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Abstract
This paper extends the fixed effect panel stochastic frontier models to allow group heterogeneity in the slope coefficients. We
propose the first-difference penalized maximum likelihood (FDPML) and control function penalized maximum likelihood
(CFPML) methods for classification and estimation of latent group structures in the frontier as well as inefficiency. Monte
Carlo simulations show that the proposed approach performs well in finite samples. An empirical application is presented to
show the advantages of data-determined identification of the heterogeneous group structures in practice.

Keywords Classification ● Fixed effect ● Group heterogeneity ● Panel stochastic frontier ● Penalized control function
maximum likelihood ● Penalized first-difference maximum likelihood.

JEL classification C13 ● C23 ● C36.

1 Introduction

Unobserved heterogeneity plays an important role in the
estimation of panel stochastic frontier models, and since
heterogeneity is a latent feature of the data, its extent is
unknown a priori in empirical practices. Therefore,
neglecting unobserved heterogeneity in the data can lead to
inconsistent estimation of frontier parameters, and mis-
leading inferences and predictions of the inefficiency indi-
ces. Greene (2005a; 2005b) pointed out that if individual-
specific heterogeneity is not adequately controlled for, the
predicted inefficiency may be picking up some, if not all, of
the individual-specific heterogeneity. Thus, recent work on
panel stochastic frontier models have focused on how to
control for unobserved heterogeneity (see, for example,
Guan et al. (2009), Wang and Ho (2010), Colombi et al.
(2014), Chen et al. (2014), Kumbhakar et al. (2014),

Tsionas and Kumbhakar (2014), Kutlu et al. (2019), and
Kutlu and Tran (2019) for reference therein).

However, all the papers mentioned above, except Kutlu
et al. (2019), typically assumed complete slope homo-
geneity (i.e., the frontier parameters are the same across
individuals), and unobserved heterogeneity is modeled
through individual-specific effects. Kutlu et al. (2019) allow
only a subset of variables to have different slopes for
individuals. Tsionas (2002) considered a pooled panel sto-
chastic frontier model that allowed for slope heterogeneity
where the frontier parameters are random so that they are
completely different for different individuals; however, he
assumed that the intercept term is common for all indivi-
duals over time, and hence he did not control for individual-
specific effects. Whilst allowing for cross-section slope
heterogeneity may help to improve on the specification bias
of the frontier, its main disadvantage is the loss of power
due to cross-section averaging in the estimation of the
response patterns that may be common across individuals
(i.e., certain groups of individuals in the panel). Moreover,
since the parameters are random, this model is subject to
standard problems of random effects models, e.g., incon-
sistent parameter estimates when the slopes are correlated
with the error term. Thus, for the panel stochastic frontier
model, it is essential to control for unobserved hetero-
geneity in the data as well as for the potential heterogeneity
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in the response mechanisms that characterizes within
the model.

In this paper, we extend previous work on panel sto-
chastic frontier models, and specifically the Wang and Ho
(2010) model, to allow for both unobserved heterogeneity
via individual-specific effects and for group heterogeneity
in the slope parameters. In the standard panel regression
models with individual-specific effects, Su et al. (2016)
develop a new estimation and inference procedure when
the regression parameters are heterogeneous across
groups. They treat individual group membership as
unknown and the group classification is determined
empirically. We follow their lead in this paper and extend
their approach to panel stochastic frontier models. Spe-
cifically, we use first-differencing transformation to
remove the fixed effect, and then propose a penalized
maximum likelihood estimation procedure to consistently
estimate the frontier parameters, classification of groups
and their memberships as well as technical inefficiency
scores. Moreover, we also extend the model to allow for
some or all regressors to be endogenous and propose a
different estimation approach for which we term as
penalized control function maximum likelihood.

Our proposed model is related to the class of the meta-
frontier model developed by Battese et al. (2004) and
among others, in the sense that both models consider the
group-wise heterogeneity in response coefficients. How-
ever, our proposed model differs from the metafrontier lit-
erature in the following ways. First, the number of groups is
specified a priori in the metafrontier model whilst they are
determined endogenously based on the data in our model.
Second, unobserved individual-specific effects can be dif-
ferent even among the firms within each group, but the
metafrontier model does not allow for such effects and our
model certainly allows for it. Finally, the metafrontier
model assumes there exists a deterministic frontier which
envelopes the groups’ frontiers. However, we do not make
such an assumption in our model due to the presence of the
general (unobserved) individual-specific effects. Never-
theless, we believe that it can be readily extended to allow
for a such deterministic frontier. Thus, our proposed model
is more general and flexible.

The remainder of the paper is organized as follows.
Section 2 outlines the model and estimation procedure.
Specifically, we consider first-differencing transformations
in the estimation procedures to remove the individual-
specific effects and show how to determine the number of
groups, classification of group membership, and prediction
of technical inefficiency scores. Section 3 extends the model
to accommodate for endogenous regressors. A detailed
computational algorithm of the proposed approach is given
in Section 4. Section 5 provides some Monte Carlo simu-
lations to examine the finite sample performance of the

proposed estimators. An empirical application is presented
in Section 6, and finally, Section 7 concludes the paper.

2 The model with exogenous regressors

In order to fix the ideas, we will describe the estimation of a
production function. However, with standard minor mod-
ifications in the model, a cost function can be estimated as
well. Suppose we observed a panel data {(xit, yit): i= 1, ...,
N; t= 1, ..., T} where yit is a scalar representing (log) output
of firm i at time t and xit is k × 1 vector of (log) inputs of
firm i at time t. The fixed effects stochastic frontier model
with group-specific pattern heterogeneity can be written as:

yit ¼ αi þ x0itβi þ vit � uit; ð1aÞ

vit � Nð0; σ2vÞ; ð1bÞ

uit ¼ hitu
�
i ; ð1cÞ

hit ¼ hðq0itδÞ; ð1dÞ

u�i � Nþð0; σ2uÞ; ð1eÞ

where αi are scalar individual effects, βi is a kx × 1 vector of
parameters of interest, vit is a random symmetric error term
representing factors that are beyond the firm’s control, uit ≥
0 is a one-sided stochastic variable representing a technical
inefficiency component, hit is a positive function of a kq × 1
vector of non-stochastic inefficiency determinants (qit), and
δ is a kq × 1 vector of unknown parameters. We assume that
the random variable u�i is independent of all T observations
on vit, and both u�i and vit are independent of all T
observations on {xit, qit}. For identification purposes, we
further assume that neither xit nor qit contains a constant
term, and at least one variable in qit is not time-invariant.
Following Su et al. (2016) (hereafter SSP), we allow for βi
to follow a group-specific pattern of the general form:

βi ¼
γ1 if i 2 G1

..

.

γJ0 if i 2 GJ0

8>><>>: ; ð2Þ

where in (2), for any j ≠ l, γj ≠ γl, Gj ∩Gl=∅, and
∪ J0

j¼1Gj ¼ f1; 2; :::;Ng. Let Nj= #Gj, j= 1, ..., J0, denote
the cardinality of the set Gj. To simplify the discussion, for
now we assume that the number of groups, J0 is known and
fixed but each individual’s group membership is unknown.
In addition, we implicitly assume that individual group
membership does not vary over time. The above model can
be thought of as an extension of the models of Wang and
Ho (2010) and Chen et al. (2014), which allows for the
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slopes to vary according to a specific group. Note that in
(1d) we assume that δ is the same for all i. Allowing for δ to
vary with i would complicate the analysis further since the
group classification is now needed to be done simulta-
neously. It is beyond the scope of this paper and we will
leave it for future research.

2.1 First-difference penalized likelihood (FDPL)
estimation

Following Wang and Ho (2010), we first introduce the
following notations. For any random variable rit, let Δrit=
rit− rit−1, and Δ~ri ¼ ðΔri2; :::;ΔriTÞ0 for i= 1, ..., N. In
general, with a slight abuse of notation, Δ~ri represents a
matrix with relevant columns obtained from each variable.
For example, Δ~xi is a (T− 1) × kx matrix. Then, taking the
first difference of Eqs. (1a)–(1c), the model becomes:

Δ~yi ¼ Δ~xiβi þ Δ~vi � Δ~ui; ð3aÞ

Δ~vi � Nð0; σ2vΣÞ; ð3bÞ

Δ~ui ¼ Δ~hiu�i ; ð3cÞ

u�i � Nþð0; σ2uÞ; ð3dÞ

where in Eq. (3b), the first-difference of vit introduces
correlations of Δvit within the ith panel and the (T− 1) ×
(T− 1) matrix Σ is given by:

Σ ¼

2 �1 0 ::: 0

�1 2 �1 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. �1

0 0 � � � �1 2

2666666664

3777777775
: ð4Þ

Note that, after the transformation, Eq. (3d) is the same as
Eq. (1e) implying that the half-normality of u�i is unaffected
by the transformation, and this is the key aspect of the
model that leads to a tractable derivation of the likelihood
function. Under the above assumptions, the marginal log-
likelihood function of panel i in the model is given by:

log L1i;NT ¼ � 1
2 ðT � 1Þ logð2πÞ þ logðσ2vÞ

� �þ logðTÞ þ Δee0iΣ�1Δ~ei
σ2v

h i
þ 1

2
μ2i�
σ2i�

þ log σ�Φ μi�
σi�

� �h i
� log σu

2

� �
;

ð5Þ

where μi� ¼ � Δee0iΣ�1Δ~hi
Δ~h0iΣ

�1Δ~hiþσ2v=σ
2
u
, σ2i� ¼ σ2v

Δeh0iΣ�1Δehiþσ2v=σ
2
u

,

Δeei ¼ Δeyi � Δexiβi, and Φ(.) is the standard normal CDF.

Let γ ¼ ðγ01; :::; γ0JÞ0, β ¼ ðβ01; :::; β0NÞ0, and θ ¼ ðδ0; σ2v ; σ2uÞ0.
We estimate β, γ, and θ by maximizing the following FDPL
criterion:

log LðJ0ÞNT ;η1
ðθ; β; γÞ ¼

XN
i¼1

log L1i;NT þ η1
N

XN
i¼1

YJ0
j¼1

βi � γj
�� ��;

ð6Þ

where η1= η1,NT is a tuning parameter, Ak k denotes the
Frobenius norm, and the second term on the right-hand side
of Eq. (6) represents a penalty term. As in SSP, the penalty
term takes a mixed additive-multiplicative form, which is
different from the traditional penalized estimation (where
the additive penalty term is normally used). The additive
component is needed for the identification of {βi} and {γj}
jointly; and the main reason for the inclusion of the
multiplicative term is that, for each i, βi can take any one of
the J0 unknown values, γ1, ..., γJ, and it is not known a priori
to which point βi should shrink. Maximizing Eq. (6)
produces FDPL or Classifier-Lasso (C-Lasso) estimatesbβ= ðβ̂01; :::; β̂0NÞ0, bγ= ðγ̂01; :::; γ̂0JÞ0, and θ̂ ¼ ðδ̂0; σ̂2v ; σ̂2uÞ0 of

γ= ðγ01; :::; γ0JÞ0, β= ðβ01; :::; β0NÞ0, and θ ¼ ðδ0; σ2v ; σ2uÞ0,
respectively1.

2.2 Determination of the number of groups

The discussion in the previous sub-section assumes that the
number of groups J0 is known a priori. However, in prac-
tice, the exact number of groups is rarely known and must
be estimated. In this sub-section, we show how to determine
the number of groups using an information criterion (IC)
procedure. Our approach follows along the argument given
in SSP. First, we assume that J0 is bounded from above by a
finite integer Jmax. For a given J 2 f1; :::; Jmaxg, let

fβ̂iðJ; η1Þ; γ̂jðJ; η1Þg and θ̂ denote the FDPL (or C-Lasso)
estimators of {βi, γj} and θ discussed above; and individual i

is classified into group ĜjðJ; η1Þ according to ĜjðJ; η1Þ ¼
fi 2 f1; 2; :::;Ng : β̂iðJ; η1Þ ¼ γ̂jðJ; η1Þg for j= 1, ..., J.

Finally, let ĜðJ; η1Þ ¼ fĜ1ðJ; η1Þ; :::; ĜJðJ; η1Þg and
γ̂ĜjðJ;η1Þ denote the post-FDPL (or post-Lasso) estimator.

Then, we select J so that it minimizes the following IC:

IC1ðJ; η1Þ ¼
2
NT

XJ
j¼1

X
i2ĜjðJ;η1Þ

logL1i;NTðwit; γ̂ĜjðJ;η1Þ; θ̂ðγ̂ĜjðJ;η1ÞÞÞ þ λ1;NTK1J;

ð7Þ

1 C-Lasso is termed by SSP.
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where λ1,NT is a tuning parameter, and K1= kx+ kq+ 2.
That is, the number of groups, J is chosen such that

Ĵðη1Þ ¼ argmin
1�J�Jmax

IC1ðJ; η1Þ.

Remark 1: As noted by SSP, the choice of the tuning
parameter λ1,NT and η1,NT respectively, can play an important
role in determining the correct number of groups and post-
FDPL estimates in practice. Following SSP, we impose the
following conditions on the tuning parameters λ1,NT and
η1,NT.

A.1: As (N, T)→∞, λ1,NT→ 0 and λ1,NTNT→∞.
A.2: As (N, T)→∞, (i) Tη21=ðln TÞ6þ2υ ! 1 and

η1ðln TÞυ ! 0 for some υ > 0; (ii) N1=2T�1ðln TÞ9 ! 0 and
N2T1−q/2→ c∈ [0, ∞) for some q ≥ 6.

The condition A.1 reflects the conditions for consistency
of model selection, i.e., λ1,NT cannot shrink to zero too
quickly or too slowly. Condition A.2 holds if η1,NT∝ T−a for
any a∈ (0, 1/2).

In practice, under A.1, we can fine-tune λ1,NT over a finite
set Λ1= {λ1= κl(NT)

−1/2, l= 1, ..., L} for some κl > 0.
Similarly, under A.2, we also suggest to fine-tune η1,NT over
a finite set ℵ1= {η1= clT

−1/3, cl= c0ζ
l, l= 1, ..., L} for

some c0 > 0 and ζ > 1. In essence, these tuning parameters
are analogous to the bandwidth selections in the kernel
smoothing.

Remark 2: Under certain regularity conditions, SSP
derive the asymptotic properties of the post-Lasso estima-
tors including the oracle property for the non-stochastic
frontier models. It can be shown that our proposed estimator
satisfies the regularity conditions set out in SSP, and hence
it is consistent, asymptotically normal, and achieves the
oracle property as well2. For inference purposes, it is
important to recognize that our post-FDPL estimator
belongs to the class of M-estimators, and hence the
asymptotic variance has the form: avarðψ̂jÞ ¼ A�1

0j B0jA�1
0j

where ψ̂j ¼ ðθ̂j; bβj;bγjÞ, A0j ¼ �E½∇ψ jψ j
log LðJ0ÞNT ;η1

ðψ0jÞ� and
B0j ¼ E½∇ψ j

log LðJ0ÞNT ;η1
ðψ0jÞ∇ψ j

log LðJ0ÞNT ;η1
ðψ0jÞ0�, with ∇ψ j

and ∇ψ jψ j
denoting the vector of first and second deriva-

tives of the log-likelihood function, respectively, ψ0j is
the true parameter vector and j= 1, ..., J0. The estimated
asymptotic variance can be obtained by replacing the true
parameters with their estimates discussed above, and the
expectation is replaced by the sample average over NT
observations.

2.3 Prediction of the inefficiency index

The primary interest in estimating model (1) is to obtain the
prediction for technical inefficiency, uit. The conditional
expectation estimator E(uit | eit) proposed by Jondrow et al.
(1982) is often used for this purpose. For our proposed
model, a similar conditional expectation estimator can also
be used but with one simple modification. As Wang and Ho
(2010) pointed out, instead of conditioning on the level of
eit, it is more convenient to compute the expectation of uit
condition on Δ~ei since Δ~ei ¼ Δ~yi � Δ~xiβi does not depend
on the estimates of individual-specific effect, α̂i. In addition,
the vector Δ~ei contains all the information of individuals i
within each group in the sample. Thus, given the estimates
of β̂i and θ̂ discussed previously, the conditional expectation
estimator EðuitjΔ~eiÞ and efficiency estimate Effit can be
written as:

ûit ¼ EðuitjΔ~eiÞ ¼ hit μi� þ σi�ϕ μi�=σi�ð Þ
Φ μi�=σi�ð Þ

h i
Effit ¼ expð�ûitÞ;

ð8Þ

where μi� and σi� are defined previously, and the expression
in Eq. (6) is evaluated at Δ~ei ¼ Δb~ei, hit ¼ hðq0it δ̂Þ, μi� ¼ μ̂i�,
and σi� ¼ σ̂i�. The group-wise efficiency prediction can
be computed as Eff ðĴÞit ¼ expð�ûðĴÞit Þ where ûðĴÞit ¼
EðuðĴÞit jΔ~eðĴÞi Þ.

3 Model with endogenous regressors

3.1 Control function penalized likelihood (CFPL)
estimation

In this section, we relax the independence assumption
between {xit, qit} and vit (See for example, Kutlu 2010; Tran
and Tsionas 2013; Amsler et al. 2016, 2017; Karakaplan
and Kutlu 2017; Kutlu et al. 2019). In particular, we assume
that a kp × 1 sub-vector, pit of {xit, qit} is correlated with vit.
However, we assume that {xit, qit} and u�i are independent.
In addition, we assume that there is a kz × 1 vector of
(strictly) exogenous instruments zit, where kz ≥ kp in the
sense that E(vit | zis)= 0 for all t and s. Under these
assumptions, we use a single-stage control function
approach to deal with the endogeneity issue. That is, we use
the following system of equations for the stochastic frontier
model:

yit ¼ αi þ x0itβi þ vit � uit; ð9aÞ

pit ¼ Πzit þ εit; ð9bÞ

uit ¼ hitu
�
i ; ð9cÞ

2 Even if we do not formally establish the asymptotic properties of the
FDPL estimator, it is worth pointing out that the results of our Monte
Carlo simulations are consistent with the belief that these asymptotic
properties hold. See Section 5 for more details.
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hit ¼ hðq0itδÞ; ð9dÞ

u�i � Nþð0; σ2uÞ; ð9eÞ

where Π is a kp × kz matrix of unknown coefficients, εit is a
kp × 1 vector of reduced form errors, and βi follows a group-
specific pattern as in Eq. (2).

Under the specification of the above model, the endo-
geneity problem is introduced by allowing the reduced form
error term εit to be correlated with vit. More explicitly, we
assume that conditional on zit,

ε�it
vit

� �
¼ Ω�1=2εit

vit

 !
� MN

0

0

� �
;

Ikp σvρ

σvρ0 σ2v

� �� �
;

ð10Þ
where Ω is a kp × kp variance-covariance matrix of εit, and ρ
is a kp × 1 vector representing the correlation between ε�it
and vit. To simplify the discussion, we assume for now that
the number of groups, J0 is known and fixed but each
individual’s group membership is unknown. Taking the first
difference of Eq. (9) to eliminate the fixed effects and
stacking all T− 1 observations, we have:

Δ~yi ¼ Δ~xiβi þ Δ~vi � Δ~ui; ð11aÞ

Δ~pi ¼ Δ~ziΠþ Δ~εi; ð11bÞ

Δ~ui ¼ Δ~hiu�i ; ð11cÞ

u�i � Nþð0; σ2uÞ: ð11dÞ

Recall that Δ~xi and Δ~εi are (T− 1) × kp matrices and Δ~zi is a
(T− 1) × kz matrix. By a Cholesky decomposition of the
variance-covariance matrix of ðε�0it ; viÞ0, we obtain:

ε�it
vit

� �
¼ Ikp 0

σvρ0 σv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ0ρ

p
� �

ε�it
w�
it

� �
; ð12Þ

where ε�it and w�
it � Nð0; 1Þ are independent. Therefore, we

have:

vit ¼ σvρ0ε�it þ σv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ0ρ

p
w�
it

¼ ε0itφþ wit;
ð13Þ

where φ ¼ σwΩ
�1=2ρffiffiffiffiffiffiffiffiffi

1�ρ0ρp , σw ¼ σv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ0ρp

, and wit ¼ σww�
it.

After first differencing, we get: Δ~vi ¼ Δ~εiφþ Δ~wi. Then,
the frontier Eq. (11a) can be written as:

Δ~yi ¼ Δ~x0iβi þ ðΔ~xi � Π0Δ~ziÞφþ Δ~ξi; ð14Þ

where Δ~ξi ¼ Δ~wi � Δ~ui and Δ~εiφ is the endogeneity bias
correction term. The density function of Δ~wi is given by3:

fΔ~wiðΔ~wiÞ ¼ 2πσ2wΣ


 

�1=2

exp � 1
2σ2w

Δ~w0
iΣ

�1Δ~wi

� �
¼ ð2πÞ�ðT�1Þ=2T�1=2ðσ2wÞ�ðT�1Þ=2 exp � 1

2σ2w
Δ~w0

iΣ
�1Δ~wi

� �
:

ð15Þ

Similarly, the joint density function of Δ~εi is given by:

fvecðΔ~ε0iÞðvecðΔ~ε0iÞÞ ¼ 2πðΣ� ΩÞj j�1=2exp � 1
2 vecðΔ~ε0iÞ0ðΣ�1 � Ω�1ÞvecðΔ~ε0iÞ

� �
¼ ð2πÞ�ðT�1Þkp=2T�kp=2 Ωj j� T�1ð Þ=2exp � 1

2 vecðΔ~ε0iÞ0ðΣ�1 � Ω�1ÞvecðΔ~ε0iÞ
� �

:

ð16Þ

Since Δ~εi and Δ~ξi are independent, after tedious but
straightforward derivation, the marginal log-likelihood
function of the panel i is given by:

log L2i;NT ¼ log Lð1Þ2i;NT þ log Lð2Þ2i;NT ; ð17Þ

where

logLð1Þ2i;NT ¼ � 1
2 ðT � 1Þ logð2πÞ þ logðσ2wÞ

� �þ lnðTÞ þ Δ~ξ0iΣ
�1Δ~ξi
σ2w

h i
þ 1

2
μ2i��
σ2i��

þ log σi��Φ μi��
σi��

� �h i
� log σu

2

� �
;

and

log Lð2Þ2i;NT ¼ � ðT � 1Þkp
2 logð2πÞ � kp

2 log Tð Þ � T � 1ð Þ
2 log Ωj jð Þ

� 1
2 tr ðΣ�1 � Ω�1ÞvecðΔ~ε0iÞvecðΔ~ε0iÞ0
� �

;

where
μi�� ¼ � Δ~ξ0iΣ

�1Δ~hi
Δ~h0iΣ

�1Δ~hiþσ2w=σ
2
u
, σ2i�� ¼ σ2w

Δ~h0iΣ
�1Δ~hiþσ2w=σ

2
u
,

Δ~ξi ¼ Δ~yi � Δ~xiβi � Δ~εiφ, and Δ~εi ¼ Δ~xi � ΠΔ~zi. As
before, let β= (β1, ..., βN)′, γ= (γ1, ..., γJ)′, and
θ� ¼ ðvecðΠÞ0; δ0; ρ0; σ2v ; σ2uÞ0, then we propose to estimate β,
γ, and θ* by maximizing the following CFPL criterion:

log LðJÞNT ;η2
ðθ�; β; γÞ ¼PN

i¼1
log Lð1Þ2i;NT þPN

i¼1
log Lð2Þ2i;NT

þ η2
N

PN
i¼1

QJ
j¼1

βi � γj
�� ��; ð18Þ

where η2= η2,NT is a tuning parameter. Maximizing Eq. (18)
produces the CFPL estimates β= ðβ1; :::; βNÞ0, γ=
ðγ1; :::; γJÞ0, and θ

� ¼ ðvecðΠÞ0; δ0; ρ0; σ2v ; σ2uÞ0.

3.2 Determination of the number of groups

Similar to the case of exogenous regressors, when the
number of groups J is unknown, we replace J0 by J 2
3 Note that Σj j ¼ T .
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ð1; :::; JmaxÞ to obtain the CFPL (or C-Lasso) estimates
fβiðJ; η2Þ; γjðJ; η2Þg and θ

�
of {βi, γj} and θ* discussed

above. We then classify individual i into group GjðJ; η2Þ
according to GjðJ; η2Þ ¼ fi 2 f1; 2; :::;Ng : βiðJ; η2Þ
¼ γjðJ; η2Þg. Let GðJ; η2Þ= fG1ðJ; η2Þ; :::;GJðJ; η2Þg and
γGjðJ;η2Þ denote the post-CFPL (or post-Lasso) estimator.
Then, we suggest selecting J that minimizes the following
IC:

IC2ðJ; η2Þ ¼
2
NT

XJ
j¼1

X
i2GjðJ;η2Þ

logL2i;NTðwit; γGjðJ;η2Þ; θ
�ðγGjðJ;η2ÞÞÞ þ λ2;NTK2J;

ð19Þ

where λ2,NT is a tuning parameter, and K2= kx+ kq+ kz+ 2.
That is, the number of groups J is chosen such that
Jðη2Þ ¼ argmin1� J� Jmax

IC2ðJ; η2Þ. For the choice of the
tuning parameters η2,NT and λ2,NT in practice as well as
discussion on the asymptotic properties of the proposed
estimator, see Remark 1 and Remark 2 above.

3.3 Prediction of inefficiency score

As earlier, given the CFPL estimates of βi and θ
�
, the

conditional expectation estimator EðuitjΔ~ξiÞ can be written
as:

EðuitjΔ~ξiÞ ¼ hit μi�� þ
σi��ϕ μi��=σi��ð Þ
Φ μi��=σi��ð Þ


 �
; ð20Þ

where μi�� and σi�� are defined previously, and the

expression in Eq. (20) is evaluated at Δ~ξi ¼ Δ~ξi where

Δ~ξi ¼ Δ~yi � Δ~xiβi � Δ~εiφ, and Δ~εi ¼ Δ~xi � ΠΔ~zi;
hit ¼ hðq0itδÞ, μi�� ¼ μi��; and σi�� ¼ σi��. As in the
exogenous regressors case, the group-wise efficiency

prediction can be computed as Eff ðJÞit ¼ expð�ûðJÞit Þ where

ûðJÞit ¼ EðuðJÞit jΔ~ξðJÞi Þ.

4 Computational algorithm

In this section, we briefly outline an iterative numerical
algorithm to obtain the FDPL estimates bγ, bβ, and θ̂ dis-
cussed in Section 2.1. For the CFPL estimation, a similar
algorithm can be applied. Let s be the iteration index.

Step 1: Set s= 1 and start with the initial value

γ̂ð0Þ ¼ ðγ̂ð0Þ1 ; :::; γ̂ð0ÞJ Þ, β̂ð0Þ ¼ ðβ̂ð0Þ1 ; :::; β̂ð0ÞN Þ, and θ̂ð0Þ ¼
ðδ̂ð0Þ; σ̂2ð0Þv ; σ̂2ð0Þu Þ such that

PN
i¼1 β̂ð0Þi � γ̂ð0Þj

��� ��� ≠ 0 for j= 2,

..., J.

Step 2: Given γ̂ðr�1Þ, β̂ðr�1Þ, and θ̂ðr�1Þ, choose (γ1, β, θ)
to maximize:

log LðJ0ÞNT ;η1
ðθ; β; γÞ ¼

XN
i¼1

log L1i;NTðβ; θÞ þ η1
N

XN
i¼1

βi � γ1k k
YJ
j≠1

β̂ðr�1Þ
i � γ̂ðr�1Þ

j

��� ���;

and obtain the updated ((bβðrÞ; θ̂ðrÞ; γ̂ðrÞ1 )). Repeat this
procedure until we obtain the updated of ðbβðrÞ; θ̂ðrÞ; γ̂ðrÞJ Þ.

Step 3: Update s to s+ 1 and repeat Step 2 until
convergence.

Define the final estimate of γ as bγ= ðγ̂ðSÞ1 ; :::; γ̂ðSÞJ Þ where
S denotes the final iteration such that the convergence is
achieved. Then, individual i is classified as a member of
group Ĝj if β̂

ðS;jÞ
i ¼ γ̂j; otherwise, β̂i is allocated to the γðSÞj

that is nearest to some β̂ðS;kÞi , for k= 1, ..., J. The initial
value in Step 1 is chosen based on random initial conditions
to find the best starting value (10,000 searches). If a failure
occurs, a new random search is used. We use this choice of
initial value throughout our simulations as well as the
empirical application below.

5 Monte Carlo simulations

5.1 Data generating process (DGP)

To examine the finite sample performance of the estimation
and classification procedure, we consider two DGP that
cover both exogenous and endogenous regressors. We
consider sample sizes N= {250,500} and time periods T=
{10, 20, 40}. For each sample, the observations in each
DGP are drawn from three groups with the proportion{N1:
N2:N3}= {0.4:0.4:0.3}. Throughout the experiments, the
fixed effect αi is standard normal, independent across i. The
one-sided error u�i is generated as i.i.d. from a half-normal
with σu= {1, 2}, and u�i is independent of αi and all
regressors.

DGP 1 (Exogenous Regressors): The observations
(yit, xit, qit) are generated from the model (1a)–(1e). The
exogenous regressors xit= (x1it, x2it)′= (0.5αi+ω1it, 0.5αi
+ω2it)′ where ω1it, ω2it ~ i.i.d.N(0, 1) are mutually inde-
pendent, and independent of αi. The two-sided error vit is
standard normal, independent across i and t, and indepen-
dent of αi, u�i and all the regressors. The environmental
variable qit is generated as i.i.d. from a Uniform distribution
on [−1, 1] and hit ¼ expð0:2qitÞ. Finally, the true coeffi-
cients for the three groups (β11, β12), (β21, β22), and (β31, β32)
are (0.5, 1.5), (1, 1), and (1.5, 0.5), respectively. FDPL will
be used for this DGP.

DGP 2 (Endogenous Regressors): For this DGP, the
observations are generated from the model (9a)–(9e). We
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assume that x2,it is exogenous and is generated as in DGP 1,
whilst x1,it is endogenous and is generated as x1it= 0.4αi+
0.8zit+ εit where zit ~ i.i.d.N(0, 1) and

εit

vit

� �
� N

0

0

� �
;

1 ρ

ρ 1

� �� �
:

In each experiment, we set ρ= {0.2, 0.4, 0.8} which
corresponds to a weak, moderate and strong correlation
between vit and εit, respectively. The environmental variable
qit and the true coefficients for the three groups are the same
as in DGP 1. Finally, the Monte Carlo replications for each
DGP is 500.

Our first simulation exercise is to assess how well the
proposed IC selects the number of groups for each DGP. As
discussed earlier, the choice of the fine-tune parameters
ηjNT and λjNT for j= 1, 2, can be important in selecting
the correct number of groups. For the tuning parameter ηjNT,
we choose ηj ¼ cjs2ΔyT

�1=3 for j= 1, 2, where s2Δy is the
sample variance of Δyit and cj∈ {0.125, 0.25, 0.5, 1, 2}. As
for the tuning parameter λjNT we use the following λj= κ
(NT)−1/2 for j= 1, 2, where κ 2 1

4 ;
1
3 ;

1
2 ;

2
3 ;

3
4

� �
. We experi-

mented with many alternatives, and found that cj= 0.25 and
κj= 2/3 for j= 1, 2, work fairly well and they are used
throughout the simulations and the empirical application.
For DGP 1, we pick up from the set candidate values of
η1 that maximizes IC1ðĴðη1Þ; η1Þ, and similarly for GDP 2,
we pick up from the set candidate values of η2 that max-
imizes IC2ð~Jðη2Þ; η2Þ. In all experiments, we use the initial
starting value described in Section 4 and the BFGS
numerical algorithm procedure from NETLIB in Fortran77,
GNU compiler to maximize the log-likelihood function with
the convergence criterion is set at 10−5. In almost all cases
the convergence was quick and stable.

5.2 Results

Tables 1 and 2 report the empirical probability that a particular
group size from 1 to 5 is selected according to the proposed IC
when the true number of groups is 3. In particular, Table 1

shows the results for DGP 1 (exogenous case), whilst Table 2
display the results for DGP 2 (endogenous case). In line with
our prior expectation, the correct classification percentage
approaches 100% as T increases for both DGPs.

Next, we focus our attention on the classification of indi-
vidual units and the point estimation of post-Lasso, given the
true number of groups (J0= 3). Due to the space limitation, all
tabulated results are produced using cj= 0.25, j= 1, 2, albeit
the outcomes are found to be robust over the specified range of
constants. For comparison purposes, we also include the
oracle estimator γ̂Gj

or γGj
which defines as the infeasible

estimator that utilizes the true group identity Gj. For con-
servation of space, we only report the results for the first
coefficient γ1 ¼ ðγ11; :::; γ1J0Þ0, and since γ1 is a J0 × 1 vector,
we use the average statistics over their weight Nj/N, j= 1, ...,
J0. The results are depicted in Tables 3 and 4. We report the
bias, root-mean-squared errors (RMSE), and the percentage of
correct classification of the N units, computed as
N�1

P3
j¼1

P
i2Ĝj

1fβi ¼ γkg averaged over 500 replications.
The results indicate that the estimated bias and RMSE of the
oracle and post-Lasso estimators are decreasing as either N or

Table 1 Empirical probability of selecting J= 1, ..., 5 when J0= 3-
DGP 1

N J

T 1 2 3 4 5

250 10 0.000 0.158 0.842 0.000 0.000

250 20 0.000 0.088 0.912 0.000 0.000

250 40 0.000 0.063 0.937 0.000 0.000

500 10 0.000 0.055 0.955 0.000 0.000

500 20 0.000 0.023 0.977 0.000 0.000

500 40 0.000 0.000 1.000 0.000 0.000

Table 2 Empirical probability of selecting J= 1,...,5 when J0= 3-
DGP 2

N J

T 1 2 3 4 5

(A)

(ρ= 0.2)

250 10 0.000 0.150 0.850 0.000 0.000

250 20 0.000 0.078 0.922 0.000 0.000

250 40 0.000 0.059 0.941 0.000 0.000

500 10 0.000 0.028 0.972 0.000 0.000

500 20 0.000 0.000 1.000 0.000 0.000

500 40 0.000 0.000 1.000 0.000 0.000

(B)

(ρ= 0.4)

250 10 0.000 0.108 0.892 0.000 0.000

250 20 0.000 0.056 0.944 0.000 0.000

250 40 0.000 0.029 0.971 0.000 0.000

500 10 0.000 0.011 0.989 0.000 0.000

500 20 0.000 0.000 1.000 0.000 0.000

500 40 0.000 0.000 1.000 0.000 0.000

(C)

(ρ= 0.8)

250 10 0.000 0.108 0.892 0.000 0.000

250 20 0.000 0.019 0.981 0.000 0.000

250 40 0.000 0.007 0.993 0.000 0.000

500 10 0.000 0.000 1.000 0.000 0.000

500 20 0.000 0.000 1.000 0.000 0.000

500 40 0.000 0.000 1.000 0.000 0.000
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T decreases. Moreover, the bias and RMSE of the oracle’s
estimator are slightly smaller than those of post-Lasso. The
main reason for these (mild) discrepancies of the RMSE is that
the estimated bias and standard deviation of the post-Lasso
estimator are inflated by some misclassification units, which
mask as outliners against most of the group members.
Nevertheless, our results seem to confirm the oracle properties
of the proposed estimators.

6 An empirical application

In this section we present an empirical application of US
banks to illustrate the usefulness of our proposed models
and estimation methods discussed earlier.

6.1 The data

The data we use in this paper is the annual year-end bank-
level which include all FDIC-insured commercial banks
from 1976–2007. The data was taken from Koetter et al.
(2012) and the detailed description of the data is given in
their paper.

For the input prices, we truncated these variables at the
1st and 99th percentiles of their respective empirical dis-
tributions to mitigate the influence of outliers. In addition,
we use the 2005 Consumer Price Index for all urban con-
sumption (published by the U.S. Bureau of Labor Statistics)
to deflate all nominal quantities. Since our proposed
approach requires large N and T, we use an unbalanced
panel data and first include all banks with time dimension
Ti ≥ 10. There are N= 14,168 banks included in our data set
for the analysis. The average length of time periods for all
banks is about N�1

PN
i¼1 Ti 	 21:9. Figure 1 plots the fre-

quency distribution of Ti.
Following Sealey and Lindley (1997), the bank’s produc-

tion technology is modeled using the “intermediation
approach”. Labour, physical capital as well as liabilities are
used as inputs to the bank’s production process, whilst assets
(other than physical) are considered as outputs. The following
variables are used as outputs (y) and inputs (x) in the pro-
duction technology: Securities (y1) and loans (y2); fixed assets
(x1), labor (x2), borrowed funds (x3) as well as equity capital
(x4). The inclusion of equity capital as an additional input can
be argued that banks may use it to guard against losses, and
hence it can be considered as a source of loanable funds.

In order to contextualize the economic environment in
which banks operate, we include the following variables, both
internally and externally, to capture bank’s characteristics in
our instrumental variables (zit) and environmental variables
(qit). The instrumental variables zit include: (1) the bank’s total
assets as a proxy for its size and scale of operation; (2) the
bank’s asset market share in a given state to capture its
dominance in the market (see, for example, Stiroh and Strahan
2003; Boyd and DeNicolo 2005); (3) the bank’s ratio of equity
to total assets; (4) the bank’s ratio of securities to total assets;

Table 4 Classification and point estimation of γ1-DGP 2

N T % of correct
classification

Oracle Post-CFPL

Bias RMSE Bias RMSE

(A)

(ρ= 0.2)

250 10 0.813 0.0174 0.0254 0.0229 0.0442

250 20 0.891 0.0085 0.0196 0.0099 0.0320

250 40 0.925 0.0071 0.0177 0.0082 0.0291

500 10 0.948 0.0063 0.0090 0.0077 0.0172

500 20 0.968 0.0044 0.0072 0.0052 0.0091

500 40 0.997 0.0020 0.0046 0.0026 0.0055

(B)

(ρ= 0.4)

250 10 0.820 0.017 0.0271 0.025 0.0440

250 20 0.897 0.0082 0.0213 0.0098 0.0381

250 40 0.928 0.0070 0.0195 0.0081 0.0272

500 10 0.955 0.0045 0.0094 0.0053 0.0130

500 20 0.973 0.0022 0.0075 0.0031 0.0092

500 40 0.998 0.0008 0.0049 0.0013 0.0055

(C)

(ρ= 0.8)

250 10 0.898 0.010 0.0294 0.0194 0.0431

250 20 0.916 0.0051 0.0236 0.0092 0.0343

250 40 0.945 0.0032 0.0207 0.0049 0.0291

500 10 0.981 0.0025 0.0097 0.0032 0.0131

500 20 0.992 0.0019 0.0078 0.0027 0.0085

500 40 0.999 0.0007 0.0051 0.0011 0.0060
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Fig. 1 Frequency distribution of the data

Table 3 Classification and point estimation of γ1-DGP 1

N T % of correct
classification

Oracle Post-FDPL

Bias RMSE Bias RMSE

250 10 0.815 0.0124 0.0232 0.0172 0.0303

250 20 0.892 0.0071 0.0175 0.0092 0.0253

250 40 0.920 0.0055 0.0126 0.0076 0.0211

500 10 0.947 0.0032 0.0081 0.0055 0.0131

500 20 0.969 0.0028 0.0065 0.0034 0.0077

500 40 0.995 0.0011 0.0052 0.0013 0.0063
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(5) the share of non-interest income (Koetter et al. 2012); (6)
the share of loan-loss provisions and loan-loss reserves in the
bank’s total loans to proxy for credit risk; and (7) macro-
economic variables such as the disposable personal income
and the state’s unemployment rate. The environmental vari-
ables (qit) include: (1) the number of bank mergers in the state
in a given year; (2) the bank’s z-score to proxy for the overall
risk of bank failure (see Laeven and Levin 2009); (3) the
Hirschman-Herfindahl index across the banks’ different types
of loans; (4) an indicator for the top-hundred banks in a given
year; and (5) three indicators to capture the institutional
changes in states that correspond to deregulation in the
intrastate branching, the interstate expansion and the post-
IBBEA interstate banking.

The above chosen variables have important implications
for bank efficiency and market power since they are more
than likely to influence bank’s business strategies in their
quest to maximize its franchise value (Demsetz and Strahan
1997; DeYoung and Rice 2004). For more details on the
construction and rationale behind these variables, see
Koetter et al. (2012).

Production technology is described by an output distance
function (ODF). Suppose the inputs are X1, ..., XK, and the
outputs are Y1, ..., YM. Define xk ¼ lnXk; k ¼ 1; :::;K, y1 ¼
ln Y1 and ym ¼ ln Ym=Y1ð Þ;m ¼ 2; :::;M. This transforma-
tion is used to ensure that the IDF is homogeneous of
degree one in outputs. Then, the output distance function
(ODF) takes the following form:

y1;it ¼ f ðx1;it; :::; xK;it; y2;it; :::; yM;itÞ þ αi þ vit � uit;

i ¼ 1; :::; n; t ¼ 1; :::; Ti:

Let ~yit ¼ ðy2;it; :::; yM;itÞ0 and xit ¼ ðx1;it; :::; xK;itÞ0. If we
adopt a translog specification, we have:

y1;it ¼ αi þ β0xixit þ 1
2x

0
itBxixit þ β0yi~yit þ 1

2~y
0
itByi~yit

þ x0itBxyi~yit þ vit � uit;

where Bxi , Byi , and Bxyi are parameter matrices, βxi and βyi
are parameter vectors. We can write the ODF as follows:

y1;it ¼ αi þ x0�;itβi þ vit � ui;

where x�;it ¼ ½1; x0it; vechðxit � xitÞ0;~y0it; vechð~yit � ~yitÞ0�0. We
treat both log inputs and log output ratios as endogenous.
Under certain economic assumptions, log output ratios can
be treated as predetermined. However, econometrically,
there is no compelling reason to adopt this as conclusive
evidence that they can be treated as exogenous. In fact,
profit maximization would imply that both inputs and
outputs are economically (and, in all likelihood, econome-
trically, as well) endogenous. In addition to the instruments
listed above, we also include interactions among the

variables in zit, interactions of time dummies with all other
time-invariant variables in zit as well as the lagged values of
time-varying instruments along with their interactions with
all other variables as additional instruments.

6.2 Results

We first determine the appropriate number of groups using
Eqs. (7) and (19) for the case of exogenous and endogenous
regressors, respectively, and the results are depicted in
Fig. 2. For the exogenous regressor case, the optimal
number of groups is seven, whilst for the endogenous
regressors’ case, the optimal group is four implying that
endogeneity may be an issue for our model. To check for
the endogeneity problem, we plot the density of the ratio of
the root mean squares forecast errors (RMSFE) and our
results show that the regressors are indeed endogenous (see
Fig. 3). As a further evidence for the endogeneity of these
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variables, we conduct a simple test for φ= 0 in (14) using
F-statistics (see, for example, Amsler et al. (2016) and
Karakaplan and Kutlu (2017)). The value of the F-statistics
is 64.78 with a p-value of 0.000 indicating that the null
hypothesis of φ= 0 is rejected at a one percent significant
level. Thus, in what follows we only report the results for
the endogenous case. For comparison purposes, we also
estimate the homogenous coefficient stochastic model with
endogenous regressors using the approach developed in
Kutlu et al. (2019).

For the sake of convenience and simplicity, Table 5 and
Fig. 5 report only the summary of estimated groups’ pro-
ductivity measures, which include returns to scale (RTS),
efficiency change, technical change, and productivity
growth4. For comparison purposes, the estimated pro-
ductivity measures for the homogenous-coefficients model
are given in the second row of Table 5 and Fig. 4a, b,
respectively. Our results indicate that RTS for the
homogenous-coefficient model is close to one (i.e., constant
RTS) and statistically significant at the 1% level, whilst
other measures such as efficiency change (EC), technical
change (TC), and productivity growth are not statistically
significant. In contrast, the results based on our proposed
approach, the CFPL classifies the banks into four groups
based on the variables that are related to the banks’ size and
scale operation, market shares, as well as the ratio of equity
and securities to total assets. The results in Table 5 and
Fig. 5 show that (RTS) vary over the four groups, and they
average 0.627, 0.888, 0.835, and 0.656 indicating that dif-
ferent groups have different properties in terms of RTS,
albeit in all groups, we have decreasing returns to scale.
Efficiency change is mostly positive for all groups. The
densities of efficiency change exhibit bimodal for groups
one and four with a dominant mode at near-zero value for
group two, and a positive value of approximately 0.0065 for
group four. The average efficiency scores for the four
groups are 0.821, 0.924, 0.935, and 0.845, respectively. For
the most part, technical change is positive and conse-
quently, productivity growth is positive except for group 4,
which has significantly less technical change and

productivity growth compared to the other groups. As the
groups are different in terms of RTS, technical change,
efficiency change, and productivity growth, any policy
measures will have heterogeneous effects on specific banks
according to the group to which they belong. Consequently,
ignoring the group-wise heterogeneity when it is present,
can provide misleading estimates of productivity and effi-
ciency measures which may have negative consequences on
policy and banking supervisions.

Table 5 RTS, efficiency change,
technical change and
productivity growth results

Group RTS Eff. change Tech. change Prod. growth

Homogenous 0.9694*** (0.0220) 0.0029 (0.0145) 0.0007 (0.0115) 0.0036 (0.0240)

1 0.6257*** (0.0676) 0.0091** (0.0045) 0.0088 (0.0071) 0.0179*** (0.0068)

2 0.8878*** (0.1390) 0.0025 (0.0018) 0.0157* (0.0087) 0.0182** (0.0088)

3 0.8349*** (0.0622) 0.0089*** (0.0016) 0.0101** (0.0046) 0.0189*** (0.0045)

4 0.6558*** (0.0427) 0.0044* (0.0023) 0.0038* (0.0021) 0.0082*** (0.0031)

Standard errors are given the parentheses.

***1% significant, **5% significant, *10% significant.

A

B      

Fig. 4 a Density plot of returns to scale: homogenous case. b Density
plot of TC, EC and PG: homogenous case

4 Detailed results for the estimated frontier parameters are available
from the authors up request.

84 Journal of Productivity Analysis (2020) 54:75–86



Finally, as a robustness check, we also consider the case
where Ti ≥ 9 and Ti ≥ 8. In these cases, the number of banks
(N) increased to 14,974 and 15,729, respectively. Using our
approach for both cases, the optimal number of groups
obtained is still 4 and the productivity measures are similar
to those in Table 5. For the conservation of space, we do not
report these results here but available from the authors upon
request.

7 Concluding remarks

This paper extends the fixed effects panel stochastic frontier
model of Wang and Ho (2010) to allow group heterogeneity
in the slope coefficients. We propose the first-difference
penalized maximum likelihood (FDPML) and control
function penalized maximum likelihood (CFPML) methods
for classification and estimation of latent group structures in
the frontier as well as inefficiency. Monte Carlo simulations
show that the proposed approach performs well in finite
samples. An empirical application indicates the advantages
of data-determined identification of the heterogeneous
group structures in practice.

The approach in this paper can also be adapted to the Chen
et al. (2014) model where they leave the inefficiency term uit
unspecified. In this case, the density of the transformation
errors (using either first-difference or within transformation)
can be obtained with a similar approach as in Chen et al.
(2014) using the closed skew normal results. Also, it would be
interesting to extend our approach to the four-component
stochastic frontier models of Colombi et al. (2014), Kumb-
hakar et al. (2014), and Tsionas and Kumbhakar (2014).

Finally, under the endogenous regressors case, it is possible to
extend the current method to allow for some or all inputs to be
correlated with both uit and vit. Using Amsler et al. (2017)
approach, one can construct the joint density of all the errors in
the model via copula function. Alternatively, the correlation
between some or all inputs and inefficiency can be modeled
using the correlated effects as it has been done in Griffiths and
Hajargasht (2016). We will leave these topics for future
research.
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