b,)

) (5)
— exp{Zau + 0—;}<D(bu — g—)



Journal of Productivity Analysis (2021) 55:15-29

19

The distribution function will be needed in modeling
sample selection bias, and also in models where regressor
endogeneity is handled using Copulas rather than instru-
mental variables (see Tran and Tsionas 2015; Papadopoulos
2020a).

Due to the independence of the error components, the
mean and variance of the composed error term are imme-
diately obtained. Regarding skewness and excess kurtosis,
Papadopoulos and Parmeter (2021) have shown that they
can be expressed as follows:

=1 (2) e = (%)

& sS

where the symbol s represents the standard deviation. The
skewness expression depends on the assumption that the
distribution of v is symmetric, while the excess kurtosis
expression on the assumption that it is Normal. Their
maximum values (in absolute terms) are the skewness and
excess kurtosis of the one-sided component. The authors
present a powerful specification test using only sample
moments of OLS residuals that is suitable for distributions
with constant skewness and excess kurtosis.

Past this stage, the density can be used to implement
maximum likelihood estimation. Alternatively, one can apply
the Corrected Least Squares estimator (COLS), equating in the
first stage the sample means of the 2nd and 3rd power of the
OLS residuals with the 2nd and 3rd cumulant of the composite
error term respectively, which are,

5 9

Ka(€) = o> + 193, K3(e) = 7193.

We note that the COLS estimator is vulnerable to the
“wrong skew” issue: the case where the OLS residuals
exhibit skew with the opposite sign than the one assumed.
Here if k3(e) >0, we cannot compute 6, which is con-
strained to be strictly positive. On the other hand, the
simulations presented later showed that the MLE under the
NGE specification does not break down when the skew is
wrong: in such cases, the value of 6, is estimated by MLE
as really small but away from zero, around the values
0.03-0.04. But these are not reliable estimates, and so if the
sample skew is wrong and the researcher decides to treat is
as a sample problem, special treatment is required (for
different such methods see Cai et al. 2020; Hafner et al.
2018; Simar and Wilson 2009).

4.1 Assessing and measuring technical (in)efficiency

For the single-output production frontier model estimated in
logarithms, the standard measure of technical efficiency is
Shephard’s output distance function that here equals
exp{—u} = q,, q. € (0, 1] (see Sickles and Zelenyuk 2019,

pp- 20-24), which is the ratio of actual to maximum output.
This is a random variable on its own. To obtain its marginal
distribution, we apply the distribution method and we have

Fy,(q,) = Pr(exp{—u} < g,) = Pr(u > —Inq,)
2
=1 _Fu(_lnqu) = F%(Qu) =1- (1 - q;/gu) )
(6)

while the density is

fa(a) Z%(q;'“”’“ —q;‘+2/9“)- (7)

This is the distribution of the minimum of two i.i.d. Beta
random variables, with parameters a = 1/6,, f = 1. Unlike
what happens to the Beta distribution when the parameter
p is equal to unity, here, the distribution does not have
always a monotonic density. This will depend on the actual
value of 6,. Specifically we have

[(1-6.)/2—6)]"  6.<1

mode [exp{—u}] { 0 8. > 1.

We note that except when 8, =1 where the distribution
becomes the minimum of two i.i.d U(0, 1) random vari-
ables, for 6, > 1 the density has an asymptote at zero. Also,
note that the zero-mode result for 8, > 1 is for the variable
exp{—u}, so with stronger inefficiency parameter (higher
6,) comes lower technical efficiency.

Having the distribution function available allows us also
to compute a full representative spectrum of quantiles (not
just the median), through the quantile function

0, = (1-vi=p)", peio

Turning to moments, by using the additive expression for
the f,(u) density, the unconditional expected value can be
calculated through the moment generating function of the
Exponential distribution and it is

2
E(exp{—u}) = (1+6,)2+06,)

We can obtain its variance from

Var (exp{—u}) = Elexp{—2u}] — [E(exp{—u})]".

The mirror property of the Beta distribution is inherited here,
so if one wants to study the relative technical inefficiency
1 — exp{—u}, the distribution will be that of the minimum of
two i.i.d. Betas with parameters a =1, f=1/6,.

Closing this section, we mention that the ratio of max-
imum output over actual, exp{u}, is the “output-oriented
Farrell measure of technical efficiency”, and for businesses
it is a meaningful measure and perhaps more meaningful to

@ Springer
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their management, although not as a measure of efficiency
but as a guidance for efficiency improvement: a value, say,
of E(exp{u}) = 1.15 would tell us that on average, firms in
the sample need to increase their output by 15%, in order to
be fully efficient, holding inputs constant. At the level of an
individual firm, such a measure would be more relatable to
the business mindset, and more directly translatable to
specific actions in the pursuit of efficiency (“with given
inputs, find new ways to combine and coordinate them
better so a to increase output—and you have a 15% increase
to chase”). To our knowledge it has not been explored in the
efficiency literature and we will not examine it further here.
We just note that the results on the marginal distribution of
the variable “k” in Section 5.1 apply also for the exp{u}
variable (but not the individual measures of Section 5.2).

4.2 Individual measures

We can obtain information on ¢, ; = exp{—u;}, i=1,...,n
through ¢;. By standard techniques, the conditional density
fu,e(ui|€i) iS

_fv,u(gi + ui7ui)

fu\s(ui|€i) - f.(&‘[) = ¢((8i + ui)/g") u(ui)

Jer (gi) ’

where ¢ is the standard Normal density. We show in the
Appendix that

, 2
E(exp{—u}le) = «9,‘7‘%(8) exp{lg—f”e + 67 (%) }

We will use this expected value in our simulations
alongside the conditional mode as predictors of inefficiency
(we won’t present formulas for conditional expectations for
the other models that we deal with here).

Turning to the conditional mode, in order to compute it
we need the conditional density of f, |.(q.|€;) which we can
readily obtain by applying a change-of-variables in f,.(u;|€;)
to arrive at

¢((ei —Ing,)/0v)f,, (q.)
ouf (&) '
This can be maximized numerically with respect to g,
(for each estimated value &;), to get the conditional mode as
an alternative predictor of individual efficiency. Note that
this requires maximizing only the numerator in eq. (9),
since the denominator does not include the g, variable.

fq“\s(qu|€i) = (9)

@ Springer

4.2.1 Monotonicity of the conditional mode in the
conditioning variable

We show in the Appendix that the conditional mode g, = in
the NGE production frontier satisfies the following implicit
equation:

8i—]l’l u,*

The variable g, ranges in (0, 1]. This implies that the
term in parenthesis is always positive, meaning that the
LHS expression is increasing in &;. Also, it is evident that
both the term in parenthesis and the term in brackets is
decreasing in g, ». So if we increase the value of &; the LHS
will tend to increase, and in order to restore equality with
zero we must decrease the LHS and so increase g, = But
this proves that the conditional mode is monotonically
increasing in the conditioning variable. This shows that the
result of Ondrich and Ruggiero (2001) mentioned earlier
related to conditional expectations extends to the condi-
tional mode of the NGE production specification.

5 The cost frontier

In a cost frontier setting, the original equation is of the
form

vi=f(x)exp{vi+wi}, i=1,...n.

Here the dependent variable represents production costs,
and the regressors are typically input prices and output, and
again we focus on its estimation in logarithms. So the
composite error term is e =v + w and we assume v ~ N(0,
c,), w~GEQ2, 6,, 0).

The density and distribution function of the composite
error term are respectively

fe(e) = 7 lexp{a, }@(by)
_ exp{ZaW + (o /9w)2}<1>(bw —6,/0, )} ,

and

Fele) = @(£) — 2expla,}o(by)

2
+ exp{ZaW + Z—g}@(bw - %),

with
63 € b £ 0y
ay = a w = —
202 6, o, 0,
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As before these can be used in maximum likelihood
estimation, while we can also implement the COLS esti-
mator (only, x3(¢) would be positive here).

5.1 Assessing and measuring cost (in)efficiency

The standard measure of cost efficiency, is the ratio of
minimum cost to actual, in our setting CE =g, =
exp{—w} € (0,1] (see Sickles and Zelenyuk 2019
pp- 80-81). The measure enjoys certain theoretical desirable
properties, not least being confined in the (0, 1] interval.®
For CE all the formulas from the marginal analysis of the
section on the production frontier applies as is (Section 4.1),
inserting everywhere w in place of u.

Somewhat more intuitive but less well-behaved would be
the ratio of actual cost to minimum, which we could think of
as a measure of cost inefficiency. This would give us a
“gross inefficiency mark up”: a value, say, 1.25 of this ratio
would tell us that actual costs are 25% higher than mini-
mum. In our setting this measure is represented by
k = exp{w}, k € [1,00). Here we have

Fi(k) = Pr(exp{w} < k) =Pr(w < Ink) = F,,(Ink)

= Fu(k) = (1 - k‘l/"“')z.

This is the distribution of the maximum of two i.i.d
Pareto random variables (of “Type I”), with minimum
value/scale parameter equal to 1, and shape parameter 1/9,,..
Its density is

filk) = % (kil*l/ew — kflfz/ew)

The mode of this distribution is

24 ew) O

mode(exp{w}) = (1 o,

while its quantile function is

0ulp) = (1—yp) ™™, pelo.1].

Here, the existence of moments depends on the value of
6, as it is the case for the Pareto distribution itself, for the
r-th moment of k to exist and be finite, we must have 6,, < 1/
r. So if 8,,> 1 not even the mean will exist, while to have a
variance we would need 6,, < 1/2.

% But it is not immediate to translate it in intuitive terms, because,
here, improving cost efficiency means reducing the denominator of the
ratio. In fact the value 1 — CE =1 —exp{—w} is more naturally
communicated, being the proportional reduction in costs required to
attain full cost efficiency. So if, say, CE = 0.8, we have to reduce costs
by 1 — 0.8 =20% to reach the frontier, holding output constant.

In cases where 6,,< 1, the mean of this distribution is
given by
E(exp{w}) :
expiwp))=————
P 1-0,)2-6,)"

and if moreover 0,, < 1/2, the variance can be obtained from

Var (exp{w}) = Elexp{2w}] — [E(exp{w})]".

The net mark-up on costs due to inefficiency is
exp{w}—1, and this is the maximum of two i.i.d random
variables following the Lomax distribution with scale
parameter equal to unity (the Lomax distribution is essen-
tially a Pareto law shifted so as its support starts at zero).

5.2 Individual measures
For the cost efficiency measure CE = exp{—w} the con-

ditional density is

¢((8i +In QW)/GV) qw(qw) .

o (@) (12

qu\e(qw|€i) =

Turning to the cost inefficiency measure k = exp{w}, we
note that if 6,,>1 and the marginal distribution does not
possess moments, we are left only with the conditional
mode as an individual measure. This is because the condi-
tional expectation is fundamentally defined only for vari-
ables that are absolutely integrable and have finite expected
value (see e.g. Williams 1991, Theorem 9.2, p. 84).
The conditional density here is

¢((ei —Ink)/oy)f (k)
Ger(ei) .

Numerical maximization of the numerator in both expres-
sions with respect to k gives the conditional mode, for given &;.

Fue(klei) = (13)

6 The two-tier frontier’

The two-tier stochastic frontier (2TSF) model was intro-
duced by Polachek and Yoon (1987) in order to measure
informational inefficiency of both employers and employees
related to the determination of the wage. Since then it has
been applied to many other markets apart from the labor
market, notably the housing market and the health services
market, but also as a method to measure bargaining power
in a bilateral bargaining setting (see Papadopoulos 2020c,
for a comprehensive survey).

7 The mathematical derivations of this section can be found in the
Technical Appendix of Papadopoulos (2018, pp. 409-444).

@ Springer



22

Journal of Productivity Analysis (2021) 55:15-29

The model is represented by the equation

yvi =f(xi)exp{e}, ei=vitwi—w, i=1,..,n,

and as before we assume that it will be estimated in
logarithmic form. The error components follow v ~ N(0, o,),
w~GEQ2, 6, 0), u~GEQ2, 0, 0), and are jointly
independent. Then we have,

2
N 911/ + HU

20, exp{a,}®(b,)
0, + 26,

K exp{Zau + (o, /au)2}<1>(bu —6,/6,)

20,, + 0,
20,, exp{a, }®(b,,)
20,, + 0,

K exp{Zaw n (ov/6’w)2}<1>(bw ~6,/0, )]

fe(e)

0, + 20,
(14)

The distribution function is

Fule) = 2 260 + 0 + 6.0,(0, + 0.) (€
T e 26, + 200020, + 6,) o
2
—I—mexp{au}@(b,,)

03 expy 2 +6§ Db Ov
2(20w T 01,4) p Ay 93 u Hu

2 2
% explan}o(by)

20, + 6,
0% exp{2a, + 02 /0% } o,
" 20,20, (bw - 9_w) ' (15)

It is straightforward to obtain the moments of € using the
cumulant expressions, since the three components are
independent. We have

Ka(e) =02 +3(02 4+ 62), x3(e)=2(03 —6),
ka(e) = 384+ 62).

Implementing the COLS estimator here requires also the
use of the sample mean of the 4th power of the OLS resi-
duals that estimates consistently the 4th central moment of
the composed error term, and it must be set equal to
k4(e) + 3K3(e).

The two-tier frontier specification faces no problems
with “wrong skew” samples, because its theoretical
skewness can be positive or negative. Papadopoulos
(2020b) develops a 2TSF model for production in order
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to measure the effects that unobservable management has
on output (management being represented by the error
component w).

6.1 Assessing and measuring the net effect

To analyze each one-sided component individually, we can
use the results from the single-tier frontiers as regards the
marginal distributions, but not the results on individual
measures, since these depend on the composite error term
which here is different.

But specific to the 2TSF model is the joint presence of
opposing forces w and u on the outcome, and so of special
interest is their net effect z=w — u, and, for the logarithmic
model we are considering, the exponentiated one,
& = exp{w — u}. After deriving the density and distribution
function of z, which we do not present here, we can obtain
the density and distribution function of £ with the same
techniques as before,

02 40 2/6,
. & ¢ £<1
aw + 0‘4 0%’ + 26“ 20W + 6”
Fi(é:) = 92 4571/9“» 4:*2/9.,,
_ w _ 1 .
6w+ 0, |20, 0, 0, + 26,
(16)

From this, one can obtain probabilistic events of interest
like for example,
2
6“

Pr(exp{w —u} <1) = o1 0 (

4 1
0w + 20, 20, + 0.)

The marginal density of & is

g 1170, —1+2/0,
2 0, + 20, 260,, + 6,
ff(é) = —9w T 914 X 257171/& f,1,2/9“.
w - 1
0, 10, 6, +20,

The mode of this density is

mode(exp{w — u}) =
{0 O, > 1
max{qol{qy < 1}, q:i/{q;>1}} 6.<1,
(18)

with

_(1-6, 40, +20\" (246, 20,+6,\"
©=\2"9, 0,+20,) 1" "\1¥0, 20,+40,) °
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and where /{-} is the indicator function. One can determine
that

mode (exp{w — u}) # mode (exp{w}) mode (exp{—u}).

The proper predictor of the net effect of the two
opposing one-sided components is the mode of the dif-
ference, not the difference of the marginal modes, since,
even if they are independent, the two error components
happen concurrently and so we must consider their var-
iation jointly. But the marginal modes are also useful
since they predict the value of each component, if it
operated without the presence of the other.

As regards expected values, due to independence we have,

Elexp{w — u}] = E(exp{w})E(exp{—u}),

and it will exist if 8,, < 1.
6.2 Individual measures
In the 2TSF setting, of main interest are the variables

k= exp{w}, qdw = exp{—w},

q, = exp{—u}, & =exp{w — u}.

Closed-form expressions for the one-sided conditional
expectations for the 2TSF NE and NHN specifications have
been collected in Papadopoulos (2018, ch.3). Up to now no
attention has been given to the conditional mode as a pre-
dictor at the individual level. For the NGE specification,
closed-formed expressions for conditional expectations can
be derived, but they are much more involved and lengthy
than for the single-tier models. We also note that even
though w and u are assumed independent, they stop being
so conditional on &, so

Elexp{w — u}|e]  Elexp{w}|e]E[exp{—u} e].

To obtain predictors based on the mode we need four
conditional densities. These are

Fue(kle) = % x {k*”’“ expla,}® (lzk + bu)
2
— 2/ exp{Zau + % }cp (1:" + b, — Z;)} .
2, (@) (19)
qu\ﬁ(qw|£) = eufﬁ(e)

—1
y {qwl/aﬂ expla}® (ﬂ + bu)
oy

2
_qwz/au eXp{Zau + % }q;(% +b, — g_)} 7

u

(20)

where f, (q,,) isf, (q,) (eq. (7)) with the symbol w in place
of the symbol u. Also,
24, (4u)
Fane(aule) = 3455
X [qul/ % exp{a,, }® (;anqu + bw)
(21)

and finally,

¢((e—Inf)/ay)
ouf e (€)
As before, obtaining the conditional mode series requires

numerical maximization of these expressions with respect to
their variable, for each estimated value of &;.

fee(Ele) = X fe(£). (22)

7 Simulation studies

In this section we provide simulation results related to the
NGE production frontier model, using maximum likelihood
estimation.

In all simulations the regression equation is

y:1+X1+X2+S,

with x; ~ 3, xa ~ Bern (0.65),v ~ N(0, 1).

In each simulation we run 1000 replications and we
report sample averages over them. We consider two sample
sizes n =200, 1000 and two different values of 6,=0.5,
1.5. For each value we report also the “signal-to-noise” ratio
(SNR), the ratio of the standard deviation of the inefficiency
error component over that of the random component. This is
a model-free measure that summarizes well how strong is
the signal that interests us (the inefficiency), relative to
noise. Note that it equals the familiar A = ¢,/0, only for the
NE specification.

We observed that when the data generating process was
NGE, the correctly specified MLE failed to converge 2-5%
of the times, while when the sample size was small and the
SNR large, this percentage rose to =15%. We noted earlier
that this is not related to the “wrong skew” issue. Rather, it
indicates a sensitivity of the NGE likelihood to starting
values, and in empirical studies many different sets of initial
values for the parameters should be tried.

E=V—u,

7.1 Performance when the DGP is NGE

In the first part of our simulation study, the DGP has an
NGE composite error term. We report OLS, NHN, and NE
estimates also, to see how these fare when the true speci-
fication is NGE. Essentially we attempt to answer the
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Table 1 Production frontier—Data generating process is NGE

0=0.5 n =200 n = 1000

SNR =0.559 TRUE OLS NHN NE NGE OLS NHN NE NGE
Const. 1 0.240 0.960 0.683 0.859 0.251 1.052 0.744 0.933
x; (cont.) 1 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000
X, (discrete) 1 1.009 1.010 1.010 1.011 0.999 0.999 0.999 1.000
oy 1 - 0.943 1.018 0.999 - 0.954 1.024 1.008
E(e) 0.75 - 0.720 0.443 0.624 - 0.801 0.492 0.684
Var(e) 1.313 1.306 1.186 1.233 1.215 1.307 1.277 1.291 1.276
r1(€) —0.187 —0.180 —0.124 —0.127 —0.121 —0.182 —0.153 —0.163 —0.148
72(€) 0.231 0.164 0.054 0.152 0.129 0.204 0.071 0.212 0.169
E(exp{—u}) 0.533 - 0.551 0.693 0.585 - 0.522 0.670 0.559
0=15 n=200 n = 1000

SNR = 1.677 TRUE OLS NHN NE NGE OLS NHN NE NGE
Const. 1 —1.245 0.942 0.346 0.972 —1.253 0.971 0.361 0.999
x; (cont.) 1 0.999 0.993 0.992 0.992 1.001 1.000 1.000 1.000
X, (discrete) 1 0.995 1.002 0.996 1.000 1.004 1.003 1.003 1.003
oy 1 - 0.881 1.112 0.979 - 0.894 1.125 0.995
E(e) 2.25 - 2.208 1.586 2214 - 2.248 1.612 2.250
Var(e) 3.813 3.759 3.558 3.752 3.681 3.817 3.683 3.864 3.803
71(e) —1.020 —0.937 —0.688 —1.098 —1.024 —1.007 —0.689 —1.103 —1.024
72(€) 2.220 1.763 0.531 2.697 2.232 2.154 0.533 2713 2.231
E(exp{—u}) 0.229 - 0.260 0.387 0.232 - 0.256 0.383 0.229

True values are indicated in bold

question “suppose that the DGP is indeed NGE. Does it
matter for inference?” We certainly expect that the correctly
specified MLE will fare better compared to a misspecified
likelihood, but how much better?

In order to have comparable results between specifica-
tions, we present not estimates of the scale parameters of the
inefficiency component, but calculated moments based on
these estimates and on the assumed specification in
each case.

The results are presented in Table 1. They validate the
robustness/consistency property for the Skew Normal quasi-
MLE (the NHN specification) as regards the regression
slope coefficients, proven in Papadopoulos and Parmeter
(2020). The same robustness property appears to char-
acterize the NE specification. Regarding the performance of
the misspecified likelihoods, we see that the MLE under the
NHN specification does remarkably well, perhaps against
expectations, with rather small bias in the estimation of
average Technical Efficiency. On the other hand, the NE
specification leads to high overestimation of TE.

Probing deeper we computed also JLMS conditional
expectations for the NHN and NGE models. In each repli-
cation we obtained the conditional expectation series, and
computed the 0.2, 0.4, 0.6, 0.8 quintiles.
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Table 2 Production frontier—Data generating process is NGE.
Empirical medians of Quintiles of JLMS measures E[exp{—u}]

6=0.5/SNR =0.559 6=1.5/SNR = 1.677

n=200 n=1000 n=200 n = 1000
cum. Proo NHN NGE NHN NGE NHN NGE NHN NGE
0.2 040 048 040 046 0.05 0.07 005 0.07
0.4 049 054 049 053 015 0.17 015 0.17
0.6 056 059 056 058 029 027 029 0.27
0.8 063 063 0.63 062 046 038 046 038

Table 2 presents the median estimate of each quintile
over all replications. We observe that sample size does not
appear to affect behavior. When the SNR is low, the pre-
dictor coming from the NHN misspecified model tends to
underestimate Technical Efficiency: for example, it places
40% of firms at a Technical Efficiency level below
0.48-0.49 (1st column 2nd row), while the correctly spe-
cified NGE predictor does that for only 20% of firms (2nd
column 1Ist row). When the SNR is large, the two predictors
allocate probability mass essentially in the same way up to
cumulative probability 0.6, but then the NHN tends to
overestimate Technical Efficiency since its 0.8-quantile
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Table 3 Production frontier—Data generating process is NHN

0,=0.927 n =200 n=1000

SNR = 0.559 TRUE OLS NHN NE NGE OLS NHN NE NGE
Const. 1 0.260 0.871 0.620 0.759 0.265 0.917 0.654 0.794
x; (cont.) 1 1.002 1.001 1.001 1.001 0.999 0.999 0.999 0.999
X, (discrete) 1 0.994 0.996 0.995 0.994 0.994 0.994 0.994 0.995
o, 1 - 0.979 1.048 1.034 - 1.009 1.066 1.056
E(e) 0.740 - 0.611 0.359 0.504 - 0.652 0.389 0.532
Var(e) 1.313 1.303 1.172 1.227 1.210 1.314 1.261 1.288 1.273
r1(€) 0.116 —0.119 —-0.077 —0.068 —0.064 -0.113 —0.084 —0.081 —0.070
72(€) 0.049 0.013 0.029 0.066 0.055 0.047 0.032 0.083 0.062
E(exp{—u}) 0.544 - 0.595 0.736 0.641 - 0.578 0.720 0.627
0,=2.782 n =200 n=1000

SNR = 1.677 TRUE OLS NHN NE NGE OLS NHN NE NGE
Const. 1 —1.202 0.971 0.267 0.901 —1.221 0.983 0.289 0.942
x; (cont.) 1 0.997 0.990 0.993 0.993 1.000 0.999 0.999 0.999
X, (discrete) 1 0.986 1.005 0.995 0.996 1.003 1.007 1.006 1.006
o, 1 - 0.974 1.276 1.137 - 0.997 1.291 1.153
E(e) 2.220 - 2177 1.467 2.108 - 2.205 1.512 2.168
Var(e) 3.813 3.745 3.654 3.780 3.760 3.799 3.770 3.953 3.939
71(€) —0.631 —0.606 —0.634 —0.859 —0.856 —0.624 —0.629 —0.880 —0.868
r2(€) 0.473 0.422 0.477 1.945 1.757 0.449 0.471 2.007 1.791
E(exp{—u}) 0.259 - 0.263 0.405 0.244 - 0.260 0.398 0.237

True values are indicated in bold

value is 0.46 while the corresponding quantile value of the
NGE predictor is only 0.38.

7.2 Performance when the DGP is NHN

Here the DGP includes a NHN composite error term, and
we are interested to see how misleading could estimation be
if it is carried based on a misspecified NGE likelihood.

The results from the NHN DGP are in Table 3. When the
SNR is low, the now misspecified NGE model leads to an
overestimation of Technical Efficiency, but not as much as
the misspecified NE model. With high SNR, the NGE
model performs comparably with the NHN model in the
previous simulation, while the NE model continues to be
highly biased.

7.3 Performance when the DGP is NE

Here the DGP includes a NE error term, and the goal is the
same as in the previous subsection.

From Table 4 we see that the now misspecified NHN and
NGE models perform comparably, and both underestimate
the average Technical Efficiency measure.

Overall, there appears to be a certain degree of congruence
and “mutual robustness” between the NGE and the NHN
specifications, and exploring whether this has some deeper
theoretical justification could be an interesting topic of study.
When we misspecify the one against the other, results are not
that different, although of course it is always preferable to use
the correct specification, especially when one is interested not
just in sample averages but individual estimates of inefficiency.
On the other hand the misspecified NE likelihood visibly
overestimates Technical Efficiency against both an NGE and a
NHN data generating process, and these two return the favor
by underestimating TE when the true model is NE.

7.4 Rankings and correlation

In this subsection we examine how close are the firm
rankings obtained by the NGE predictor compared to the
rankings based on OLS residuals. We included an addi-
tional sample size, n = 5000, and two additional values for
0,=1.0, 2.0. We computed individual efficiency measures
for the NGE specification, both conditional expectations
and conditional modes (for the exponentiated variable). In
Table 5, we compare the observation rankings obtained
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Table 4 Production frontier—Data generating process is NE

0, =0.559 n=200 n = 1000
SNR = 0.559 TRUE OLS NHN NE NGE OLS NHN NE NGE
Const. 1 0.446 1.220 0.938 1.139 0.440 1.316 0.990 1.217
x| (cont.) 1 1.002 1.000 1.000 1.000 1.001 1.000 1.000 1.000
X, (discrete) 1 0.993 0.996 0.995 0.996 0.999 0.999 0.999 0.999
o, 1 - 0.916 0.992 0.969 - 0.922 0.999 0.978
E(e) 0.559 - 0.775 0.492 0.695 - 0.877 0.550 0.777
Var(e) 1.313 1.297 1.181 1.226 1.208 1.311 1.290 1.300 1.292
71(€) —0.232 —0.230 —0.155 —0.175 —-0.169 —0.235 —0.198 —0.224 —0.213
72(€) 0.340 0.281 0.073 0.233 0.202 0.332 0.101 0.324 0.275
E(exp{—u}) 0.641 - 0.531 0.670 0.555 - 0.497 0.645 0.523
oc=1.677 n =200 n = 1000
SNR = 1.677 TRUE OLS NHN NE NGE OLS NHN NE NGE
Const. 1 —0.673 1.553 0.993 1.625 —0.675 1.556 0.997 1.626
x; (cont.) 1 1.000 0.992 0.994 0.993 0.999 0.998 0.998 0.998
X, (discrete) 1 1.000 1.002 0.999 1.000 0.999 0.999 1.000 1.001
oy 1 - 0.763 0.978 0.837 - 0.792 0.996 0.865
E(e) 1.677 - 2.265 1.658 2.289 - 2274 1.672 2.301
Var(e) 3.813 3.769 3.511 3.705 3.612 3.799 3.579 3.788 3.690
71(€) —1.267 —1.168 —0.758 —1.278 —1.165 —1.249 —0.745 —1.268 —1.146
72(€) 3.265 2.644 0.605 3.303 2.650 3.155 0.591 3.267 2.593
E(exp{—u}) 0.374 - 0.255 0.376 0.225 - 0.254 0.374 0.223
True values are indicated in bold
Table 5 Production frontier—NGE ranking changes compared to OLS ranking
E(exp{-u}) mode(exp{-u}) E(exp{-u}) mode(exp{-u})
n=200 0=0.5 SNR = 0.559 =1 SNR=1.118
% of rank changes 48.4% 31.2% 64.3% 64.2%
% of ventile moves 8.7% 0.1% 1.7% 1.4%
=15 SNR = 1.667 =2 SNR =2.236
% of rank changes 73.4% 73.2% 77.0% 77.0%
% of ventile moves 4.9% 4.3% 6.5% 6.3%
n=1000 0=0.5 SNR = 0.559 =1 SNR=1.118
% of rank changes 56.1% 54.6% 80.6% 80.6%
% of ventile moves 0.2% 0.0% 0.4% 0.1%
=15 SNR = 1.667 0=2 SNR =2.236
% of rank changes 86.5% 86.5% 88.1% 88.2%
% of ventile moves 0.2% 0.2% 0.4% 0.5%
n=5000 6=0.5 SNR = 0.559 =1 SNR=1.118
% of rank changes 73.7% 73.6% 90.3% 90.3%
% of ventile moves 0.0% 0.0% 0.1% 0.0%
=15 SNR = 1.667 0=2 SNR =2.236
% of rank changes 93.4% 93.4% 94.4% 94.4%
% of ventile moves 0.0% 0.0% 0.0% 0.1%
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Table 6 Production frontier—NGE specification. Individual efficiency measures

E(exp{—u}) mode(exp{—u}) E(exp{—u}) mode(exp{—u})
n=200 60=0.5 SNR =0.559 =1 SNR=1.118
% of rank changes 17.4% 0.3%

% of ventile moves 8.6% 0.3%

abs. diff. in effic. perc. points 6.3 9.3

Pearson’s corr with exp{—u} 0.35 0.45 0.63 0.61

Kendall’s tau with exp{—u} 0.28 0.29 0.48 0.48

0=15 SNR = 1.667 0=2 SNR =2.236

% of rank changes 1.1% 1.0%

% of ventile moves 1.1% 0.6%

abs. diff. in effic. perc. points 9.2 7.7

Pearson’s corr. with exp{—u} 0.68 0.66 0.72 0.70

Kendall’s tau with exp{—u} 0.59 0.60 0.67 0.67

n=1000 6=0.5 SNR = 0.559 =1 SNR=1.118

% of rank changes 1.8% 0.5%

% of ventile moves 0.1% 0.4%

abs. diff. in effic. perc. points 5.9 10.0

Pearson’s corr. with exp{—u} 0.45 0.46 0.63 0.61

Kendall’s tau with exp{—u} 0.29 0.29 0.48 0.49
0=1.5 SNR = 1.667 6=2 SNR =2.236

% of rank changes 0.0% 0.2%

% of ventile moves 0.0% 0.1%

abs. diff. in effic. perc. points 9.3 7.8

Pearson’s corr. with exp{—u} 0.71 0.67 0.74 0.70

Kendall’s tau with exp{—u} 0.60 0.60 0.68 0.68

n=>5000 6=0.5 SNR = 0.559 0=1 SNR=1.118

% of rank changes 0.1% 0.1%

% of ventile moves 0.0% 0.1%

abs. diff. in effic. perc. points 5.7 10.2

Pearson’s corr. with exp{—u} 0.46 0.46 0.64 0.61

Kendall’s tau with exp{—u} 0.30 0.30 0.48 0.48
6=1.5 SNR = 1.667 60=2 SNR =2.236

% of rank changes 0.0% 0.3%

% of ventile moves 0.0% 0.1%

abs. diff. in effic. perc. points 9.4 7.8

Pearson’s corr. with exp{—u} 0.71 0.67 0.74 0.70

Kendall’s tau with exp{—u} 0.60 0.60 0.68 0.68

using them, to those based on OLS residuals. We report the
proportion of observations that changed rank, but also the
proportion of observations that moved by a ventile, namely
those that moved at least five percentiles in the ranking
distribution.® We consider this a realistic criterion in order
to conclude that the rankings differ in a substantial manner
from an economic point of view, since, moving a few
positions among hundreds of observations does not signal
that the two measures rank really differently an observation.

What we observe in Table 5 is that while the large
majority, and even almost all of observations change rank
under the JLMS measures from the NGE specification
compared to the OLS ranking, very few or even none move
by a ventile. This does not invalidate the Ondrich and

8 This is not the same as “changing ventile” which could happen if a
firm moves from, say, the 5th percentile to the 6th.

Ruggiero (2001) result, it just clarifies it appropriately:
rankings coming from log-concave densities in SF models
don’t differ from OLS rankings in an economically impor-
tant way. We also see that the conditional mode behaves
much like the conditional expectation in that respect, as
anticipated from the related theoretical result obtained
earlier.

Finally, we examined how close are the two JLMS mea-
sures of inefficiency, but also how they correlate with the true
value exp{—u;}. The results are presented in Table 6.

The first two rows of Table 6 in each block are analogous
to the first two rows of Table 5: they tell us how many
observations in percentage terms changed rank and how
many moved at least by a ventile, when ranked by the
conditional expectation and when ranked by the conditional
mode. Except when the sample size is small and the inef-
ficiency parameter is the lowest simulated, in all other cases

@ Springer



28

Journal of Productivity Analysis (2021) 55:15-29

these proportions are both negligible or even zero, indicat-
ing that the two JLMS measures result in almost identical
rankings, both from a statistical but also from an economic
point of view.

The 3rd row gives the average absolute difference in
efficiency percentage points, as measured by the two mea-
sures. This difference is not negligible: it tells us that on
average, the two measures differ in the assessment of
individual efficiency by 5 to 10 points (in the 1-100 scale
that 100 x exp{—u} lives), which in relative terms may
translate to an efficiency score that differs by more than
10-15%, depending on which measure is used.

The 4th and 5th row provide association measures of the
JLMS scores with the true variable they predict. The dif-
ferences are minor to none, with the Conditional Expecta-
tion showing a slightly higher linear correlation with
exp{—u}. We also note that the sample size appears not to
matter for how well these measures correlate with the true
variable, but the strength of inefficiency (the values of 6,)
does. Overall, the behavior of the two measures is very
close, which does not help us to choose among them, in
light of their previous difference as regards the actual
quantitative estimation of the efficiency score.

But perhaps this is as it should be, since each measure
may be appropriate for different situations: mid- and long-
term analysis of repeated actions may be more secure using
the conditional expectation and the approach of “averaging”
that it represents, while short-term one-off decisions may be
served better by the “most likely” prediction, and hence by
the conditional mode.
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8 Appendix

8.1 The conditional expectation in the NGE
production frontier

In the production SF model we want to compute
Blexplu}le) = [, (ule)d
=t ® / e p((e + u)/ov)h(u; 6,)du
e Jo

_#(s)/o e "p((e +u)/oy)he(u;0,/2)du,
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where we have used the additive form of the GE density,
eq. (2). Decomposing the integrands,

2exp{—&? /202
E(exp{—u}le) = 22100 s (1) — 1),

I, = / exp{—u’/20> — (e/or + 1 + 1/6,)u}du
0

L= / exp{—u’* /207 — (e/o? + 1 +2/0,)u}du.
0

Combining formulas from Gradshteyn and Ryzhik
(2007) and Erdelyi et al. (1954), we have (for a > 0),

/ooo exp{—az’ — bz}dz = \/Tiexp{g}q) (_ \/Lz_)

For both integrals, we have the common mapping

= O-V\/Eﬂ

1 1 L_ 2
— ——==o0,, —=0,/2.
Va Vaa "da
Moreover we have, using indices 1 and 2 for the two
integrands,

a=1/26 =

by =¢e/o> +1+1/6,, by=b;+1/0,

= b3 =b] +2b1/0,+1/62.

Exploiting these results to make some initial simplifica-
tions we can write

X 752 0'2 (72. 2
E(exp{—ulle) = Mexp{‘%"} x (A) — Ay),

Ouf e (e)
A1 = CD(—Uvbl),
A, = ofbl O'% ® b o,
2 = eXp T, F o —oyby —
Now,
2 2
) _ €& 1+ Gui 146,
by = 6§+2 0y o o

2
= ng% :i_;’_ ! +0“8+O-_% ﬂ .
2 26% 6’u 2 gu
Also,

Combining all, we arrive at

2
Blexp{-uble) =a7ere{ e+ (%)}

Po(cs-a (i)
0 +3)
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8.2 The conditional mode in the NGE production
frontier

We want to maximize the conditional density in eq. (9) with
respect to g. Ignoring the terms that do not include g, the
derivative we want to set equal to zero is

0 g —Ing —14+1/6, _ —142/6,
sa (5 ) (o)

_ ¢’(€’;fflq>(*1/qt’»v) . (qu/su — g 120

1) <)o (oo ]

Using the property of the standard Normal density
¢'(z) = —z¢(z) we obtain

_ 1, (&=Ing ei—Ilng —1+1/6, —1+2/6,
76¢(1(7—‘,) X{‘G—%(q /u_q /u)

" (_] _i_aiu)qu/e,‘ _ (_1 +6%)q71+2/6u}.

Setting this expression equal to zero is equivalent to
setting the expression in curly brackets equal to zero since
the term outside is always positive. Manipulating further,

= (g V0 — g1y [_&;‘%“‘/ —1+3

_alq—l+2/6),4 =0.

U

Taking ¢~ '*%/% out as common factor we arrive at the
expression used in the main text.
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