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Abstract

In the stochastic frontier model, the composed error is the sum (or difference) of a normal and a half normal random variable.
Often the composed error is linked to other errors using a copula, and evaluation of the copula requires evaluation of the cdf
of the composed error. There is no analytical expression for this cdf, though there are several approximations. We propose a
computationally efficient simulation based method of evaluation and use it to evaluate the accuracy of these approximations.
We also derive the exact cdf of the composed error for the special case that the stochastic frontier relative variance parameter
A equals one, and we use this expression to investigate the accuracy of our evaluations and the existing approximations.
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1 Introduction

This paper deals with the evaluation of the cumulative
distribution function (cdf) of the stochastic frontier model’s
composed error. Since the normal/half-normal composed
error has a skew-normal distribution, we can also say that
the paper deals with the evaluation of the cdf of the skew-
normal distribution.

Evaluation of the skew-normal cdf may be important in a
number of contexts, including at least the following two. (1)
In many multi-equation models, or in a panel data setting,
the composed error in a stochastic frontier production or
cost function is linked to other errors using a copula. Some
examples of this approach include Amsler et al.
(2014, 2016, 2017), Carta and Steel (2012), Das (2015),
Genius et al. (2012), Huang et al. (2017), Huang et al.
(2018), Lai and Huang (2013), Shi and Zhang (2011),
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Sriboonchitta et al. (2017) and Tran and Tsionas (2015). The
evaluation of the likelihood of such a model involves the
calculation of the copula density, which in turn requires
the calculation of the cdf of each of the marginal distribu-
tions of the various errors in the model. Therefore, if one of
the errors is a stochastic frontier composed error, evaluating
the likelihood requires calculation of the skew-normal cdf.
(2) We may want to test the distributional assumptions of the
stochastic frontier model by testing whether the composed
error has a skew-normal distribution, as suggested by Wang
et al. (2011). Their preferred test is a bootstrapped version of
the Kolmogorov-Smirnov test, and its calculation requires
the calculation of the skew-normal cdf.

There is no known closed form solution for the skew-
normal cdf. It can be calculated by simulation, and there are
some available approximations, such as Ashour and Abdul-
Hameed (2010) and Tsay et al. (2013). In this paper we
provide a simulation-based method which is computation-
ally efficient relative to the simple empirical cdf. We use it
to evaluate the accuracy of the existing approximations.

The paper has five main contributions. First, it proposes
the new simulation-based method of evaluating the skew-
normal cdf. Second, it uses this method to evaluate the
accuracy of existing approximations, notably that of Tsay
et al. (2013). Third, we create a tabulation of the cdf, part of
which is given in this paper and most of which is in a
supplemental file, which can be used in estimation.
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Interpolation in such a file is faster than evaluating an
approximation, which in turn is faster than simulation-based
or quadrature methods.

A fourth objective is to extend the range of values of the
composed error for which we can calculate a cdf value that
is not zero and is not one. This is important because some
commonly used copulas are undefined if the marginal cdf
has a value of zero or one. For example, if the composed
error € has cdf F, and if @ is the standard normal cdf, the
Gaussian (normal) copula contains the term & Y(F(e)),
which equals minus infinity when F =0 and equals plus
infinity when F = 1. This could cause the calculation of the
copula density to break down. We are able to calculate non-
zero values of F(¢e) and 1 — F(¢e) for a much wider range of ¢
than in previous papers.

Finally, we derive a closed-form solution for the skew-
normal cdf in the special case that the relative variance
parameter in the stochastic frontier model (1) equals one.
Therefore, in that special case, we have a much-needed
exact standard for assessing the accuracy of both
simulation-based and approximate methods of evaluating
the cdf.

2 Theory

We start with some notation and basics. The composed error
is e =v+u, where v ~ N(O,a%), U~ N*(O,ai), and v and
u are independent. Standard notation is ¢* = 62 + ¢ and
A=o,0,, Then € has the skew-normal density
smq(e) = (2)g(£)®@ (%), where ¢ is the standard normal
pdf and @ is the standard normal cdf. We want to calculate
and tabulate the skew-normal cdf P; ,(Q) = P(e < Q), for as
large a range of values of Q as we can (i.e. where the
calculations are numerically possible).

The above discussion is for the case of v+ u, which
would be natural in a cost frontier, and follows the dis-
cussion in Tsay et al. (2013). In the case of a production
frontier, as in the original papers of Aigner et al. (1977) and
Meeusen and van den Broeck (1977), we would want to
consider €, = v — u instead of € =v + u. But this does not
require a separate tabulation, because the distribution of
&, is the same as the distribution of (—e&). Explicitly, if
P;o(0) = Ple. < 0), then P, (0) = | — Py (~0) and
we can get values of P from a tabulation of P.

It would appear that we would require a three—dimen-
sional tabulation, giving probabilities over values of the two
parameters A and o, plus values of Q. But in fact we only
need a two-dimensional tabulation, over values of 4 and Q.
Specifically, we can pick ¢ = 1 and just tabulate P, ;(Q). For
other values of o, we use the fact that P, ,(Q) = P, 1(Q/o).
To see why this equality holds, start with P;,(Q) =
f g (%)go(ﬁ)d)(ﬂf)de and make the substitutions z = £ and
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de = odz, and note that the upper limit of integration e = Q
becomes z = % Thus we have [ g (%)q)(ﬁ)(b(%‘)ds =
272p(2)®(32)dz = P11 (Q/0).

There is no closed-form expression for the cdf of the
skew-normal distribution. The required integral is widely
regarded as intractable. (See the Appendix for some
explanation of this point.) The cdf can be calculated (or
estimated) by numerical integration, or by simulation.
Numerical integration (quadrature) is of questionable
accuracy, especially in the extreme tails. We calculate cdf
values that are sometimes extremely small, like 4.08e—115
for A=1, Q= —16, and we cannot expect quadrature to
yield an accurate evaluation of a probability that small,
whereas as we will see this cdf value is accurately evaluated
by our simulation algorithm.

The most obvious path to evaluation by simulation is the
empirical cdf, that is, F(Q) is estimated by the fraction of
draws from the distribution of ¢ that are less than or equal to
Q. This works reasonably well in the middle of the dis-
tribution, but in the tails it requires an unreasonably large
number of draws. For example, in Tsay et al. (2013), Table 1,
p. 262, for A=15, o =1444, they report F(—3)=
0.0000006, or 6/10,000,000. That is, they used 10,000,000
replications and got six draws that were less than or equal to
—3. In the calculations we report below, we have prob-
ability values in the tails that are very small, e.g. 3.87e—31
for A=1 and Q = —8, and so we would need a number of
replications on the order of 10°! or larger to hope to esti-
mate this probability. That is obviously not feasible.

Similarly, Wang et al. (2011) calculated and reported the
quantiles of &, = v — u based on a sample of 10,000,000
draws, for various values of A. In their supplemental tables
(available on request from the authors), they consider a very
large set of values of 4, and they give the empirical quantiles
0.01, 0.02, ..., 0.99. (They also give the quantiles zero and
one, but these are just the minimum and maximum values in
the sample, whereas the population distribution of &, does
not have a finite minimum or maximum value.) The infor-
mation in the quantile values is in principle the same as in
the cdf values, and they could have considered quantiles
smaller than 1% or bigger than 99%, but for exactly the
same reasons as given in the previous paragraph they could
not have calculated meaningful quantiles very far into the
tail without using far more than 10,000,000 draws.

As an alternative, we will propose a method that is very
similar to a method often used in the literature on simulated
MLE. See, e.g., Greene (2010). A probability is the
expectation of an indicator function, and by the law of
iterated expectations P(e<Q)=Pv+u<Q)=Pv<Q —
u)=E,P(v<Q —ulu)=E,P[(Q — u)lo,]. (The last equality
follows from the independence of v and u.) We calculate
this by averaging ®@[(Q — u)/o,] over a large number of
draws from the distribution of u.
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Table 1 Values of our evaluation of F(Q), for 0 <0, in bold, R = 10,000,000
Q A=0 A=0.25 1=0.50 A=1 A=2 A=4 A=8
-16 6.38875¢—58 3.79523e—62 6.34097¢—73 4.0776e—115 1.3908e—282 otofokodeoksoR ik
6.38875¢—58 6.41224e—62 3.29645e—71 1.3037e—105 1.6365¢—237 HA Ak HA Ak Rk
-12 1.77648e—33 4.48929¢—36 2.79129¢—42 3.15338¢—66 9.8920e—161 otk ok otk
1.77648e—33 5.44250e—36 1.70533e—41 1.99473e—61 8.7245e—137 gk ok ok ok sk ok sk ok
—10 7.61985e—24 8.84249¢—26 3.47421e—30 5.80203e—47 8.4227e—113 gk ok ok ok ko ok ek ok
7.61985¢e—24 9.70223e—26 1.01269e—29 6.76757e—44 6.74193e—97 2.9412e¢—301 HA Ak Rk
-8 6.22096e—16 2.63744e—17 3.12590e—20 3.86748¢—31 1.60128e—73 4.0125¢—241 otk
6.22096e—16 2.72141e—17 5.36118e—20 2.11512e—29 5.48345e—64 4.9234e—196 kg ok ek ok
-6 9.86588¢—10 1.22228e—10 2.10293e—12 9.72760e—19 7.10964e—43 1.6414e—137 ok ok ek ok
9.86588e—10 1.22451e—10 2.57818e—12 6.20523e—18 4.78902e—38 1.5063e—113 HA A Rk
-5 2.86652¢—7 5.59415¢—8 2.79935¢—9 8.21208¢—14 8.91478e—31 9.54130e—97 otk
2.86652e—7 5.57399¢—8 3.09890e—9 2.48729¢—13 1.10261e—27 7.93329¢—81 3.0096e—285
—4 3.16712¢—5 9.22945e¢—6 1.12624e—6 1.00250e—9 8.12310e—21 2.48724e—63 5.5376e—231
3.16712e—5 9.18713e—6 1.16936e—6 1.77515e—9 4.68369¢—19 8.82626e—54 6.9043e—186
-3 1.34990e—3 5.57147¢—4 1.39607e—4 1.82126e—6 5.59265¢—13 3.04050e—37 6.2357e—132
1.34990e—3 5.55622e—4 1.40329e—4 2.28651e—6 3.73034e—12 2.11481e—32 5.8131e—108
-2 2.22750e—2 1.26118e—2 5.49841e—3 5.17324e—4 3.14165e—7 1.91857e—18 5.22690e—61
2.22750e—2 1.26137e—2 5.47615e—3 5.44520e—4 5.74526e—7 1.13571e—16 1.88167e—51
-1 0.158655 0.111826 7.24853e—2 2.51618e—2 1.71791e-3 8.17304e—7 4.48223e—18
0.158655 0.112071 7.24305e—2 2.51433e—2 1.83418e—3 1.51799e—6 2.68045¢e—16
0 0.500000 0.421993 0.352369 0.249935 0.147519 7.79357e—2 3.95592¢—2
0.500000 0.422779 0.352863 0.250166 0.147764 7.81201e—2 3.96636e—2

wHFxHEFEEE indicates that the calculation fails (the result is just reported as zero)

Values of Tsay et al. approximation, for Q <0, not in bold

To be very explicit, our procedure is as follows. (1) Set
o =1 and pick a value of 1. Calculate the implied values of
o, and o, With ¢*=1, these are o> =1/(1+4?) and
o2 =2*/(1+4%). (2) Pick a value of Q. (3) Now, for
replication r=1, ..., R, where R is a very large number,
take a draw from N(0,1), take its absolute value, and mul-
tiply by o, to get u,. This generates a draw from N (0, 03)
because the absolute value of a N(0,1) random variable is
distributed as N'(0,1), and multiplying by o, converts
N*(0,1) into N*(0,62). (4) Calculate ®[(Q — u,)/a,]. (5)
Average this over the R replications.

This is preferable to an evaluation of the empirical cdf
because it avoids the randomness from drawing v, and
because reliable methods exist for evaluating the normal cdf
in the extreme tails, such as 20 standard deviations from zero.

Finally, although the skew-normal cdf is analytically
intractable, we were able to derive an exact expression for
the cdf for the special case of A= 1 (¢, =0,). This is given
in the following result, which we prove in the Appendix.

3 Result

Suppose that A=1 (6,=6,). Then P;,(Q) = ®* (\/% )
When ¢ = 1, this simplifies to P (Q) = ®*(Q). ’

This result is useful because, apart from the trivial case of

A =0 (the normal distribution), it provides the only exact
standard for assessing the accuracy of both simulation-
based and approximate methods of evaluating the skew-
normal cdf.

4 Some tabulations and comparisons

Table 1 gives values of the cdf F(Q)= P(e< Q) for non-
positive values of Q, with —16 < Q <0. Table 2 gives values
of 1 — F(Q) for positive values of Q, with 1< Q <20. The
reason that we show values of 1 — F(Q) for positive values
is that otherwise, for the larger values of Q, F(Q) would
round to one unless a very large number of decimal places
were preserved, and if they were preserved the number of
digits “9” would fill a whole line. For example, for 1 =1
and Q = 12, our value of F(Q) is 1—3.64006e—39, and to
display that in decimal form would require 38 digits “9”
between the decimal place and 635994. Of course, it does
not matter whether we report that 1 — F(Q) = 3.64006e—39
or F(Q) =1-3.64006e—39.

For each (Q,4) “cell,” the top number, in bold, is our
evaluation of F(Q) or 1 — F(Q) and the number underneath
it is the approximation of Tsay et al. (2013).

@ Springer
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Table 2 Values of our evaluation of 1 — F(Q), for Q > 0, in bold, R = 10,000,000

Q A=0 A=0.25 A=0.50 A=1 A=2 A=4 A=38
1 0.158655 0.205494 0.244832 0.292229 0.315720 0.317444 0.317435
0.158655 0.205239 0.244880 0.292167 0.315476 0.317309 0.317311
2 2.27501e—2 3.23927e—-2 4.00162¢—2 4.50189¢—2 4.55569¢—2 4.55616e—2 4.55581e—2
2.27501e—-2 3.28866e—2 4.00241e—2 4.49557e—2 4.54997e—-2 4.55003e—2 4.55003e—2
3 1.34990e—3 2.14317e-3 2.56193¢—3 2.70246e—3 2.70764e—3 2.70815¢—3 2.70581e—3
1.34990e—3 2.14417e-3 2.55947e-3 2.69751e-3 2.69980e—-3 2.69980e—3 2.69980e—3
4 3.16712¢—5 5.41336e—05 6.22789e—5 6.33965¢—5 6.32240e—5 6.32869¢—5 6.34124e—5
3.16712e—5 5.41554e—5 6.21731e—5 6.33407e—5 6.33425e—5 6.33425e—5 6.33425e—5
5 2.86652¢—7 5.17639¢—7 5.70969e—7 5.62731e—7 4.90247e—7 3.89328e—7 3.38328e—7
2.86652e—7 5.17563e—7 5.70204e—7 5.73303e—7 5.73303e—7 5.73303e—7 5.73303e—7
6 9.86588e—10 1.85222e—9 1.96740e—9 1.71000e—9 4.58049¢—10 2.80140e—12 6.68121e—23
9.86588e—10 1.85072e—9 1.97060e—9 1.97318e—9 1.97318e—9 1.97318e—9 1.97318e—9
8 6.22096e—16 1.21869¢—15 1.18968e—15 2.58074e—16 2.92076e—21 2.65741e—45 1.5975¢—130
6.22096e—16 1.21698e—15 1.24414e—15 1.24419e—15 1.24419e—15 1.24419e—15 1.24419e—15
10 7.61985¢—24 1.51356e—23 1.16083e—23 5.94021e—26 1.25250e—40 1.6995e—101 ol
7.61985e—24 1.51427e—-23 1.52397e—23 1.52397e—23 1.52397e—23 1.52397e—23 1.52397e—23
12 1.77648e—33 3.51550e—33 1.39237e—33 3.64006e—39 1.56865e¢—68 3.8117e—190 il
1.77648e—33 3.54752e—33 3.55296e—33 3.55296e—33 3.55296e—33 3.55296e—-33 3.55296e—33
16 6.38875e—58 1.15397e—57 1.54967e—59 1.78556e—75 3.0154e—153 oo ok
6.38875e—58 1.27769e—57 1.27775e—57 1.27775e—57 1.27775e—57 1.27775e—-57 1.27775e—57
20 2.75362¢—89 3.40590e—89 6.15395¢—94 1.5595e—125 1.2335e—270 ool il
2.75362e—89 5.50724e—89 5.50725¢—89 5.50725¢—89 5.50725¢—89 5.50725¢—89 5.50725e—89

Values of Tsay et al. approximation of 1— F(Q), for O > 0, not in bold

The first thing to note is that we are able to calculate a
value for F(Q), both for our method and for the approx-
imation of Tsay et al., for a much larger range of Q than has
previously been done. The numerical issues involved will
be discussed in the next Section. For now, we simply note
that Tsay et al., Table 1, reported results for Q from —3.0 to
3.0, and their algorithm would not calculate probabilities
smaller than about 1.0e—16. Ashour and Abdul-Hameed
(2010) tabulated results for Q in the range from zero to four.
Wang et al. (2011) tabulated quantiles, not cdf values, but
the smallest quantile they considered was 0.01 and the
largest was 0.99.

To ask how close our cdf values are to the Tsay et al.
approximation, we have to ask what we mean by close. For
example, for Q = —1, 1 =1, the cdf values of 0.02516 and
0.02514 are close in both absolute and relative terms,
whereas for Q = —12, 1 =1, the values of 3.153e—66 and
1.994e—61 are close in absolute terms but not in relative
terms. Both Tsay et al. and Ashour and Abdul-Hameed
comment on closeness in absolute terms, but it is not clear
why this is relevant. Indeed, the relevant notion of closeness
logically depends on the copula. For example, if we are
using the normal copula, what is relevant is the value of @'
(F(¢)). For Q=—12, A=1, the value of @ '(F(¢)) is
—16.923 for our calculation, —16.259 for the Tsay et al.
approximation, and minus infinity for the Ashour and
Abdul-Hameed approximation, which equals zero for all
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0 < —3. As another example, for Q = 16, 1 = 1, the value of
& Y(F(e)) is 18.134 for our calculation and 15.712 for the
Tsay et al. approximation. Of course, these numbers would
be different for a different copula, and ultimately the bias in
estimation caused by a miscalculated cdf will depend both
on the copula and the model that uses the copula.

Having said that, the values of our calculation of F(Q)
and the Tsay et al. approximation are quite close in both
absolute and relative terms for non-extreme values of Q, say
—4 < 0 <3. For more extreme values of Q, they are close in
absolute but not always in relative terms.

The Ashour and Abdul-Hameed approximation, which
sets F(Q)=0 for Q< —3, is in a sense infinitely bad in
relative terms for Q in that range, and we will drop it from
further consideration, even though it appears to be accurate
in the non-extreme part of the range of Q.

5 Numerical issues and accuracy checks
5.1 Numerical issues

Our calculations were done in MATLAB.

For the non-positive values of Q, we calculated the
normal cdf (so that we can calculate @[(Q—u,)/ov]) using
the MATLAB command normedf. This gave results that
matched those in Marsaglia (2004) for —16.6<z<—0.1
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where z is generic notation for the normal cdf argument.
The MATLAB results also matched the results from the
online Casio Keisan normal cdf calculator.

For positive values, some care needed to be taken to keep
the cdf from rounding to one. For example, for z =12,
normcedf returns “1”. However, the MATLAB command
normcdf, ‘upper’ returns the upper tail probability 1 — @
(12) =1.77648¢—33. The key is to average the values of
1 — @[(Q — u,)/o0,] and then subtract this average from one
so that the small deviations from one are preserved. If you
subtract the individual deviations from one separately for
each replication and then average, you will just get one.

A check of the accuracy of the routine normedf, ‘upper’ is
that, for positive z, the value of 1 — @(z) equaled @(—z),
which it did, even for extreme values of z. For example,
normedf evaluated at z=—20 gives 2.753624e—89 and
normcdf, upper’ evaluated at z =20 gives 1-2.753624e—89.

Similar considerations apply to the calculation of the
Tsay et al. approximation. For Q < 0, the approximate cdf as
given in equation (12) of their text and in the last equation
of their Appendix is of the form 2GH, where G and H are
our shorthand for the terms in the last equation in the
Appendix. The term G is easily calculated, but H involves
the “error function” erf(z) = \/L; Joexp(—1*)dt. Specifically,
H =1 —erf(z) where z is a linear function of Q, with a
negative coefficient on Q. For Q < 0 but large in magnitude,
z will be a large positive number and erf(z) will round to one
and 1—erf(z) will round to zero. The solution is to use not
the MATLAB command erf, but rather to use the command
erfc to calculate erfc(z) = 1 — erf(z). For example, when 4
=1 and Q=—10, z=9.7847, and we could calculate erf
(9.7847)=1, 1 —erf(9.7847) =0, H=0 and approximate
cdf = 0, which is not an accurate or useful result. We need
to calculate H = erfc(9.7847) = 1.5117e — 43, which yields
an approximate cdf of 6.7566e—43.

Conversely, for large positive O, we have an extra term,
which we will call J, as given in the last term of the second
to last equation of the Appendix. The approximate cdf is
equal to 2(GH* + J), where H" is like H except for a sign
change in one term. G is the same as before and H is
almost zero and it won’t matter numerically if it rounds to

Table 3 Simulated F(Q), A = 1, for various values of R

zero or not. The value of the approximate cdf is determined
by the term 2J where J is 0.5 minus a very small number,
and it is essential not to let J round to 0.5. So for example
for Q0 =20, 2J=erf(14.1421) and if you calculate erf
(14.1421) you will get one “exactly.” Instead you need to
calculate erf(14.421) as 1-—erfc(14.1421) =1-5.51281e
—89 and this will lead to the approximate cdf equal to 1—
5.51282e—89, a meaningful result.

Finally, we consider the evaluation of the exact cdf P ;
(Q) = ®*(Q) for the case of 1= 1. For negative Q, there is
no numerical issue. We just calculate calculate @(Q) and
take the square. For large positive Q, however, we need to
take care to keep @(Q) from rounding to one. For example,
for 0 =8, we use the command normcdf, ‘upper’ to obtain
1 — @(8) = 6.22096e — 16, which we translate into @(8) =
1 —6.22096e — 16 and @*(8)=1—2x6.2209e—16 +
6.22096% — 32 = 1 — 1.24419¢ — 15.

5.2 Accuracy of the calculations

The Tsay et al. approximation and the exact result for A = 1
are closed-form expressions, apart from the need to evaluate
the normal cdf and error function. So there is little question
of numerical accuracy for these results. However, our
simulated F(Q) is not a closed form expression and it could
be inaccurate for any number of reasons, most notably the
inherent randomness of the simulation and the quality of the
random number generator.

The first thing we investigate is how sensitive the results
are to the choice of R, the number of replications in the
simulation. Table 3 gives results for some values of Q, for R
ranging from 1,000,000 to 100,000,000, for the case of 1 =
1, so that we have the exact result to compare to. For Q <4,
the results do not depend very much on the number of
replications, and R = 1,000,000 is sufficient to give rea-
sonably accurate results. Things begin to be less clear for Q
=6, and for Q =8 the results depend more strongly on R,
and they do not converge unambiguously to the exact result
even for R = 100,000,000.

Table 4 gives the comparison between the simulated F
(Q) and the exact F(Q), for A=1 and for more different

Q0 R=1 R=2 R=5 R=10 R=20 R=50 R=100 Exact

-8 3.85678e—31 3.85887e—31 3.86875e—31 3.86748e—31 3.86999e—31 3.87056e—31 3.86972e—31 3.86748e—31

0 0.249868 0.249856 0.249919 0.249935 0.249973 0.250007 0.249992 0.25

2 1-4.51024e—2 1-4.50771e—2 1-4.50544e—2 1-4.50189e—2 1-4.50095e—2 1-4.49759¢—2 1-4.49810e—2 1-4.49826e—2
4 1-6.37772e—5 1-6.37196e—5 1-6.34907e—5 1-6.33965e—5 1-6.35013e—5 1-6.32251e—5 1-6.3246le—5 1-6.33418e—5
6 1-1.78380e—9 1-1.69967e—9 1-1.72217e—-9 1-1.71000e—9 1-1.82219¢e—9 1-1.80531e—9 1-1.8383%9¢—9 1-1.97318e—9
8 1-2.6169e—16 1-2.19874e—16 1-2.72587e—16 1-2.58074e—16 1-4.02962e—16 1-4.00577e—16 1-4.49283e—16 1-1.24419e—15

R in millions
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Table 4 Exact versus simulated F(Q), A = 1
0 Q) Exact F(Q) [#%(Q)]

Simulated F(Q)

—-16 6.38875e—58 4.08161e—115 4.07757e—115
-12 1.77648e—33 3.15588e—66 3.15338e—66
-8 6.22096e—16 3.87003e—31 3.86748e—31
—6 9.86587e—10 9.73298e—19 9.72760e—19
—4 3.16712e—5 1.00306e—9 1.00250e—9
-2 2.27501e—2 5.17567e—4 5.17324e—4

-1 0.158655 2.51714e-2 2.51618e—2

0 0.5 0.25 0.249935

1 0.841345 0.707861 0.707771

2 1-2.27501e—2 1-4.49826e—2 1-4.5018%¢e—2
4 1-3.16712e—-5 1-6.33418e—5 1-6.33965e—5
6 1-9.86588e—10 1-1.97318e—9 1-1.71000e—9
8 1-6.22096e—16 1-1.24419e—-15 1-2.58074e—16
12 1-1.77648e—33 1-3.55298e—33 1-3.64006e—39
16 1-6.38875e—58 1-1.27775e—-57 1-1.78556e—75

For simulated F(Q) R = 10,000,000

values of Q. The results are the same as described in the
previous paragraph. The simulated cdf is accurate for Q <4
and becomes less accurate thereafter.

Of course, this may just reflect too strict a meaning of the
word accurate. The simulated cdf is quite close to the exact
cdf in the absolute sense, for all of the values of Q that we
consider. The inaccuracy that we have identified is in the
relative sense.

There are multiple possible explanations for numerical
inaccuracy in a simulation, but in this case it is easy to
suspect the random number generator. We used the
MATLAB command rng (s,’twister’) where “twister”
denotes the Marsenne twister algorithm and s is the seed.
We picked s = 1. A sample of 10,000,000 pseudo-random
normal deviates from this generator passed standard tests on
the first four moments. However, a more focused test of the
random number generator is to check whether other random
number generators give different results, and, if so, whether
they more closely match the exact results for 1 =1.

We considered two addition pseudo-random number
generators. One is the MATLAB command rng (‘default’),
which is the same as rng (0,’twister’). The other creates
pseudo-random deviates z such that the values of &(z)
uniformly fill the space [0,1]. Explicitly, forj=1, ..., R, we
choose z; = ®~!((j — 1/2)/R). We could call this uniform
spacing. This is somewhat similar to a Van der Corput
sequence, which is a one—dimensional Halton sequence,
but it is simpler because we have no need to have
uncorrelated draws.

For values of Q where our results are numerically stable
(Q <£4) the choice of random number generator makes very
little difference. For example, for Q =2 and 4 =1, the three
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random number generators listed above yield 1—-F(Q) as
0.0450189, 0.0449673 and 0.0449827, respectively. These are
all quite close to each other and to the exact value of
0.0449826. However, for larger values of Q the random
number generator matters more. For example, for Q = 8 and 4
=1, we obtain 2.58074e—16, 3.69353e—16 and 4.86878e
—16. So the choice of random number generators matters for
the larger values of Q. However, none of these numbers is
particularly close (in relative terms) to the exact value of
1.24419e—15. So the problem could be random number
generation, but it is not due to the specific random number
generator we used, and the Marsenne twister is considered to
be the state—of-the—art random number generation algorithm.
There is essentially an infinity of possible random number
generators, and it is just not clear how likely it is that we could
find one that would solve our inaccuracy problem, if in fact the
problem does lie in random number generation.

6 Tabulations

We have created a set of supplemental tables, available on
request, that give our calculation of F(Q) as a function of Q
and A. They cover the range —16<Q <10 and 0<1<8 and
were calculated for R = 10,000,000. We trust these calcu-
lations to be accurate for Q <4. For Q between 4 and 10,
they are less accurate, but we have included these numbers
because it is not clear what a better alternative would be. An
evaluation that is exactly equal to one is not a good alter-
native. For the case of 1 =1, for which we have an exact
result, the Tsay et al. approximation is quite accurate for
large values of Q. We conjecture that this may be so for
other values of A1 as well, but we have no evidence to
support this conjecture.

7 Concluding remarks

In our view, the main contribution of the paper is to have
extended the range of the argument over which we can get
numerically stable and believable cdf values. This range is
not as wide as we would like, but it is considerably wider
than in previous papers.

The other substantial contribution of the paper is the
derivation of a closed-form expression for the exact cdf, for
the special case of 41 =1. This allows us to check the
accuracy of the cdf values that we have calculated and
tabulated, at least for one special case.
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8 Appendix
We wish to evaluate
> —u\ 1 u
0 Oy Oy Oy
Suppose that 6> = 6> + 6> = 1. Now make the sub-

stitutions z = X and = 0,dz, and define a = 62 and 1 = %
This yields

P=2 / OO(I)(a — A2)p(2)dz,
0

According to Owen (1980), equation 10,010.6, p. 403,
o 1 a
/ D(a+ bz)p(z)dz = 5d)<
0
where (Owen, p. 391)
b
h)p(h
T(h,b) = / ol ;.
0 1 =+ X2
In our case b= —4 and /1 4+ 1> = 1/, so =0
Therefore
P =®(Q) +2T(Q, —4).
According to equation 2.6, p. 414 of Owen, 7(Q,—1) =
—T(Q,4) and therefore
P=®(Q) —2T(Q,4)

There is no closed form expression for the integral that
defines 7(Q,4), so all that we have done so far is to
exchange one intractable integral for another. However,
there is an exception, which is the case that A = 1. Equation
2.3, p. 414, of Owen says that

7(0.1) = 1 0(Q)1 - ®(Q)]

Therefore when A =1 we have

P=a(Q)— 2(%)‘1>(Q)[1 - ®(Q)] = @*(Q).

) )
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