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Abstract
One of the advantages of conduct parameter games is that they enable estimation of market power without total cost data. In
line with this, we develop a conduct parameter based model to estimate the firm specific “marginal cost efficiency” and
conduct without using total cost data. The marginal cost efficiency is an alternative measure of efficiency that is based on
deadweight loss. We illustrate our methodology by estimating firm-route-quarter specific conducts and marginal cost
efficiencies of U.S. airlines for Chicago based routes without using route-level total cost data.
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1 Introduction

The Lerner index Lerner (1934) is a widely used market
power measure, which is the ratio of price-marginal cost
mark-up and price. One of the difficulties for calculating the
Lerner index is that total cost data may not be available
making the estimation of the marginal cost difficult. A
solution to this problem is estimating a conduct parameter
(or conjectural variations) game1 in which firms form con-
jectures about the variation in other firms’ strategies (e.g.,
output) in response to a change in their own strategies. For
given demand and cost conditions, the conjectures corre-
sponding to the observed price-cost margins can be esti-
mated “as-if” the firms are playing a conduct parameter
game. In this setting, the “implied marginal cost” can be
estimated via a supply-demand system.

Stochastic frontier analysis (SFA) literature2 suffers from
a similar problem. That is, the standard SFA models require

total cost data in order to estimate the cost efficiency of a
firm. Moreover, as we will describe in the next section,
market power and efficiency are closely related concepts
and ignoring inefficiency in a conduct parameter model may
lead to inconsistent conduct parameter estimates. What is
more, ignoring the inefficiencies of productive units may
invalidate the standard deadweight loss (DWL) calculations
since DWL from collusive behavior depends on inefficiency
levels.3 If the productive units exhibit inefficiency that is
misinterpreted as firm heterogeneity, then the standard
calculations of DWL become invalid. In such cases, Kutlu
and Sickles (2012) recommend using what they call the
efficient full marginal cost (EFMC) for markup calculation.4

Hence, estimation of conduct, marginal cost, and marginal
cost efficiency would be essential for a valid DWL
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calculation. We overcome all these issues by combining
conduct parameter and SFA literatures so as to generalize a
conventional conduct parameter model to allow inefficiency
in marginal cost. This enables the estimation of marginal
cost efficiencies and conduct parameters jointly and con-
sistently without using total cost data. In contrast to the SFA
literature, which infers cost efficiency from a cost function,
we estimate the marginal cost efficiency from a supply-
demand system that is derived from our conduct parameter
game. This introduces a related but different measure of
efficiency that is based on deadweight loss (DWL), i.e.,
marginal cost efficiency. Therefore, the marginal cost effi-
ciency concept would be a valuable tool for antitrust
authorities.

We would like to note that our methodology can be
applied to a variety of existing conduct parameter settings.
Hence, we consider our study as a guideline for estimating
conduct parameter models in the presence of (marginal cost)
inefficiency. Examples for how this can be accomplished
are illustrated in the Appendix. Hence, our study provides a
link between industrial organization and SFA literatures to
enable researchers to model inefficiency in more structural
settings.

In order to illustrate how our methodology can be used in
an empirical framework, we apply our methodology to
estimate the firm-route-quarter specific conducts and mar-
ginal cost efficiencies of U.S. airlines for routes that origi-
nate in Chicago.5 The time period that our data set covers is
1999I–2009IV. One of the difficulties that empirical
researchers face is that the availability of cost data.
Aggregate airline cost data is available but not at the route
level. Therefore, route level total cost data is not available.
Kutlu and Sickles (2012) try to overcome this problem by
incorporating a specific number of enplanements for each
airline, a specific distance of each city-pair, and airline fixed
effects when estimating the cost function.6 This enables the
calculation of firm-route-quarter specific marginal costs
from the cost function estimation. However, their efficiency
estimates are still aggregate firm-quarter specific making it
difficult to understand route-specific difficulties that may
increase inefficiency.7 Moreover, Kutlu and Sickles (2012)
first estimate cost efficiencies using a standard stochastic
frontier model.8 These derived efficiency estimates are used

to estimate the supply relation.9 The conduct estimates are
conditional on these derived efficiency estimates. In contrast
to their study, we jointly estimate the firm-route-quarter
specific conducts and marginal cost efficiencies of the U.S.
airlines without the use of route specific total cost data.10

Compared to the standard stochastic frontier efficiency
measures, our efficiency concept is a more relevant measure
from the antitrust point of view. Moreover, our empirical
results for the relationship between market concentration
and efficiency can be used as a robustness check from
another perspective. Our results suggest that concentration
ratio (measured by CR4) and market share are negatively
related to the marginal cost efficiency. In contrast to this, the
concentration ratio and market share are positively related
to the conduct. Finally, we find that both the conduct and
DWL estimates may be biased if a conventional conduct
parameter model, which ignores marginal cost inefficiency,
is used.

The rest of the paper is structured as follows. In Section 2,
we briefly discuss the relationship between market power and
efficiency. In Section 3, we build up our theoretical model. In
Section 4, we describe our data set, present our empirical
model, and discuss our results. In the next section, we make
our concluding remarks. Finally, in the Appendix, we present
extensions of the theoretical model.

2 Market power and efficiency

“The Quiet Life Hypothesis” (QLH) by Hicks (1935) and
“the Efficient Structure Hypothesis” (ESH) by Demsetz
(1973) are two well-known hypotheses that relate market
power to efficiency. The former claims that higher compe-
titive pressure is likely to force management work harder,
which in turn increases efficiencies of firms. The latter states
that the firms with superior efficiency levels use their
competitive advantages to gain larger market shares, which
leads to higher market concentration and thus higher market
power. The findings of Berger and Hannan (1998) and
Kutlu and Sickles (2012) support the QLH for the banking
and airline industries, respectively. However, Maudos and
Fernandez de Guevara (2007) show evidence for ESH
applicable to the banking industry. Delis and Tsionas
(2009) are in favor of the QLH on average but acknowledge
that the ESH may prevail in the case of highly efficient
banks. The relationship between market power and effi-
ciency has long been acknowledged by economists.

5 See Berry and Jia (2010) for a paper that is studying airline per-
formance in a different framework.
6 Weiher et al. (2002) use a similar approach.
7 Since Kutlu and Sickles (2012) estimate an aggregate model (i.e.,
route specific market power), they use market share weighted effi-
ciency estimates in their estimations. That is why their route specific
efficiency variables are not the same for different routes.
8 Kutlu and Sickles (2012) use a variation of the distribution free
approach proposed by Cornwell et al. (1990). Kutlu (2017b) discusses
some of the potential estimation difficulties for such distribution free
approaches.

9 When calculating DWL values, Kutlu and Sickles (2012) used SFA-
type efficiency estimates as a proxy for marginal cost efficiency.
10 Similar to our study, Delis and Tsionas (2009) simultaneously
estimate bank conducts and efficiencies. However, their model
requires total cost data. Hence, as it stands, their methodology is not
applicable to our airline example.
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However, market power and SFA literatures largely ignore
this relationship. Delis and Tsionas (2009), Koetter and
Poghosyan (2009), Koetter et al. (2012), and Kutlu and
Sickles (2012) exemplify some studies that attempt to
estimate the market powers of firms in frameworks where
firms are allowed to be inefficient. Except for Delis and
Tsionas (2009), the market power estimates in these studies
are conditional on efficiency estimates.

In conduct parameter models, ignoring marginal cost
inefficiency can potentially cause inconsistent conduct para-
meter estimates. In particular, the conduct parameter esti-
mates may pick up some of the marginal cost inefficiency.
Delis and Tsionas (2009) argue that if the inefficiency is not
taken into account, the optimization model of firms become
irrelevant, which would lead to severe bias as the level of
inefficiency increases. Similarly, ignoring market power
(conduct parameter) can potentially cause inconsistent cost
efficiency or marginal cost efficiency estimates. The differ-
ences in market powers would lead to different firm behavior
and this can be confused with the firm level inefficiency.
Generally, efficiencies are measured by closeness of pro-
duction units to the best-practice units observed in the mar-
ket. If the firm level conducts affect the performance of the
best-practice units, then the efficiency estimates which do not
take this into account would not be accurate. For instance, in
a market facing a Cournot competition the best practicing
firm may not really be fully efficient.11 As mentioned in the
introduction, our methodology aims to overcome these dif-
ficulties by explicitly and simultaneously modeling conduct
parameter and marginal cost efficiency.

3 Theoretical model

In this section, we describe the theoretical framework, used to
estimate marginal cost efficiencies and conducts of firms
without total cost data. The stochastic frontier literature relaxes
full efficiency assumption of neoclassical production theory by
allowing the firms to be inefficient. The inefficiency is treated
as an unobserved component, which is captured by a one-
sided error term. In the conventional stochastic frontier fra-
mework, the cost efficiencies of firms would be estimated by
the following model:

lnC qit;Xc;it

� � ¼ lnC� qit;Xc;it

� �þ uit þ vit: ð1Þ

where qit is the quantity of firm i at time t; Xc,it is a vector of
variables related to cost; uit ≥ 0 is a term which is capturing
the inefficiency; vit is the usual two-sided error term; and C*

is the deterministic component of cost when firms achieve
full efficiency. A variety of distributions are proposed for uit
including the half normal (Aigner et al. 1977), exponential
(Meeusen and van den Broeck 1977), truncated normal
(Stevenson 1980), and gamma (Greene 1980a, 1980b,
2003) distributions. The cost efficiency of a firm, EFFit, is
estimated by:

EFFit ¼ exp �ûitð Þ
ûit ¼ E uitjuit þ vit½ �: ð2Þ

The stochastic frontier approach requires detailed cost
data, which many times is not available. We utilize the
conduct parameter approach to overcome this issue. For this
purpose, instead of modelling total cost as in the conventional
SFA models, we directly model marginal cost, c, as follows:

lnc qit;Xc;it

� � ¼ lnc� qit;Xc;it

� �þ uit þ vit: ð3Þ

where c* is the deterministic component of marginal cost
when firms achieve full efficiency; uit ≥ 0 is a term which is
capturing the marginal cost inefficiency; and vit is a two-sided
random variable, which is observed by the firm but not
observed by the researcher. We call c* efficient marginal cost
(EMC). Rather than estimating a cost function, we estimate a
supply-demand system that enables us to calculate the
marginal cost efficiency. From the antitrust point of view,
which is concerned with market power and DWL estima-
tions, the marginal cost efficiency is a more relevant
efficiency concept compared to the cost efficiency concept.

Let Pt= P(Qt; Xd,t) be the inverse demand function, Qt be
the total quantity, and Xd,t is a vector of demand related
variables at time t. The perceived marginal revenue (PMR)
is given by:

PMR θitð Þ ¼ Pt þ ∂Pt
∂Qt

∂Qt
∂qit

qit

¼ Pt 1� sit
Et
θit

� � ð4Þ

where sit ¼ qit
Qt

is the market share of firm i at time t; Et ¼
� ∂Qt

∂Pt

Pt
Qt
is the (absolute value of) elasticity of demand; θit ¼

∂Qt
∂qit

is the conduct parameter. Three benchmark values for

θit ¼ 0; 1; 1
sit

n o
correspond to perfect competition, Cournot

competition, and joint profit maximization, respectively.
The supply relation is:12

Pt 1� sit
Et
θit

� �
¼ cit ,

lnPt þ ln 1� sit
Et
θit

� �
¼ lncit

ð5Þ

11 Lee and Johnson (2015) argue that in imperfectly competitive
markets inefficiency may in fact be a result of endogenous prices and
the effect of output production on price.

12 Note that perceived marginal revenue must be positive so that the
equilibrium makes sense. Hence, we assume that 1− sit

Et
θit > 0. So, we

have ln 1� sit
Et
θit

� �
≤ 0.
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where cit= c(qit; Xc,it). After including the econometric error
terms, the supply relation becomes:13

lnPit ¼ lnc�it þ git þ uit þ εsit ð6Þ

where git= g(θit, sit, Et)=�ln 1� sit
Et
θit

� �
� 0 is the market

power term, which is an increasing function of θit; uit ≥ 0 is
the inefficiency term; and εsit is the two-sided error term.

The Et term is identified through the demand equation.
Intuitively, Eq. (4) suggests that if cit and qit are highly
collinear, then the conduct parameter may be identified
through the variation in ∂Pt

∂Qt
. We assume that the demand and

marginal cost functions are such that the conduct parameter
and marginal cost can be separately identified.14 In most
cases, identification is a problem when the demand function
is linear. For example, when the demand and marginal cost
functions are linear, we do not observe a variation in ∂Pt

∂Qt
,

and cit and qit are perfectly collinear. In this case, we cannot
separately identify the conduct parameter and marginal cost.
One way to achieve identification is assuming constant
marginal cost.15 Another commonly used approach that
does not require constant marginal cost assumption is
including the cross-product of quantity and an exogenous
variable in the demand equation. When such cross-products
are included in the model, the identification of conduct
parameter is achieved through both parallel shifts and rota-
tions of the demand curve. Bresnahan (1982) illustrates how
identification can be achieved by such rotations for the linear
demand and linear marginal cost case. He states that the logic
of identification is maintained even if the curves are not
linear. In general, the conduct parameter is identifiable if the
inverse demand function is not separable in exogenous
variables, Z, and the number of exogenous variables is
enough. More precisely, we can write the inverse demand
function P so that P= f(Q, r(Z)) where Z is a vector of
exogenous variables but P does not take the form P=Q−1/θr
(Z)+ h(Q) for some functions f, r, and h if and only if the
identification is impossible.

Our model is different from the standard market power
models due to the additional uit term. This inefficiency term,
uit, is identified by utilizing the asymmetric distribution of
the composed error term, i.e., uit þ εsit. Intuitively, uit is
identified if the signal-to-noise ratio (the variance ratio of
the inefficiency component to the composed error) is not
small. Hence, the identification of model parameters

requires the standard conduct parameter model and sto-
chastic frontier model identification assumptions to hold
when there are endogenous variables.16

Following Kutlu and Sickles (2012), Fig. 1 aims to
illustrate the underlying mechanism of our model and
consequences of ignoring inefficiency when calculating
DWL. The figure includes inverse demand function, per-
ceived marginal revenue (PMR), marginal revenue (MR)
that is corresponding to monopoly scenario, marginal cost
(MC), and efficient marginal cost (EMC). For illustrative
purposes, we consider the same constant marginal costs,
conducts, and efficiencies for each firm. Pθ and Qθ are the
equilibrium price and quantity at conduct level θ. Similarly,
PC and QC are price and quantity for the perfect competition
scenario in which conduct equals 0. In the figure, it is
assumed that under perfect competition there would be no
inefficiency. If QLH holds, then as the market power,
measured by θ, increases MC diverges from EMC. In our
framework, the marginal cost efficiency is defined as EMC/
MC. The social welfare loss at conduct level θ would be
equal to the shaded area (sum of dark and light shaded
regions). In Fig. 1, the efficiency is roughly 60%, which is
relatively low.17 As a result the social welfare loss due to
inefficiency is substantial. The conventional DWL value,
which is ignoring inefficiency, is given by the dark shaded
triangular area; and is much smaller than the overall social
welfare loss. When there is heterogeneity either in effi-
ciencies or marginal cost frontiers of firms (under constant
MC assumption), the calculation of DWL would be similar
except that EMC would be a step function rather than a
horizontal line.

Now, we describe how this conduct parameter game
would be estimated. We assume that the conduct parameter

Fig. 1 Conduct, marginal cost efficiency, and social welfare

13 The introduction of the error term enables us to deviate from a
single market price. Also, the price may be considered to be a function
of firm specific variables, Xd,it.
14 For details about the identification conditions for conduct parameter
models, we direct the reader to Bresnahan (1982), Lau (1982), Perloff
et al. (2007), and Perloff and Shen (2012).
15 Note that a constant marginal cost function does not depend on
quantity but it may still depend on variables other than the quantity.

16 At the end of this section, we provide a discussion about identifi-
cation condition for stochastic frontier models with endogenous
regressors.
17 In the figure, for the sake of illustrating the ideas better, we rather
use market level conduct parameter.
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θit is a function of variables, Xg,it, that affect firm specific
market power such as market shares and concentration
ratios. Modeling θit through this function may lead to
computational difficulties. In contrast, git can be modeled
directly as a function of Xg,it so that θit is solved after getting
the parameter estimates. That is, we can calculate the esti-
mate of θit as follows:

θ̂it ¼ Êt

sit
1� exp �ĝitð Þð Þ ð7Þ

where Êt and ĝit are the estimates for Et and git, respectively.
The market power term, git, is bounded by 0 and
Bit ¼ �ln 1� 1

Et

� �
. It follows that the choice of

functional form should be so that git∈ [0, Bit]. In this study,
we use:

git ¼
Bit exp X′

g;itβg

� �
1þ exp X′

g;itβg

� � : ð8Þ

One of the drawbacks of the standard stochastic frontier
models is that if the regressors are correlated with vit or uit,
then the parameter and efficiency estimates are inconsistent.
In this setting, vit and uit terms are assumed to be inde-
pendent, which can be a questionable assumption in a
variety of settings. Similar to Kutlu (2010), Karakaplan and
Kutlu (2017a, b), and Kutlu et al. (2018), we use a limited
information maximum likelihood based approach to handle
the endogeneity issue that occurs when the two-sided error
term is correlated with the regressors or uit. The approach
solves the endogeneity issue by including a bias correction
term in the model. For example, uit can be a function of
regressors (e.g., market shares of firms or concentration
ratios) that are correlated with the two-sided error term.
Consider the following supply relation model with endo-
genous explanatory variables:

lnPit ¼ lnc�it þ git þ uit þ εsit
Xen;it ¼ ζ′itδþ wit

~wit

εsit

� �
� Σ�1=2

w wit

εsit

" #
� N

0

0

� �
;

Im ρσε

ρ′σε σ2ε

� �� 	
uit ¼ hit~uit
hit � 0

~uit � Nþ μu; σ
2
u

� �
ð9Þ

where Pit is the price; Xen,it is an m × 1 vector of all
endogenous variables used in modelling c�it, git, and uit; ζit
= Im⊗ Zit where Zit is a l × 1 (with l ≥m) vector of all
exogenous variables. The irregular term εsit is correlated
with the regressors but independent of ~uit conditional on

Xen,it and Zit.
18 Hence, εsit is independent of uit conditional on

Xen,it and Zit. Note that εsit and uit may still be correlated
unconditionally. By applying a Cholesky decomposition of

the variance-covariance matrix of ~w′
it εsit


 �′
, we can

rewrite the supply equation as follows:

lnPit ¼ lnc�it þ git þ σερ′~wit þ uit þ ~εsit
¼ lnc�it þ git þ η′ Xen;it � ζ′itδ

� �þ uit þ ~εsit
ð10Þ

where ~εsit � N 0; 1� ρ′ρð Þσ2ε
� �

and η ¼ σερΣ�1=2
w . The

parameters of this supply relation can be estimated in one
stage with the maximum likelihood estimation method.
However, sometimes it is simpler to get the consistent
parameter estimates in two stages by first estimating the bias
correction term η′ Xen;it � ζ′itδ

� �
and then including the

estimate of bias correction term in the second stage where
we apply traditional SFA methods.19 For the two-stage
approach, the standard errors need to be corrected, e.g., by a
bootstrap procedure. In our empirical section, we use the
limited information maximum likelihood estimator that we
presented in this section, i.e., the one-stage method.

Amsler et al. (2016, 2017) relax the conditional inde-
pendence assumption for εsit and ~uit by using a copula
approach. Kutlu et al. (2018) show by simulations that if the
firm-specific individual effects are included in the model,
even if εsit and ~uit are correlated conditionally, the estimates
are still reasonable. When it is difficult to find instruments
for endogenous variables, one may use the copula approach
proposed by Tran and Tsionas (2015). Their model does not
require the availability of outside information. Instead, to
obtain the instruments, a flexible joint distribution of the
endogenous variables and composed error is constructed. If
the researcher is inclined to use Bayesian methods, the
stochastic frontier model of Griffiths and Hajargasht (2016)
can be applied to our framework. Traditional stochastic
frontier models impose inefficient behavior on all firms. If it
is believed there is a mixture of efficient and inefficient
firms in the sample, it is possible to apply the model of Tran
and Tsionas (2016).20 Finally, one can disentangle firm
specific heterogeneity from inefficiency by using variations
of true-fixed effects (or true-random effects) model of
Greene (2005a, 2005b) that allow endogeneity as in Kutlu
et al. (2018). For example, in the airport and banking cost
efficiency contexts Kutlu et al. (2018) and Kutlu and
McCarthy (2016), respectively, illustrate that efficiency
estimates can be substantially different if productive unit
heterogeneity is not controlled in the estimations.

18 We may replace uit ¼ hit~uit assumption by uit ¼ hit~ui so that ~ui is a
firm specific term. This would be in line with the panel data stochastic
frontier models.
19 This bias correction term is said to be a control function.
20 See also Guan et al. (2009) and Tran and Tsionas (2013) for GMM
based approaches for handling endogeneity in SFA framework.
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In the stochastic frontier model that we presented, we
have exogenous and endogenous regressors along with
some “outside instruments.” Hence, our identification
assumptions are somewhat different from the standard sto-
chastic frontier models without endogenous variables. Our
main identification assumption is that the exogenous vari-
ables (including the outside instruments) are uncorrelated
with εsit and wit and that there are enough instruments. If εsit
and wit are independent of the exogenous variables
(including the outside instruments), then for each endo-
genous variable and its functions a single control function
would be enough to achieve identification. For example, if z
is a valid instrument for an endogenous variable x, then the
model parameters can be identified by a single control
function even when the model has x and x2 as regressors.21

In order to make our contribution clearer, we finalize this
section by comparing our model with two closely related
papers. Kutlu and Sickles (2012) consider a dynamic con-
duct parameter model in which under the full market power
scenario the firms play an efficient super-game equilibrium
where the firms cooperate subject to incentive compatibility
constraints. They estimate a market specific aggregate
model and assume that the corresponding aggregate incen-
tive compatibility constraint is a function of efficiency. The
only place that efficiency enters their model is within the
incentive compatibility constraint causing the parameter
estimates from the static counterpart of their model to be
invariant to the presence of inefficiency. This contrasts with
our setting as our static model directly includes inefficiency
in the supply equation. For their static model, the presence
of efficiency matters only in the calculation of DWL.
Although Kutlu and Sickles (2012) introduce the marginal
cost efficiency concept, they assume that marginal cost
efficiency equals cost efficiency (in the SFA sense), which
is a somewhat strong assumption. Hence, they simply
estimate a stochastic frontier cost function to obtain the cost
efficiencies of the firms. A direct implication of this is that
their dynamic model requires total cost data.

In another closely related study, Delis and Tsionas
(2009) estimate a supply-demand-cost system where the
cost function is modeled in the SFA framework. Hence, this
study requires total cost data and efficiency concept is cost
efficiency in the SFA sense. Their supply equation is
derived from a standard conduct parameter model, which is
invariant to the presence of inefficiency, and cost ineffi-
ciency enters their model only through the stochastic fron-
tier cost function. This contrasts with our setting as our
model directly includes (marginal cost) inefficiency in the
supply equation. As a final remark, supply equation of Delis
and Tsionas (2009) has revenue as the dependent variable

and the right-hand-side variables include cross products of
(total) cost with many other variables, which are expected to
be endogenous in this setting. This complication may pose
some estimation related difficulties if not controlled
properly.

4 The data

In order to testify our theoretical framework, we use the
U.S. domestic airline data. One of the main data sources
that we use is the Passenger Origin-Destination Survey of
the U.S. Department of Transportation (DB1B data set).
This data set is a 10% random sample of all tickets that
originate in the U.S. on domestic flights. In our data set a
market is defined as a directional city-pair (route). Cal-
culation of prices and quantities are based on the tickets
that have no more than three segments in each direction.
Approximately 1% of tickets are eliminated during the
elimination of tickets with more than 3 segments. We only
focus on coach class tickets due to the differences in
demand elasticities and other characteristics between
coach class and high-end classes (first class and business
class).

Our data set covers the time period from the first quarter
of 1999 to fourth quarter of 2009. During this time period,
the U.S. airlines faced serious financial problems. As
pointed out by Duygun et al. (2016), the financial losses for
domestic passenger airline operations during this time per-
iod were substantially higher than their losses between 1979
and 1999. Increase in taxes and jet fuel prices, relatively
low fares, and sharp decrease in demand were some of the
challenges facing U.S. airlines. During this time period,
there were dramatic increases in load factors.

We provide the details about data construction process as
follows. First, all multi-destination tickets are dropped as it
is difficult to identify the ticket’s origin and destination
without knowing the exact purpose of the trip. Second, any
itinerary that involves international flights was eliminated.
Third, the fare class for high-end carrier was adjusted. That
is, for some airlines, due to marketing strategies, only first
class and business class (high-end) tickets are provided to
consumers on all routes. However, the quality should be
taken as coach class. For such airlines, if there is no coach
class tickets from a certain carrier in a given quarter, we
consider all tickets as coach class tickets. Fourth, tickets that
have high-end segments and unknown fare classes were
dropped.

Following Borenstein (1989) and Brueckner et al.
(1992), we assume that ticketing carrier is the relevant air-
line. After further elimination of multi-ticketing-carrier
tickets, firm specific average segment numbers (SEG) and
average stage length (SL) on a given route are calculated as

21 See Amsler et al. (2016) for further details of identification in SFA
models with endogenous variables.
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indicators for quality and costs. Moreover, our data set
includes a distance variable which is the shortest directional
flight distance (DIST). A ticket is online when the one-way
ticket does not involve change of airplanes. The online
variable is the percentage of online tickets.

For the price variable, we use the average price of all
tickets for a given airline on a given route in given quar-
ter.22 All tickets with incredible23 prices are dropped from
our data set. Following Borenstein (1989) and Ito and
Lee (2007), we eliminate the open-jaw tickets since it
would be difficult to distribute the ticket price into outbound
and inbound segment for open jaw tickets. We drop the
tickets that have a price less than 25 dollars or higher than
99 percentile or more than 2.5 times standard deviation
from the mean for each airline within a route. The tickets
that have price less than 25 dollars are considered as fre-
quent flyer program tickets and the tickets that have
prices higher than 99 percentile are considered to be
input (key punch) errors for the data set. For the round
trip tickets, we divided the total price by two to get the one-
way price.

The cost data set is constructed from the firm level data
of DOT’s airline production data set (based on Form 41 and
T100).24 While the airline-specific total cost data are
available for the whole U.S. airline industry, the route-
airline-specific total cost data are not available. We control
for three types of important costs: labor price (LP), energy
price (EP), and capital price (KP). The salaries and benefits
for five main types of personnel are provided in Form 41/
P6. Annual employee number is given in Form 41, P10. We
interpolated the annual employee data to get the quarterly
values. For energy price, we only capture the cost
based on aircraft fuel. The energy input is developed by
combining information on aircraft fuel gallons used with
expense data per period. Flight capital is described by the
average size (measured in number of seats) of the fleet. The
number of aircraft that a carrier operated from each different
model of aircraft in airline’s fleet is collected from DOT
Form 41. For each quarter, the average number of aircraft in
service is calculated by dividing the total number of aircraft
days for all aircraft types by the number of days in the
quarter. This serves as an approximate measure of the size
of fleet.

In order to estimate the demand, we also include the city
specific demographic variables: per capita income (PCI)
and population (POP). We obtained the city level per capita
income and population data from Bureau of Labor Statis-
tics. We interpolate the annual data to get the quarterly PCI

and population variables for each city. For each
origin-destination city-pair, we use the population weighted
PCI as the route-specific PCI measure. Similarly,
city-pair population is the average population of origination
and destination cities. In order to get the real prices, we
deflated the nominal prices by Consumer Price Index (CPI)
and use the first quarter of 1999 as the base time period.
Because metropolitan areas have available demographic
information whereas airports located in small cities do not,
the number of the city-pairs is further reduced in our final
data set.

We apply our theoretical method on the routes that
originate from Chicago, which is a popular choice because
of its relatively large airport and wide selection of airline
firms. For instance, Brander and Zhang (1990) use 33
Chicago-based routes in their studies. In our final data set,
we further eliminate the small firms and small routes. On a
given route, small firms with market shares less than 0.01
are eliminated. For a given quarter, any route with enpla-
nements less than 1800, i.e., 20 passengers per day or routes
with less than 30 observations are dropped from the ana-
lysis. Table 1 presents the summary statistics for Chicago-
based routes.

Low cost carrier (LCC) is a dummy variable that equals 1
if the ticketing carrier is a low cost carrier, otherwise it is 0.
Number of firms represents the total number of firms that
operate on the route. The total number of passengers is the
total number of tickets sold on a given route by all airlines
together in a given quarter. Total number of passengers for
other routes (OQOTH) variable is the total number of tickets
that are sold on the all other routes that share the same
origination city. We use the geometric market share (GEOS)
variable of Gerardi and Shapiro (2009) as an instrument.25

Another instrumental variable that we use is GEONF. This
variable is the product of GEOS and nf � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

no � ndp
, where

no denotes to the mean value of number of firms for all
routes that share the same origination as route of interest
while the nd refers to the mean value of number of firms for
all routes that share the same destination city.

The final data set contains 108 routes that originate from
Chicago and 14 carriers. The low cost carriers are Frontier
Airlines, JetBlue Airways, Southwest Airlines, and Spirit
Airlines. The remaining carriers are: Alaska Airlines,
American Airlines, Continental Airlines, Delta Airlines,
Northwest Airlines, United Airlines, US Airways, America
West Airlines, ATA Airlines, and Trans World Airways.

22 The average is calculated after eliminating the outliers.
23 The incredible tickets are defined by DB1B data set.
24 For more information about DOT's dataset see Weiher et al. (2002)
and Good et al. (2008).

25 GEOS is the GENSP variable that is used in Gerardi and Shapiro
(2009). GENSP is similar to the GEOSHARE variable of Borenstein
and Rose (1994). The difference is that Borenstein and Rose (1994)
use average daily enplanements while we use average quarterly
enplanements.
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5 Empirical example

The purpose of this section is providing an empirical
example for our theoretical model. In particular, we estimate
time-varying firm-route-specific conducts and marginal cost
efficiencies of U.S. airlines for Chicago based routes. Like
Brander and Zhang (1990) and Oum et al. (1993), we only
consider coach class tickets. Brander and Zhang (1990)
conclude that there is Cournot type competition in the air-
line industry, i.e., competition is quantity based. Hence, we
assume a quantity based competition.26 Our city-pair mar-
kets consist of one-way or round-trip directional trips hav-
ing up to three segments in each direction. We divide the
total ticket price by 2 to get the one-way fare for round-trip
tickets. The demand and supply equations are estimated
separately. The market demand equation is given by:

lnPitr ¼ β0 þ β1 lnQtr þ β2 lnPCItr lnQtr þ fd Xd;itr

� �þ εditr
ð11Þ

where fd is a function of demand related variables, Qtr is the
total quantity at time t for route r, Xd,itr is a vector of
demand related variables, and εditr is the conventional two-
sided error term. We assume that ln Qtr and ln PCItr ln Qtr

are endogenous. Along with the exogenous variables
included in the demand model, our instrumental variables
are GEOSitr, GEONFitr, lnOQOTHrt, logarithm of labor
price (ln LPit), logarithm of capital price (ln KPit), and
logarithm of energy price (ln EPit).

The supply equation is given by:

lnPitr ¼ lnc�itr þ gitr þ uitr þ εsitr ð12Þ

where c�itr is the marginal cost when firms achieve full
efficiency, gitr=�ln 1� sitr

Etr
θitr

� �
is the market power term,

uitr ≥ 0 is the inefficiency term, and εsitr is the conventional
two sided error term. The parameters of the Etr term is
identified through the demand equation. We assume that the
efficient marginal cost, c�itr , is constant with respect to
quantity, i.e., it is not a function of quantity but maybe a
function of exogenous cost shifters. Hence, as we described
in the theoretical model section, the theoretical values for cost
and marginal cost efficiencies coincide in this model.
Although constant marginal cost is a relatively strong
assumption, it is commonly used in the conduct parameter
models. Iwata (1974), Genesove and Mullin (1998), Corts
(1999), and Puller (2007) exemplify some papers that use this
assumption in a variety of conduct parameter settings. We
use this simplifying assumption to illustrate our methodol-
ogy. Nevertheless, we approximate the efficient marginal
cost function by a fairly flexible function of input prices and

Table 1 Summary for Chicago Originating Routes

Variables: Name in estimation Mean S.D. Min Max

Low Cost Carrier Dummy: LCC 0.11225 0.31569 0 1

ln(Population): ln(POP) 15.50922 0.18392 15.33637 16.46417

ln(Per Capita Income): ln(PCI) 10.4226 0.03828 10.33827 10.61397

ln(Stage Length): ln(SL) 6.40837 0.59661 4.69135 8.34378

ln(Distance): ln(DIST) 6.63774 0.65719 4.69135 8.35303

ln(Average Fleet Size): ln(SIZE) 4.97262 0.08467 4.80562 5.33165

ln(Labor Price): ln(LP) 9.23198 0.7346 5.58453 10.00725

ln(Capital Price): ln(KP) 7.27984 0.76111 3.6658 8.1754

ln(Fuel Price): ln(FP) 3.87272 0.58681 2.37945 4.83215

Number of Firms: NF 8.2814 3.14474 1 24

ln(Price Per Ticket): ln(P) 4.96474 0.33975 3.72431 7.1672

ln(Number of Passengers): ln(Q) 9.79688 1.43261 7.49554 13.1454

ln(Number of Passengers for Other Routes): ln(OQOTH) 15.29761 0.10457 14.98133 15.47699

Market Share: s 0.22057 0.22458 0.01001 1

Geometric Market Share: GEOS 0.19418 0.12814 0.00682 1

Geometric Market Share*Number of Firms: GEONF 1.08933 0.66467 0.03784 4.27413

Online Rate: ONLINE 0.66744 0.36844 0 1

Top 4 Concentration Ratio: CR4 0.9195 0.11333 0.07516 1

ln(Average Number of Segments): ln(SEG) 0.3698 0.32171 0 1.09861

Number of Observations 18209

26 Kutlu and Sickles (2012) also assume quantity competition for
airlines.
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other cost related exogenous variables. These cost related
variables include year, quarter, and airline dummy variables,
which capture time-firm-specific unobserved factors.27 More-
over, constant marginal cost assumption is not unreasonable
at least around the equilibrium as there is substantial
empirical evidence supporting constant returns to scale for
the airline industry. We model gitr as in the theoretical model
section and assume that Xg,itr= (sitr, CR4,tr, ln DISTr, t, Etr,1)′
where CR4,tr is the concentration ratio for largest four firms
on route r at time t. We assume that uitr ¼ hitr~uitr and ~uitr �
Nþ 0; σ2u

� �
where σ2u ¼ exp X′

g;itrβu

� �
; and εsitr � N 0; σ2ε

� �
where σ2ε ¼ exp βεð Þ. For the supply side, sitr and CR4,tr are
assumed to be endogenous. Our instrumental variables are
GEOSitr, GEONFitr, ln POPtr, and ln PCItr. The estimations
of the supply relations are done by using the limited
information maximum likelihood estimation method that we
described in our theoretical model section.

6 Results

In this section, we present our estimation results. The
demand parameter estimates for the routes originating from
Chicago are given in Table 2. We estimated the inverse
demand equation by 2SLS. Our demand model controls for
year, quarter, and airline. The demand elasticities are
negative at each observation, i.e., Etr > 0.28

For the supply function, as we described previously,
we use the one-stage limited information maximum like-
lihood approach to deal with endogeneity. In order to illus-
trate the consequences of ignoring marginal cost inefficiency,
we estimated two supply models: the first one allows inef-
ficiency (benchmark model) and the second one assumes full
efficiency so that uitr= 0 (full-efficiency model). The full-
efficiency model is a standard conduct parameter model,
which helps us to compare our benchmark estimates with the
standard conduct parameter models. Both models include
airline, year, and quarter dummy variables.29

Table 3 shows the estimation results. The bias correction
terms (η) are jointly significant at any conventional sig-
nificance level, which is an indication of endogeneity. The
median of the conduct estimates from the benchmark model

is 0.63, which is lower than the theoretical conduct value for
Cournot competition, 1.30 At the median, the extent of
competition lies somewhere between perfect competition
and Cournot competition. The median of conduct estimates
from the full-efficiency model is somewhat lower, 0.22,
suggesting a competitive market. In other words, when we
allow inefficiency, the median conduct is closer to Cournot
competition benchmark, i.e., θ= 1; and when we assume
full efficiency, the median conduct is closer to perfect
competition benchmark, i.e., θ= 0. Moreover, the
Kolmogorov-Smirmov test rejects the equality of the dis-
tributions at any conventional significance levels. This
illustrates the importance of considering marginal cost
inefficiency when estimating a conduct parameter model.

LCCs, due to their special operating style,31 tend to have
lower marginal costs compared to other airlines, which helps

Table 2 Estimation for demand function

Dependent variable: price Estimates Std. err.

ln(Q) 2.91356*** (0.50629)

ln(Q) ln(PCI) −0.29270*** (0.04861)

ONLINE 0.01940* (0.00880)

ln(DIST) 7.47912*** (0.95064)

ln(SEG) −10.03281*** (0.97631)

ln(SIZE) −15.81152*** (2.31769)

ln(SL) −8.24091*** (0.97745)

ln(DIST) Square −0.22445** (0.07828)

ln(SEG) Square 0.53698*** (0.11695)

ln(SIZE) Square 1.50167*** (0.22554)

ln(SL) Square −0.62278*** (0.08377)

ln(DIST) ln(SEG) −0.65458** (0.19646)

ln(DIST) ln(SIZE) −1.93435*** (0.18417)

ln(DIST) ln(SL) 0.90929*** (0.15754)

ln(SEG) ln(SIZE) 2.44755*** (0.19223)

ln(SEG) ln(SL) 0.24996 (0.19551)

ln(SIZE) ln(SL) 1.98114*** (0.18886)

ln(POP) 0.30783*** (0.01673)

ln(PCI) 4.19634*** (0.56805)

LCC −0.21325*** (0.00862)

Quarter Dummies Yes

Year Dummies Yes

Firm Dummies Yes

Centered R Square 0.4976

Number of Observations 18209

+ p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Robust standard errors are given in bracket

27 If the airlines are playing a version of dynamic conduct parameters
game that is suggested by Puller (2009), route-specific time dummy
variables would capture dynamic factors that enter the airlines' opti-
mization problems as well. In this case, the estimates of parameters,
conduct parameters, and efficiencies would still be consistent. How-
ever, the marginal cost estimates may be downward biased as the
prediction of marginal costs include these dynamic factors. Never-
theless, the efficient full marginal cost estimates would be consistent.
28 Recall that we define Et=−∂Qt

∂Pt

Pt
Qt
.

29 Hence, as we illustrate in the Appendix, our parameter and effi-
ciency estimates are consistent even when the marginal costs are
stochastic.

30 The median of theoretical conduct values for joint profit max-
imization scenario is 6.77, which is the median of 1

sitr
.

31 For example, some of them operate only on certain routes in order
to reduce costs.
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Table 3 Estimation for supply function

Supply function: price Inefficiency allowed Full efficiency

Estimates Std. err. Estimates Std. err.

ln(KP) −0.72825*** (0.13523) −0.63778*** (0.15070)

ln(FP) 0.02501 (0.11625) 0.07255 (0.12892)

ln(LP) −0.34062* (0.14423) −0.23348 (0.16666)

ln(KP) Square 0.02449 (0.02310) 0.01674 (0.02643)

ln(FP) Square 0.01010 (0.01061) 0.01876 (0.01164)

ln(LP) Square 0.02082 (0.01929) 0.01612 (0.02175)

ln(KP) ln(FP) 0.02793+ (0.01550) 0.02603 (0.01717)

ln(KP) ln(LP) 0.02922 (0.04268) 0.03147 (0.04818)

ln(FP) ln(LP) −0.04628** (0.01768) −0.05404** (0.01982)

ONLINE −0.11235*** (0.00769) −0.13278*** (0.00853)

ln(DIST) 3.25569*** (0.96877) 1.68620 (1.05468)

ln(SEG) −3.81246*** (0.95276) −1.65408 (1.01118)

ln(SIZE) −15.47651*** (3.14511) −6.51047+ (3.37444)

ln(SL) −3.46404*** (1.01353) −1.90943+ (1.10320)

ln(DIST) Square 0.41059*** (0.07352) 0.35812*** (0.07470)

ln(SEG) Square 0.88206*** (0.11481) 0.81164*** (0.11475)

ln(SIZE) Square 1.63611*** (0.31323) 0.75112* (0.33609)

ln(SL) Square 0.19687* (0.08723) 0.11232 (0.09075)

ln(DIST) ln(SEG) −2.11495*** (0.18315) −1.75739*** (0.17727)

ln(DIST) ln(SIZE) −0.76913*** (0.19136) −0.55407** (0.21109)

ln(DIST) ln(SL) −0.51857** (0.15756) −0.37967* (0.16206)

ln(SEG) ln(SL) 1.93489*** (0.18700) 1.50137*** (0.18227)

ln(SEG) ln(SIZE) 0.94664*** (0.18911) 0.60553** (0.20198)

ln(SIZE) ln(SL) 0.64006** (0.20052) 0.40393+ (0.22051)

LCC −0.76658*** (0.07363) −0.76248*** (0.08575)

Quarter Dummies Yes Yes

Year Dummies Yes Yes

Firm Dummies Yes Yes

Nonlinear function: g Inefficiency allowed Full efficiency

Estimates Std. err. Estimates Std. err.

s 17.62885*** (1.77711) 17.86643*** (1.87244)

CR4 8.82176*** (2.35791) 16.89555*** (3.57813)

ln(DIST) 0.38011 (0.33349) 0.47333+ (0.27124)

t −0.22842*** (0.02998) −0.23597*** (0.03529)

Elasticity of Demand −0.13075 (0.28139) −0.89407** (0.29823)

Constant −10.53598* (5.06577) −13.87330** (4.77015)

σw
Constant −3.46254*** (0.03206) −2.70253*** (0.01051)

σu
s 0.41774*** (0.08396)

CR4 3.95924*** (0.28411)

ln(DIST) −0.94727*** (0.04206)

t −0.03700*** (0.00233)

Elasticity of Demand −0.15413*** (0.04344)

Constant 1.94036*** (0.53855)
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them to offer lower fares. Hence, it is worthwhile to examine
the decomposition of conducts based on LCCs and
non-LCCs. Our conduct estimates from the benchmark
model for LCC and non-LCC carriers are 0.24 and 0.74,
respectively. Therefore, while the conducts of LCCs are
closer to perfectly competitive values, the conducts of non-
LCCs are closer to Cournot competition values. The corre-
sponding estimates from the full-efficiency model are 0.11
and 0.25, indicating relatively competitive markets for both
LCCs and non-LCCs. Hence, ignoring inefficiency leads to
underestimation of conducts for both LCCs and non-LCCs.
The underestimation of welfare loss is boosted by the fact
that the full-efficiency model ignores the marginal cost
inefficiency.

The conduct parameter estimates show that an airline
with higher market share tends to have higher market
power. In markets with high CR4 values, it may be easier for
airlines with higher market share to cooperate. The positive
coefficient of CR4 in conduct verifies this. For the time
period that we examine, the U.S. airlines seem to be losing
market power over time. For longer flight distances the
alternative transportation means (e.g., bus or car) are likely
to become less attractive to the consumers. This reduction in
outside competition suggests a positive relationship
between market power and distance. The positive coeffi-
cient of distance variable for the market power term is in
line with this intuition.

In Figs. 2 and 3, the efficiency and conduct estimates
from our benchmark model are presented. In our benchmark
estimates, the median efficiency estimates for the whole
sample and non-LCC carriers are 82.6 and 84.4%, respec-
tively. Hence, the efficiencies of LCCs and non-LCCs are
similar. The parameter estimates for the inefficiency term
show that an airline with higher market share tends to have
higher inefficiency. Moreover, higher CR4 values lead to
lower efficiency and the correlation between conduct
parameter and efficiency is −0.19, which is statistically
significant at any conventional significance level. These are
in line with the QLH which postulates that higher market

power leads to lower efficiency levels.32 Based on our
benchmark model, the medians of price-marginal cost
markups, price-efficient marginal cost markups, and prices
are $4.65, $30.32, and $140.46, respectively. However, for
the full-efficiency model, the median of price-marginal cost
markups is $2.49. Historically, airlines have been

Table 3 (continued)

Nonlinear function: g Inefficiency allowed Full efficiency

Estimates Std. err. Estimates Std. err.

η (bias correction term)

s −0.33883*** (0.02233) −0.33863*** (0.01947)

CR4 0.09003** (0.02838) 0.58208*** (0.02438)

Log-likelihood 30772.7323 30033.13415

Number of Observations 18209 18209

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Fig. 2 Efficiency estimates

Fig. 3 Conduct estimates

32 Note that since u has a half normal distribution its mean depends on
σ2u. In particular, the mean of u is an increasing function of σ2u.
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challenged in their efforts to generate high profits. These
markup values from our benchmark model indicate that
airlines may partially be responsible for the financial diffi-
culties that they face. Our study shows that the answer to
achieving reasonable profit levels may be through improv-
ing efficiency.

Finally, we calculate a lower bound for bias in DWL
estimates when the researchers use the full-efficiency model
instead of the benchmark model. This number is obtained
by estimating the shaded rectangular area between MC,
EMC, and Qθ (see Fig. 1) where we assume that Qθ equals
total observed quantity on a given route in a given quarter.
The median of the lower bound over all routes and quarters
is $427,715. This area measures the DWL that is caused by
efficiency loss only. Hence, the DWL due to misallocation
of quantity that stems from efficiency loss is not included.33

Nevertheless, this lower bound clearly illustrates the severe
consequences of ignoring marginal cost inefficiency when
evaluating welfare loss using the conventional conduct
parameter models.

7 Summary and concluding remarks

In this paper, we provided a conduct parameter based fra-
mework to estimate market powers and (marginal cost) effi-
ciencies of firms simultaneously. Our methodology enables us
to relax the total cost data requirement for stochastic frontier
models. Total cost data may not be available for a variety of
reasons. For example, firms might not want to reveal this
potentially strategic information. Even when some form of
total cost data are available, the data may not reflect the total
cost of the relevant unit that we want to examine. For
instance, in our empirical example, for the U.S. airlines only
firm specific total cost data is available for the entire U.S.
airline system. In such cases, the conventional stochastic
frontier models cannot estimate firm-route specific efficiencies
as this would require firm-route specific total cost data.

Besides relaxing a vital data requirement, our metho-
dology aims to overcome some estimation issues. Effi-
ciencies are generally measured by the distance between the
units of production and the best practice units observed in
the market. If the performance of the best-practice units
depends on their market powers, then the efficiency esti-
mates that are not taking this into account would not be
accurate. We overcome this difficulty by explicitly model-
ing a conduct parameter game in an environment where
firms are allowed to be inefficient.

In the Appendix, we provide extensions of our model for
a variety of different settings including capacity constraints,
stochastic marginal costs, multi-output firms, and dynamic
strategic interactions. Another potential extension of our
conduct parameter model is so that the firms price dis-
criminate. For example, the marginal cost efficiency con-
cept can be incorporated into the conduct parameter games
of Kutlu (2012a, 2017a) and Kutlu and Sickles (2017). Such
an extension would enable us to understand the connection
between price discrimination, market power, and efficiency
better.34 Hence, our theoretical model serves as a guideline
as to how conduct parameter and efficiency can be esti-
mated simultaneously without requiring total cost data. Our
guideline can be applied to a variety of conduct parameter
settings.

As for the standard DWL calculations, our efficiency
measure for marginal cost does not consider the fixed costs
for the short run. It is possible to consider dynamic
frameworks where prior investments and R&D may
affect fixed costs and marginal costs. Hence, suboptimal
investment decisions may result in suboptimal marginal
cost levels even when the marginal cost may seem
optimal in a single time horizon for given investment and
R&D levels. This type of efficiency is not controlled
in our conduct parameter model or in a standard stochastic
frontier model. Moreover, similar to the standard stochastic
frontier models, we assume that the input market is per-
fectly competitive. Hence, our model ignores potential
market power in the input markets. The advantage of our
framework over SFA setting is that we can make such
structural extensions relatively easier compared to SFA
setting using the already-established industrial organization
literature.

We applied our methodology to estimate the conducts
and marginal cost efficiencies of the U.S. airlines for the
Chicago based routes between 1999I-2009IV. We found
that the market concentration and market share of airlines
are negatively related to the marginal cost efficiency, which
is in line with the QLH. We also found that the conduct and
DWL estimations may be seriously distorted if inefficiency
is ignored. A more extensive empirical study is warranted
but we consider this outside the scope of this paper. For
example, a future study may consider a more complete list
of U.S. routes and a longer time period. Moreover, although
we control for the airline specific factors by including air-
line and time dummy variables, a study including variables
related to on time rate, food service, aircraft engine infor-
mation, and aircraft seat specification may be worth
exploring.

33 Note that the triangular welfare loss area (shaded area between Qθ

and QC in Fig. 1) for the benchmark model is larger compared to that
of full-efficiency model. Therefore, the rectengular area that we esti-
mated is a lower bound for the DWL bias.

34 Borenstein and Rose (1994), Stavins (2001), Gerardi and Shapiro
(2009), and Chakrabarty and Kutlu (2014) examine the relationship
between market power and price discrimination.
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8 Appendix: extensions of theoretical model

The theoretical model we presented illustrates how the
marginal cost efficiency concept can be incorporated to a
simple yet commonly used conduct parameter model. It is
possible to apply similar ideas to a variety of different
conduct parameter models. In this appendix, we briefly
present some alternative frameworks where marginal cost
efficiency concept can be used.

8.1 Capacity constraints

Our model can be extended to a setting in which firms have
capacity constraints. This extension of our model is inspired
by the conduct parameter model proposed by Puller (2007).
In the presence of capacity constraints the optimization
problem for firm i becomes:

max
qit

Ptqit � Cit s:t:qit � Kit ð13Þ

where Kit is the capacity constraint that firm i is facing at
time t. The first order conditions for the corresponding
conduct parameter game are:

Pt ¼ �θitP
′
tqit þ cit þ λit ð14Þ

where λit ≥ 0 is the shadow cost of capacity which can be
estimated by including variables capturing extent of
capacity constraints. For example, Puller (2007) uses a
dummy variable, which equals one when a constraint is
binding. If we let ~c�it ¼ c�it þ λit and ~cit ¼ cit þ λit , as earlier
we have:

lnPit ¼ ln~c�it þ git þ uit þ εsit: ð15Þ

The presence of λit may make it difficult to estimate this
model. A solution may be to use an inefficiency variable,
rit ≥ 0, which enters the equation additively:

Pit ¼ �θitP
′
tqit þ c�it þ λit þ rit þ εsit ð16Þ

where cit ¼ c�it þ rit , rit � Nþ μr; σ
2
r

� �
, and εsit is the usual

two-sided error term.

In line with the standard stochastic frontier models, in our
original model the realized marginal cost (cit) is assumed to be
a multiple of minimum (frontier) marginal cost c�it

� �
; and the

ratio of efficient marginal cost to realized marginal cost
c�it=cit
� �

is defined as marginal cost efficiency. In this setting,
the realized marginal cost is assumed to follow lncit ¼
lnc�it þ uit where uit ≥ 0.

35 Efficiency is calculated using the
estimates from this log-transformed multiplicative form by
Effit ¼ c�it=cit ¼ exp �uitð Þ. In this example, the inefficiency
term, rit, enters the model additively. Hence, rit measures the
marginal cost efficiency additively. That is, we model the
realized marginal cost by cit ¼ c�it þ rit where rit ≥ 0. Similar
to its multiplicative counterpart, this model additively
measures how large the realized marginal cost is relative to
the efficient marginal cost. After estimating the parameters of
the additive model, efficiency can be estimated by
Effit ¼ c�it=cit¼c�it= c�it þ rit

� �
. Depending on the structural

model used, the researcher may find either multiplicative, uit,
or additive, rit, versions of efficiency variable convenient.
However, it seems that for the game theoretic models, the
additive version may be more frequently needed.

8.2 Stochastic marginal cost

Until now we considered models where the firms have
perfect information about the marginal costs. However,
firms may not always have perfect information about their
marginal costs. In such cases, they would maximize their
expected profits. We provide a simple example for how this
issue can be handled in our framework. Assume that the
marginal costs of the firms are stochastic in the sense that:

lncit ¼ lnc�it þ uit þ vit ð17Þ

where the inefficiency level, uit, and the distribution of
vit � N 0; σ2v

� �
is known by the firms but vit is not observed

by neither the firms nor the researcher. In this scenario, the
perceived marginal revenue would be equal to the expected
marginal cost. As earlier, the perceived marginal revenue is
given by:

PMR θitð Þ ¼ Pt 1� sit
Et

θit

� 	
: ð18Þ

The expectation of marginal cost is given by:

E cit½ � ¼ c�it exp uitð ÞE exp vitð Þ½ �
¼ c�it exp uitð Þexp 1

2 σ
2
v

� � )
ln E cit½ �ð Þ ¼ γ þ lnc�it þ uit

ð19Þ

35 For expositional purposes, we ignore the two-sided error term.

Journal of Productivity Analysis (2018) 49:137–151 149



where γ ¼ 1
2 σ

2
v . Hence, after adding the error term, the

supply equation for firm i is given by:

lnPit ¼ γ þ lnc�it þ git þ uit þ εsit: ð20Þ

This supply equation is the same as the deterministic cost
function scenario except for the addition of the constant
term, γ. If vit is heteroskedastic so that vit � N 0; σ2vi

� �
where

σ2vi is firm specific, the model becomes:

lnPit ¼ γi þ lnc�it þ git þ uit þ εsit: ð21Þ

This model can be estimated using the true individual
effects model of Kutlu et al. (2018).

8.3 Multi-output firms

Single-output scenario may be restrictive in some contexts
such as banking (e.g., Berger and Hannan 1998; Koetter
et al. 2012; Kutlu 2012b). Therefore, we provide a conduct
parameter model with multi-output firms. Without loss of
generality, we assume that there are two outputs and the
corresponding demands are represented by P1(Q) and P2(Q)
where Q= (Q1, Q2) is the market output vector. The cost
function for firm i is Ci(qi) where qi= (q1i, q2i) represents
the firm output vector. The profit function for firm i is given
by:

πit ¼ P1 Qtð Þq1it þ P2 Qtð Þq2it � Cit qið Þ: ð22Þ

Hence, perceived marginal revenues for outputs are:

PMR1 θitð Þ ¼ P1t þ ∂P1t
∂Q1t

∂Q1t
∂q1it

q1it þ ∂P2t
∂Q1t

∂Q1t
∂q1it

q2it

¼ P1t þ ∂P1t
∂Q1t

q1it þ ∂P2t
∂Q1t

q2it
� �

θ1it

PMR2 θitð Þ ¼ P2t þ ∂P1t
∂Q2t

q1it þ ∂P2t
∂Q2t

q2it
� �

θ2it

ð23Þ

where θit= (θ1it, θ2it)=
∂Q1t
∂q1it

; ∂Q2t
∂q2it

� �
is the vector of conducts

for each output. In line with Nash equilibrium solution, we

assume that ∂Q2t
∂q1it

¼ 0 and ∂Q1t
∂q2it

¼ 0. After adding the error

terms, the supply relations become:

P1t ¼ � ∂P1t
∂Q1t

q1it þ ∂P2t
∂Q1t

q2it
� �

θ1it þ c�1it þ r1it þ εs1it

P2t ¼ � ∂P1t
∂Q2t

q1it þ ∂P2t
∂Q2t

q2it
� �

θ2it þ c�2it þ r2it þ εs2it

ð24Þ

where r1it � Nþ μr1 ; σ
2
r1

� �
and r2it � Nþ μr2 ; σ

2
r2

� �
repre-

sent the corresponding marginal cost inefficiencies addi-
tively so that c1it ¼ c�1it þ r1it and c2it ¼ c�2it þ r2it; and εs1it
and εs2it are the usual two-sided error terms. After estimating
the demand equations, these supply equations can be

estimated separately using stochastic frontier methods that
we described above.

8.4 Dynamic strategic interactions

A formal treatment of conduct parameter games in which
the strategic interactions of the firms are dynamic is beyond
the scope of this study. However, following Puller (2009),
we recommend including time fixed-effects, which may
condition out the dynamic effects in firms’ optimization
problems.36 Even though the estimates of parameters
(including parameters of the conduct and efficiency) are
consistent in this dynamic game scenario, we cannot sepa-
rately identify the efficient marginal costs, c�it, and dynamic
correction terms because the time dummies capture not only
cost related unobserved factors that change over time but
also the dynamic correction terms.37 Nevertheless, except
for the portion of time fixed-effects that contribute to c�it , the
other parameters of c�it are identified. Moreover, many times
c�it is not the main interest. In our empirical example, we
assume a static model, which is not subject to these iden-
tification issues.

Finally, it is possible to extend the dynamic model of
Kutlu and Sickles (2012) using similar procedures that we
presented. However, since their game theoretical model
estimates market-time specific conducts, the extension of
this model would estimate market-time specific conduct and
marginal cost efficiency.
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