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Abstract In the Kalman filter setting, one can model the
inefficiency term of the standard stochastic frontier com-
posed error as an unobserved state. In this study a panel data
version of the local level model is used for estimating time-
varying efficiencies of firms. We apply the Kalman filter to
estimate average efficiencies of U.S. airlines and find that the
technical efficiency of these carriers did not improve during
the period 1999–2009. During this period the industry
incurred substantial losses, and the efficiency gains from
reorganized networks, code-sharing arrangements, and other
best business practices apparently had already been realized.
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1 Introduction

Stochastic frontier analysis originated with two seminal
papers, Meeusen and van den Broeck (1977) and Aigner et
al. (1977). Jondrow et al. (1982) provided a way to estimate
firm specific technical efficiency. These contributions were
framed in a cross sectional data framework. Panel data
potentially can give more reliable information about the

efficiencies of the firm. Pitt and Lee (1981) and Schmidt and
Sickles (1984) applied random effects and fixed effects
models to estimate firm specific efficiencies. In these
models the efficiencies are assumed to be time-invariant.
For long panel data this assumption might be questionable.
The time-invariance assumption was relaxed by Cornwell
et al. (1990) (CSS), Kumbhakar (1990), Battese and Coelli
(1992) (BC), and Lee and Schmidt (1993). The time-vary-
ing inefficiency models were followed by dynamic effi-
ciency models such as Ahn et al. (2000), Desli et al. (2003),
Tsionas (2006), Huang and Chen (2009), and Assaf et al.
(2014).1 Work on time varying effects models and their use
in productivity and efficiency studies have accelerated in the
last decade and we view our current contribution as fol-
lowing in this tradition. Many of these advances are sum-
marized in the recent chapter by Sickles et al. (2015).2

In this paper we consider the use of the Kalman (1960)
filter by treating the inefficiency term as an unobserved
state. In contrast to the classical Box–Jenkins approach, one
also can explicitly model non-stationary stochastic pro-
cesses in the Kalman filter setting. This gives significant
flexibility to the econometrician when specifying the inef-
ficiency portion of the model. We use the Kalman filter
estimator (KFE) to model the efficiency component of the
stochastic frontier composed error. For this purpose we use
a panel data generalization of the local level model. For
long panel data, relatively inflexible stochastic frontier
models [e.g., BC, CSS, and Kumbhakar (1990)] are more
likely to fail to capture potentially complex time-varying
patterns of the effects terms. We examine this claim by
conducting a series of Monte Carlo simulations. Results of
these simulations indicate that some of the widely used
estimators can perform poorly in terms of capturing the
efficiencies of firms when we have long panel data with
fluctuating efficiencies. For example, if the efficiencies of
firms are affected by macro factors that tend to have
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cycles, then it is likely that these relatively inflexible
approximations will fail to capture the efficiency patterns.
While some of the factors that lead to variation in efficiency
can be controlled for by including exogenous variables
in the modeling of the inefficiency term, the unobserved
factors leading to such variations are generally left out in the
conventional stochastic frontier methods. That is, the pattern
of time-variation in efficiency is restricted to follow a known
function of exogenous parameters. Hence, one of the main
goals of this study is to point out the importance of capturing
these time-varying unobserved factors in the efficiency
analysis, especially for longer panel data, and the relative
ease with which such time-varying unobserved factors can
be addressed using the Kalman filter. The results of our
Monte Carlo simulations serve well for this purpose. Our
model is not unduly complicated and can be applied rela-
tively easily in many applications. Thus the KFE is proposed
as a simple and effective (as shown in the simulations)
solution to the problem at hand. The KFE can be viewed as
an alternative to the factor model approach addressed in
Kneip et al. (2012) and Ahn et al. (2013) and recent gen-
eralizations utilizing Bayesian alternatives.

An early application of the Kalman filter in the pro-
ductivity setting is Slade (1989) where she uses the local
level model with trend to model total factor productivity.
However, Ueda and Hoshino (2005) appear to have been
the first to apply the Kalman filter to the estimation of
efficiency in a data envelopment analysis (DEA) frame-
work. Ueda and Hoshino (2005) examine the case where the
inputs and outputs are not deterministic. Kutlu (2010a),
Emvalomatis et al. (2011) and our study appear to be the
first to use the Kalman filter to estimate efficiency in the
framework of stochastic frontier analysis (SFA).3 Emvalo-
matis et al. (2011) modeled the logarithm of ratio of inef-
ficiency and efficiency by a generalized version of an AR(1)
process. Their method, however, does not use the traditional
Kalman filter since the state variable is not linearly incor-
porated in their model, which is a necessary assumption for
the traditional version of the Kalman filter. Hence, they use
a non-linear version of the Kalman filter. In contrast, we
model the effects term as in the local level model and cal-
culate the efficiency scores utilizing the approach adopted by
Schmidt and Sickles (1984). Moreover, for our model the
traditional Kalman filter method is sufficient for our esti-
mation purposes, although extensions of the Kalman filter,
for example, to handle endogenous regressors, recently
have been developed and used in a production setting.4

We apply the KFE to estimate the average (and individual)
efficiencies of the U.S. airlines during the period 1999–
2009. Over our 11 years of study period, the average effi-
ciency of the airlines do not show a tendency to increase.
Indeed, for the first few years of the study it seems that
the efficiencies of the airlines decreased. As efficiency
change and technical (innovation) change are the two main
components of productivity growth our empirical findings
are broadly consistent with the findings of others (see,
for example, Färe et al. 2007) who report declining service
quality as problems with delays and congestion at US
major airports accelerated during our sample period.

In the next section we describe the KFE and propose
several ways in which it can be implemented to model pro-
ductive efficiency. In Section 3 we discuss our Monte Carlo
simulation results. Section 4 provides the data description
and results of an analysis of productivity trends in the US
commercial airline industry during the period 1999–2009.
Section 5 concludes. Additional estimation results for other
functional specifications as a check of the robustness of our
overall findings are provided in the Appendix.

2 Description of the Kalman filter estimator

Consider a panel of ni firms observed over nt periods. A
general stochastic frontier model is given as follows:

yit ¼ Xitβ þ μit þ εit

μi;tþ1 ¼ ρμi;t þ τit þ e1it
τi;tþ1 ¼ τi;t þ e2it

ð1Þ

where yit is the logarithm of output, εit � NID 0; σ2ε
� �

and
eit ¼ e1it e2it½ �′ � NID 0;Qð Þ are independently distributed
error terms. The initial values of the state variables μit and τit
are assumed to be jointly normally distributed with zero mean
and they are independent from εit and eit. Estimation details are
provided in Appendix 1. The component μit is the random
heterogeneity specific to ith individual which is interpreted as
efficiency. In the spirit of Ahn et al. (2000) we allow the
firm to sluggishly change its inefficiency by modeling effi-
ciency as an AR(1) process with trend τit. We also allow the
firm to adjust quickly. Efficiency may be a random walk (or a
random walk with trend), for example (cf, Kneip et al. 2012)
and thus the model allows for non-stationarity. In our
empirical illustration of the KFE that we explore in Section 5,
we estimate production efficiency using a restricted version
of the translog (RTRANS) production function. The restricted
version of the translog that we use provides us with
an empirical vehicle that suits our purpose in this introduction
of a new estimator and is statistically supported over the full

3 Our paper is a substantially revised and extended version of Chapter 2
in Levent Kutlu’s dissertation, Market Power and Efficiency (2010a).
Recently, independent from us, Peyrache and Rambaldi (2013)
proposed a similar Kalman filter model for estimating efficiencies.
4 For details see Jin and Jorgenson (2009), Kim (2006), Kim and Kim
(2011), Kim and Nelson (2006), and Kutlu and Sickles (2012).
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translog model.5 As a check of the robustness of results based
on the restricted translog model we also present estimation
results from the full translog model in the Appendix 2.

We calculate the time-varying production frontier inter-
cept common to all producers in period t as μ̂t ¼ maxi μ̂it
(Cornwell et al. 1990). Relative technical efficiency is
estimated as TEit ¼ expð�ûitÞ, where ûit ¼ μ̂t � μ̂it. Equa-
tion system 1 can be rewritten as:

yit ¼ Xitβ þ ZBit þ εit; εit � NID 0; σ2ε
� �

Bi;tþ1 ¼ TBi;t þ eit; eit � NID 0;Qð Þ ð2Þ

where

Bit ¼ μit
τit

� �
; eit ¼ e1it

e2it

� �
; T ¼ ρ 1

0 1

� �
; and Z ¼

h
1 0

i
For the initialization of the Kalman filter, one can use the

initial values that are implied by stationarity. In the case of
non-stationary states, diffuse priors can be used. One prac-
tical choice is setting the mean squared error matrix of the
initial states to be a constant multiple of the identity matrix.
The constant is chosen by the econometrician and should be
a large number. Alternatively, one can utilize an exact diffuse
initialization.6 For the sake of simplicity we prefer using the
former diffuse initialization method. The traditional Kalman
filter estimation may be numerically unstable due to rounding
errors which might cause variances to be non-positive defi-
nite during the update process. One solution to this issue is
using the square-root Kalman filter. Hence, we further
implement the square-root Kalman filter.7

A simpler and yet flexible model we will use is:

yit ¼ Xitβ þ μit þ εit; εit � NID 0; σ2ε
� �

μi;tþ1 ¼ μi;t þ eit; eit � NID 0;Qð Þ ð3Þ
This model generalizes the panel data models where the

effects term is time-invariant by using time-specific local
approximations, i.e., Schmidt and Sickles (1984). When
Q= 0, μit is a deterministic function of initial values, i.e.,
μit= μi0. When choosing this model we follow a commonly
used modeling of time-varying parameter models (i.e., ran-
dom walk parameters); and we do not claim that this model
is preferred over the more general model presented above.
However, the simple model may perform better for relatively
shorter panel data applications as diffuse initialization of
state variables eats up smaller number of observations.8 For

example, in our empirical model, which uses an unbalanced
panel data set with 11 time periods, the full model was not
suitable for estimation.9

KFE is a random effects-type estimator, in the sense that
E[Xitμit]= 0 is needed for consistency, and is considerably
flexible in terms of capturing latent cross-sectional varia-
tions that can change over time and which we consider
herein unobservable productivity effects. If the εit or μit
(effects) terms are correlated with the regressors, then the
parameter estimates are inconsistent. The KFE can be
modified in line with the control function approach used by
Kim and Kim (2011) in order to allow for endogenous
regressors that are correlated with the εit term.10 Kim (2008)
provides a solution to a similar endogeneity problem in the
context of Markov-switching models when the state vari-
able and regression disturbance are correlated. If the
regressors are correlated with the effects term, then we can
estimate the first differenced model:

Δyit ¼ ΔXitβ þ eit þ Δεit
¼ ΔXitβ þ wit

ð4Þ

by instrumental variables and standard Kalman filter esti-
mation methods can be applied to the consistent residuals,
yit � Xitβ̂, in order to obtain the consistent hyperparameter
estimates.11

3 Monte Carlo experiments

In this section we implement a set of Monte Carlo simu-
lations to examine the finite sample performance of the
KFE. For expositional simplicity we consider a production
model. The data generating process is given by:12,13

yit ¼ xitβ þ εit � μit; εit � NID 0; σ2ε
� �

xi;tþ1 ¼ Rxi;t þ ξit; ξit � NID 0; I2ð Þ ð5Þ

where xit ¼ ½x1it x2it� � NIDð0; ðI2 � R2Þ�1Þ;
β ¼ ½β1 β2�′ ¼ 0:5 0:5½ �′, σ2ε ¼ 1, and

R ¼ 0:4 0:05
0:05 0:4

� �
:

5 In the Kalman filter setting it is possible to estimate a cost function
with/without input share equations. For the simultaneous equations
setting we do not consider a stochastic frontier model because of so
called Greene’s problem. See Kumbhakar (1997), Kumbhakar and
Lovell (2003), and Kutlu (2013).
6 See Durbin and Koopman (2001) for more details about initialization.
7 See Durbin and Koopman (2001) and Kutlu and Sickles (2012) for
details of the square-root Kalman filter.
8 See Appendix 1 for more details about required degrees of freedom.
The degrees of freedom requirement may be eased by using other (yet
restrictive) initialization approaches.

9 We failed to estimate the full model for this short panel data.
10 Kutlu (2010b), Karakaplan and Kutlu (2015), and Tran and Tsionas
(2012) use similar control function approaches to deal with
endogeneity issues in the stochastic frontier context.
11 See Harvey (1989) for more details on this type of solutions to the
endogeneity problem in the Kalman filter setting.
12 When generating regressors we followed Park et al. (2003, 2007)
and Kutlu (2010b).
13 Note that for the KFE μit may be negative or positive. Hence, as
long as the uit term is predicted properly the sign of μit is not important.
However, in the simulations the production model is written in a
general form so that BC production model is also nested. Hence, for
this purpose the sign of μit is negative.
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The generated values for x are shifted around three different
means to obtain three balanced groups of firms. We chose m1

= (5, 5)′, m2= (7.5, 7.5)′, and m3= (10, 10)′ as the group
means. We simulate a sample of size (ni, nt)= (50, 60). Each
simulation is carried out 1000 times. We consider five dif-
ferent data generating processes for the μit term:

DGP 1 : μit ¼ μi

DGP 2 : μit ¼ a0i þ a1i t
nt

� �
þ a2i t

nt

� �2

DGP 3 : μit ¼ b0i þ
P2
r¼1

b1ri sin 2rtπ
nt

� �
þ b2ri cos 2rtπ

nt

� �n o
DGP 4 : μit ¼ ηtui

DGP 5 : μit ¼ rit
ð6Þ

where μi � NID 0; 1ð Þ; ηt= exp(−h(t−nt)), h= (0.5)/(nt),
and ui � NIDþ 0; 1ð Þ; ali � N 0; 1ð Þ; blri � NID 0; 1ð Þ;
ri,t+1= rit+ vit and ri1 � NID 0; 1ð Þ; and vit � NID 0; 1ð Þ.

We consider five estimators in our simulations. Each of
these estimators correspond to one of the DGPs. The esti-
mators are: Fixed effects (FE) estimator, CSS within esti-
mator (CSSW), Fourier estimator (FOE), Battese–Coelli
estimator (BC), and KFE. FE, CSSW, and FOE are
described as follows:

β̂ ¼ X0MQXð Þ�1X0MQy ð7Þ
where MQ= I−Q(Q′Q)−1Q′, Q = diag(Wi) is a block diag-
onal matrix with Wi matrices on the diagonal, and Wi is a
matrix with rows Wit. For example, we have Wit= 1 for the
FE estimator Wit= [1, (t/nt), (t/nt)

2] for the CSSW esti-
mator14, andWit= [1, sin(2tπ/nt), sin(4tπ/nt), cos(2tπ/nt), cos
(4tπ/nt)] for the FOE.

Excepting the BC estimator, technical efficiencies are
estimated as TEit ¼ expð�ûitÞ, where ûit ¼ maxi μ̂it � μ̂it.
The BC estimator assumes that uit= ηtui where ui �
NIDþ m; σ2u

� �
and ηt= exp(−h(t−nt)). Let eit= εit−μit. For the

BC estimator the efficiency is estimated by:

TEit ¼ E exp �uitð Þjeit½ �

¼
1�Φ ηtσ

��m�
i

σ�

� �
1�Φ �m�

i
σ�

� � exp �ηtm
�
i þ 1

2 η
2
t σ

�2� � ð8Þ

where η = (η1, η2,…,ηn)′, Φ represents the distribution
function for the normal random variable and

m�
i ¼

mσ2ε � η′eiσ2u
σ2ε þ η′ησ2u

σ�2 ¼ σ2uσ
2
ε

σ2ε þ η′ησ2u

For the KFE we assume the following model:

yit ¼ Xitβ þ μit þ εit; εit � NID 0; σ2ε
� �

μi;tþ1 ¼ μi;t þ eit; eit � NID 0; Qð Þ ð9Þ

Hence, for the KFE the effects term is modeled as a random
walk, which is consistent with the local level model of uni-
variate time series. We provide the bias, the variance, the mean
squared error (MSE) of the coefficients, the (normalized) MSE
of the efficiency estimates as well as the Pearson and Spear-
man correlations of efficiency estimates with the true efficiency
levels. The MSE of the efficiencies are calculated as follows:

MSEeff TE0it; cTEit

� �
¼

P
i;t TE0it � cTEit

� �2

P
i;tTE

2
0it

ð10Þ

where TE0it is the true technical efficiency level and bTEit is
the estimated efficiency level. The results for the Monte
Carlo experiments are given in Tables 1, 2, 3, 4 and 5.

For the β estimates, the estimators generally show similar
performances. For both the β estimates and the efficiency
estimates we find that whenever there is a high variation in
the efficiency term the less flexible estimators, such as FE
and BC, perform worse than the others. KFE performs
particularly well in terms of correlations between the true
efficiency and the estimated efficiency. It is worth noting
that all estimators other than the FOE and the KFE per-
formed very poorly for DGP3. Indeed, the FE and BC
estimators show almost no correlation between the true
efficiency and the estimated efficiency.15 This is because
these estimators are not flexible enough to capture the time-
varying pattern of the efficiency. Hence, this simulation
study shows that when the efficiencies of the firms fluctuate
the performance of non-flexible efficiency estimators can be
arbitrarily misleading in capturing the performances of firms.

Finally, we present simulation results for smaller sample
sizes in Tables 6 and 7: (ni, nt)= (50, 10) and (ni, nt)= (10,
60). As in our earlier simulations the estimators performed
more or less the same in terms of β estimates. Hence, we
only summarize their performance for efficiency estimation.
The last two rows are the averages of MSE values and
Pearson correlations which may serve as an aggregate
measure of performance. These tables also confirm that the
KFE estimator performs quite well in terms of capturing the
unobserved efficiency. A striking observation is that KFE
performs well even for relatively shorter panels.

14 The original CSSW estimator assumes Wit= [1, t, t2]. However, for
the simulations we normalize t by nt. This normalization does not
affect the results and is done for numerical purposes.

15 In some of the simulation runs we observed even negative
correlations.
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4 The U.S. Airline Industry 1999–2009

4.1 The data

In order to illustrate our estimator and its usefulness in applied
settings, we utilize annual data from the U.S. airline industry
during the period 1999–2009. The third author has written
extensively on commercial airline efficiency issues in the U.S.,
Europe, and in Asia. We view the example below as infor-
mative in regard to the usefulness of our estimator in modeling
efficiencies in the airline industry and how it may inform
researchers in more extensive industry studies as to potential
limitations in their modeling approaches and alternative
approaches they may wish to consider, such as ours. The time

period we choose is one during which the U.S. airlines faced
serious financial troubles. The financial losses for domestic
passenger airline operations were more than three times the
losses between 1979–1999. Some of the exogenous cost
shocks during the sample period were due to increased taxes
and jet fuel prices. At the same time fares fell and remained
relatively low. Real jet fuel prices were about 20% lower in
2009 than in 2000. Since 1979 demand grew steadily. How-
ever, we observe sharp demand drops during the recession of
2001–2002 and 2008–2009. Due to capital costs and sticky
labor prices such unanticipated decreases in demand brought
additional complications to an industry which had been
experiencing relatively stable and steady demand growth.
Another feature of the sample time period is the increase in
load factors. Average load factors increased from 71 to 81%
between 2000 and 2009 due in part to improved yield
management techniques and reduced flight frequency but
which also lead to reduced levels of service quality.16

The unbalanced data is mainly obtained from the Inter-
national Civil Aviation Organization (ICAO). The data set
that we use has 35 airlines and 298 observations.17 Input and
output variables are constructed following the approaches of

Table 2 Monte Carlo results for DGP2 (CSSW)

FE CSSW FOE BC KFE

MSE 0.0007 0.0006 0.0007 0.0009 0.0006

Bias1 −0.0009 −0.0008 −0.0010 −0.0077 −0.0008

Bias2 −0.0007 −0.0003 −0.0006 −0.0072 −0.0005

Var1 0.0004 0.0003 0.0003 0.0004 0.0003

Var2 0.0004 0.0003 0.0004 0.0004 0.0003

MSEeff 0.0606 0.0413 0.0776 0.1599 0.0955

CORP 0.9679 0.9985 0.9905 0.9621 0.9926

CORS 0.8882 0.9989 0.9740 0.8623 0.9877

Table 1 Monte Carlo results for DGP1 (FE)

FE CSSW FOE BC KFE

MSE 0.0006 0.0007 0.0007 0.0008 0.0006

Bias1 0.0002 0.0002 0.0004 −0.0046 0.0002

Bias2 0.0000 −0.0002 −0.0004 −0.0049 0.0000

Var1 0.0003 0.0003 0.0003 0.0004 0.0003

Var2 0.0003 0.0003 0.0004 0.0004 0.0003

MSEeff 0.0180 0.0528 0.0873 0.1109 0.0720

CORP 0.9999 0.9995 0.9991 0.9933 0.9983

CORS 1.0000 0.9989 0.9994 0.9987 0.9978

Table 3 Monte Carlo results for DGP3 (FOE)

FE CSSW FOE BC KFE

MSE 0.0031 0.0015 0.0007 0.0014 0.0008

Bias1 0.0010 0.0006 0.0001 0.0043 0.0006

Bias2 0.0004 −0.0002 0.0001 0.0048 −0.0000

Var1 0.0016 0.0007 0.0003 0.0007 0.0004

Var2 0.0016 0.0007 0.0003 0.0007 0.0004

MSEeff 3.2996 0.7278 0.1332 5.6036 0.3621

CORP 0.0547 0.3405 0.9705 0.1711 0.8657

CORS 0.0152 0.5906 0.9986 0.0599 0.9695

Table 4 Monte Carlo results for DGP4 (BC)

FE CSSW FOE BC KFE

MSE 0.0006 0.0007 0.0007 0.0005 0.0006

Bias1 0.0002 0.0002 0.0004 −0.0050 0.0002

Bias2 −0.0000 −0.0002 −0.0004 −0.0052 −0.0001

Var1 0.0003 0.0003 0.0003 0.0002 0.0003

Var2 0.0003 0.0003 0.0004 0.0002 0.0003

MSEeff 0.0352 0.0845 0.1336 0.0203 0.0993

CORP 0.9985 0.9858 0.9991 0.9890 0.9470

CORS 0.9963 0.9826 0.9980 0.9981 0.9421

Table 5 Monte Carlo results for DGP5 (KFE)

FE CSSW FOE BC KFE

MSE 0.0151 0.0041 0.0046 0.0116 0.0014

Bias1 0.0006 −0.0003 0.0007 0.0351 0.0002

Bias2 0.0003 −0.0007 0.0002 0.0332 −0.0013

Var1 0.0077 0.0021 0.0023 0.0048 0.0007

Var2 0.0074 0.0020 0.0023 0.0045 0.0007

MSEeff 1.0813 0.5592 0.4246 1.3638 0.1856

CORP 0.5032 0.7408 0.7959 0.5288 0.9713

CORS 0.5644 0.9634 0.9214 0.7201 0.9975

16 For more information about the financial situations of U.S. airlines
see Borenstein (2011).
17 The full data set has 39 airlines and 321 observations. We droped 1
airline with less than 4 observations and 3 cargo airlines.

J Prod Anal (2016) 25:155–167 159



Sickles (1985) and Sickles et al. (1986). Inputs are flight
capital (K, quantity of planes), labor (L, quantity of pilots,
cabin crew, mechanics, passenger and aircraft handlers, and
other labor), fuel (F, quantity of barrels of fuel), and mate-
rials (M, quantity index of supplies, outside services, and
non-flight equipment’s). We focus on value added from
capital and labor in our empirical illustration of the KFE by
netting out from revenue output (RTK, revenue ton kilo-
meters) the value of the intermediate energy and materials.
Thus our technology is rather simple and uses capital and
labor to produce value added revenue ton kilometers.

In addition to the above, we include two sets of control
variables into our model to account for the heterogeneity of
output and the capital input. The first set of control variables is
concerned with service characteristics: (i) aircraft stage length
(SL) and (ii) load factor (LF). SL is the average length of a
route segment, obtained by dividing the miles flown by the
number of departures. The shorter (low value) the stage length

the shorter the period an airlines’ aircraft spends in each flight
segment. LF reflects the average occupancy of an airline’s
aircraft seats, is considered a measure of service quality, and is
often used as a proxy for service competition. A lower load
factor often implies that the airline assigns a relatively larger
number of planes to a particular route and reflects higher
service quality by the airline. The second set of control vari-
ables is concerned with capital stock characteristics. The first is
the average size of the airline’s aircraft (SIZE). The larger the
size of the aircraft the more services can be provided without a
proportionate increase in factors such as flight crew, passenger
and aircraft handlers, and landing slots. The second is the
percentage of each airline fleet that is a (JET) aircraft to total
number of aircraft. JET is considered as a proxy for the aircraft
speed. The jet aircraft tends to fly around three times as fast as
turboprops aircraft and in addition the jet aircraft requires a
relatively lower number of flight crew resources. A brief
description of the variables is given in Table 8.

Table 7 Monte Carlo results for ni= 10, nt= 60

FE CSSW FOE BC KFE

DGP1 (FE) MSE 0.0262 0.0561 0.0840 0.0654 0.0671

CORP 0.9999 0.9977 0.9996 0.9947 0.9841

DGP2 (CSSW) MSE 0.0914 0.0538 0.0961 0.8123 0.1048

CORP 0.8801 0.9945 0.9692 0.8806 0.9589

DGP3 (FOE) MSE 0.4887 0.2218 0.1007 0.6600 0.1999

CORP 0.0221 0.6431 0.9797 0.3130 0.8871

DGP4 (BC) MSE 0.0308 0.0620 0.0914 0.2489 0.0710

CORP 0.9968 0.9875 0.9978 0.9918 0.9479

DGP5 (KFE) MSE 0.6339 0.4204 0.3331 0.9578 0.1432

CORP 0.6337 0.7673 0.8253 0.6533 0.9723

Aggr. MSE 0.2542 0.1628 0.1411 0.5489 0.1172

CORP 0.7065 0.8780 0.9543 0.7667 0.9501

Table 6 Monte Carlo results for ni= 50, nt= 10

FE CSSW FOE BC KFE

DGP1 (FE) MSE 0.1169 0.3062 0.4746 0.4955 0.2684

CORP 0.9987 0.9933 0.9909 0.9879 0.9917

DGP2 (CSSW) MSE 0.1300 0.2311 0.3902 0.9571 0.2784

CORP 0.9663 0.9923 0.9838 0.9609 0.9827

DGP3 (FOE) MSE 1.4859 0.7420 0.5297 4.4685 0.5754

CORP 0.0149 0.3819 0.7725 0.1623 0.7157

DGP4 (BC) MSE 0.1682 0.3355 0.4668 0.0741 0.2969

CORP 0.9982 0.9359 0.9972 0.9485 0.8970

DGP5 (KFE) MSE 0.6262 0.2775 0.3741 1.1006 0.3429

CORP 0.6814 0.9363 0.9313 0.5869 0.9566

Aggr. MSE 0.5054 0.3785 0.4471 1.4192 0.3524

CORP 0.7319 0.8479 0.9351 0.7293 0.9087
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4.2 Analysis using the KFE

In this section we examine the technical efficiency trends in
the U.S. airline industry during the period 1999–2009 using
our new KFE and compare our findings to those from the
Battese–Coelli (BC) and the Cornwell, Schmidt, and Sickles
within (CSSW) estimator with efficiency modeled as
depending only on deterministic time period proxies that vary
over time. We utilize the quadratic specification used in the
U.S. airline empirical illustration of Cornwell et al. (1990).
The BC estimator is probably the most widely used of the
panel estimators and is a random effects type estimator of
efficiency change that also utilizes a deterministic time trend.
The CSSW has somewhat more flexibility and provides a
fixed effects treatment. We estimate the value-added pro-
duction function of the U.S. airlines (revenue ton kilometers
less a value weighted average of materials and energy). The
production function is specified as linear in logs as:

yit ¼
X

j
βjxjit þ μit þ εit

μi;tþ1 ¼ μi;t þ eit
ð11Þ

where εit � NIDð0; σ2εÞ and eit � NIDð0; σ2eÞ are indepen-
dently distributed error terms.18 The estimates for the pro-
duction function parameters and average efficiencies for the
KFE and the BC and CSSW are given in Table 9 and Fig. 1,
respectively.19 The overall average efficiencies for the KFE
and the CSSW and BC estimators are 0.577, 0.438, and 0.632,
respectively.

The median of the returns to scale values for the KFE and
the BC and CSSW estimators are 0.883, 0.94, and 1.034,
respectively. A common finding for the airline industry is
that the airlines operate in a constant returns to scale

environment. In a single-output production setting, Basu and
Fernald (1997) provide a theoretical proof that the value
added estimate of returns to scale is smaller (greater) than
the corresponding gross output model when there is
decreasing (increasing) returns to scale. Hence, there is a
magnification effect for returns to scale estimates when a
value added production function is used.20 Therefore, the
returns to scale estimate for the KFE might have been driven
by this fact. Nevertheless, the constant returns to scale value
of one lies within one sample standard deviation away from
the mean value of returns to scale estimates from the KFE.
In terms of regularity conditions, KFE outperforms other
two estimators. More precisely, while the KFE satisfies
curvature regularity condition at each time period, the BC
and CSSW violate curvature regularity condition at each
time period. At the median values of the regressors, all three
estimators satisfy monotonicity conditions at each time
period. According to KFE estimates, the average efficiency
of the U.S. airlines is relatively stable for the second half of
the study period. However, there is some evidence of a
decrease in efficiency for the first half of the study period.

One potential empirical concern would be whether the
effects term is correlated with the regressors or not. If the
effects term is correlated with the regressors, then the
coefficient estimates would be inconsistent. One advantage
of the CSSW estimator over the random effects-type esti-
mator is that even when the regressors are correlated with
the effects term, the parameter estimates are consistent.
Hence, the parameter estimates from the CSSW model can
be used to test the consistency of parameter estimates from
the KFE. We test the consistency of parameter estimates
from KFE using a Wu-Hausman test and cannot reject the
KFE estimates at the 5 % significance level.

We also check the robustness of our results by estimating
a full version of the translog model. A common problem
with the translog production function is that by increasing
the number of variables by adding second-order ln terms to
the Cob–Douglas functional form the second order terms
tend to exhibit considerable multicollinearity. The full
translog model estimates are given in the Appendix. For the

Table 8 Description of
variables

Variable Description Min 25 Percentile 75 Percentile Max Mean Std

Q (y) ln (Value added RTK) 10.9126 12.6098 15.0266 16.8962 13.9445 1.6004

QL (x1) ln (Labor quantity) 3.7351 6.5181 8.5467 10.2650 7.4982 1.5112

QK (x2) ln (Capital quantity) 1.9459 3.4410 5.6113 6.7038 4.5095 1.2414

LF (x3) Load factor 0.1500 0.5300 0.6210 0.8030 0.5731 0.0990

SL (x4) ln (Stage length) 5.5968 6.5164 7.5368 8.5643 7.0730 0.6636

JET (x5) Jet engines 0.0000 0.9003 1.0000 1.0000 0.8722 0.2614

SIZE (x6) ln (Average plane size) 2.7568 4.0943 5.2244 5.8926 4.7579 0.6020

18 As mentioned in our theoretical section we want to concentrate on
the simple local level model rather than the full model as it is easier to
estimate. For example, our attempt to estimate the full model failed.
The alternative estimates for random walk with deterministic trend and
AR(1) effects models are provided in Appendix 2.
19 When calculating the efficiency estimates, we trim the effects term
from the upper and lower 7.5 % percentiles, observed at least at one
time period, to remove the outlier effects. See, Berger (1993), Berger
and Hannan (1998), Kutlu (2012), and Kneip et al. (2012) for more
details. See, also Appendix 2 for some robustness check for trimming. 20 For similar results see also Diewert and Fox (2008).
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full translog model, few of the parameters were significant
at the 5 % level. We choose our final model specification
based on the BIC for the Kalman filter. This criterion is:

BIC ¼ �2 ln Lþ ln ðsÞ ðpþ dÞ
s

where L is the likelihood value, s is the sample size, p is the
number of hyperparameters, and d is the number of diffuse
priors (Durbin and Koopman 2001). The BIC values for the
full translog and restricted translog forms are 1.805 and

1.714, respectively. Based on the BIC and the fact that
almost all the parameters of the full translog model are
insignificant, the restricted translog functional form is pre-
ferred on statistical grounds.

5 Conclusions

In this study we have proposed a way to measure technical
efficiency via the Kalman filter. Our new Kalman Filter
estimator (KFE) provides a local approximation to general
time and cross sectionally varying effects terms in a standard
panel model. We examine the new estimator in a series of
limited Monte Carlo experiments. Our simulation results
indicate that while the performance of the KFE is similar to
the performances of the other estimators for the coefficient
estimates, the KFE outperforms the less flexible estimators in
terms of the correlation of the effects with true effects. A
result of our simulations is that the widely used BC estimator
performed very poorly whenever there is substantial variation
in the effects, or for our canonical stochastic frontier effi-
ciency model, the efficiency term. If the sample data contains
events that can cause jumps in the productivity of firms, then
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Fig. 1 Efficiency estimates for restricted translog model

Table 9 Restricted translog
production model estimates

KFE CSSW BC

Parameter SE P-value Parameter SE P-value Parameter SE P-value

QL 0.5413* 0.3269 0.098 0.9000** 0.3963 0.024 0.4320 0.2980 0.147

QK 1.1789** 0.4748 0.013 2.1244** 0.9209 0.022 1.1235*** 0.3463 0.001

LF −7.5881*** 2.4679 0.002 −5.4241 3.9615 0.173 −7.6096*** 2.2275 0.001

SL 3.2997** 1.4505 0.023 6.4690** 2.9879 0.032 1.5974* 0.8818 0.070

JET 0.8529 3.5434 0.810 −1.6506 6.1859 0.790 3.4185 2.4065 0.155

SIZE 1.7849** 0.8042 0.027 0.4726 1.2492 0.706 1.4273** 0.7143 0.046

QL
2/2 0.0387 0.1071 0.717 0.1126 0.1415 0.427 0.1560 0.0958 0.103

QLQK −0.1550 0.1417 0.274 −0.3351 0.2088 0.110 −0.2896** 0.1196 0.015

QK
2/2 0.1540 0.1994 0.440 0.2232 0.2603 0.392 0.3910** 0.1729 0.024

LF2/2 1.3352 1.7594 0.448 2.0109 2.1742 0.356 0.4959 1.7470 0.777

LF*SL 0.2704 0.7087 0.703 0.5637 1.0427 0.589 0.2490 0.6580 0.705

LF*JET −1.3300 1.1226 0.236 −0.8783 1.5403 0.569 −2.0094* 1.0592 0.058

LF*SIZE 1.4470* 0.7504 0.054 0.3446 0.9734 0.724 1.7017** 0.6900 0.014

SL2/2 −0.2324 0.2446 0.342 −1.4053** 0.5994 0.020 0.2561 0.1722 0.137

SL*JET 0.2379 0.6702 0.723 0.7894 1.2296 0.522 −0.4244 0.4849 0.381

SL*SIZE −0.3333 0.2552 0.192 0.5557 0.4183 0.186 −0.4800*** 0.1792 0.007

JET2/2 −0.1142 1.4846 0.939 −1.0271 2.4465 0.675 0.9249 1.2021 0.442

JET*SIZE −0.2003 0.3192 0.5304 −0.3082 0.4862 0.5270 0.0541 0.2575 0.8340

SIZE2/2 0.0252 0.3280 0.9388 −0.9068* 0.5226 0.0840 0.2835 0.2214 0.2000

σε 0.1263*** 0.0150 0.0000 – – – – – –

σe 0.1124*** 0.0203 0.0000 – – – – – –

Constant – – – – – – −5.2215 3.2784 0.1110

Note: * P-value< 0.10, ** P-value< 0.05, and *** P-value < 0.01
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the KFE estimator appears able to improve on other standard
panel treatments that are less flexible in specifying the tem-
poral variation in the effects. We then used the KFE in order
to estimate the average efficiency of the U.S. airlines. Point
estimates for the KFE indicate that average efficiency of the
U.S. airlines fell by more than 10% during earlier years of
time period, but these trends are not stable. What does appear
to be the case is that there is no strong or even weak evidence
that airlines experienced improved efficiencies over the
sample period. Given that there were no particularly important
new technical innovations during the sample period, the
sizeable losses incurred by the industry as fares continued to
be held down by competitive pressures were not surprising.
Moreover, many of the efficiency gains from reorganized
networks, code-sharing arrangements, and other best business
practices apparently had already been realized by the begin-
ning of the sample period.
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Appendix 1

In this appendix we provide further details about the Kalman
filter estimation. Consider two stochastic frontier models that
are nested by the general setting that we described:

yit ¼ Xitβ þ ZBit þ εit; εit � NIDð0; σ2εÞ
Bi;tþ1 ¼ TBi;t þ Reit; eit � NIDð0; σ2eÞ

ð12Þ

where

Bit ¼ μit
τit

� �
; T ¼ 1 1

0 1

� �
; and Z ¼

h
1 0

i

and

yit ¼ Xitβ þ ZBit þ εit; εit � NID 0; σ2ε
� �

Bi;tþ1 ¼ TBi;t þ eit; eit � NID 0; σ2e
� � ð13Þ

where

Bit ¼ μit; T ¼ ρ; and Z ¼ 1

The first model assumes a random walk with determi-
nistic trend effects term and the second model assumes a
potentially non-stationary AR(1) process for the effects
term. Both of these models can be estimated by using the
recursive equations provided below. The estimation consists
of two steps. Kalman filtering and smoothing. In the first
step, the following recursive Kalman filter equations are

applied:

ηit ¼ yit � Xitβ � Zbit

Fit ¼ ZPitjt�1Z′þ σ2ε
Mit ¼ Pitjt�1Z′
bitjt ¼ bitjt�1 þMitF

�1
it ηit

Pitjt ¼ Pitjt�1 �MitF
�1
it M0

it

bitjt�1 ¼ Tbi;t�1jt�1

Pitjt�1 ¼ TPi;t�1jt�1T ′þ σ2e

ð14Þ

In the second step, the smoothing is applied by using the
following recursive equations:

Lit ¼ T � TMitF
�1
it Z

ri;t�1 ¼ Z′F�1
it ηit þ L0itrit

Ni;t�1 ¼ Z′F�1
it Z þ L0itNitLit

~bitjt�1 ¼ bitjt�1 þ Pitjt�1ri;t�1

Vit ¼ Pitjt�1 � Pitjt�1Ni;t�1Pitjt�1

ð15Þ

where rint ¼ 0 and Nint ¼ 0.21 The log-likelihood is given
by:

ln ðLÞ ¼
Xni

i¼ 1
Li ¼ constant� 1

2

Xni
i¼ 1

Xnt
t¼ di þ 1

ln Fitð Þ þ η2it
Fit

� 	
ð16Þ

where di is the number of diffuse states for firm i. The
number of diffuse priors (per panel unit) for the first model
is two. The number of diffuse priors (per panel unit) for the
second model is one. If we assume that ρ= 1, the second
model would still have one diffuse prior per panel unit.
However, obviously, the number of parameters to be
estimated would be smaller. If we assume that |ρ| < 1, the
second model would not have any diffuse priors.

Let m be the number of state variables (per panel unit)
and q be the number of state variables with diffuse priors
(per panel unit). For diffuse initialization we assume that:

bi0 ¼ Aδþ Sηi0

ηi0 � NID 0;Q0ð Þ
where δ is a q × 1 vector of unknown quantities and the m ×
q matrix A and m × (m−q) matrix S are selection matrices
that consist of columns of identity matrix. Then, matrix for
initialization is:

Pi0 ¼ κPi10 þ P�0

21 Note that smoothing is not needed to get the MLE estimates. The
smoothing equations are calculated after the estimations. The Kalman
filter uses past and current observations to predict the state variables;
and thus it does not use all information when calculating the state
variable predictions. Once the parameters of the model are estimated
by MLE, the smoothing enables us to update our predictions using
information from all time periods. This is why after smoothing
procedure the predictions of state variables look smoother. Hence, the
name smoothing.

J Prod Anal (2016) 25:155–167 163



where κ→∞, P∞= A′A, and P*= SQ0S′. As it can be seen
from the log-likelihood, the first di observation(s) for panel
unit i are burnt out for the sake of initialization and are not
considered in the log-likelihood. Hence, for example, for
the second model the first observation of each panel unit is
used for initialization. The reason for this is that as long as
t≥ di+ 1, we would have Pi∞t= 0. The variance matrix can
be estimated using the standard maximum likelihood
procedures. For the estimations we used the standard BFGS
optimization method.

Appendix 2

In this appendix we present additional results based on the
full translog model and our truncation scheme when cal-
culating the efficiency estimates for KFE and CSSW esti-
mator. We also provide estimates for alternative Kalman
filter models.

The full translog estimates are given in Table 10. The
parameter estimates are generally not significant even at
10 % significance level. The median of the returns to scale
values for the KFE, CSSW, and BC estimators are 0.8625,
1.1478, and 1.0184, respectively. The corresponding returns
to scale estimates from the restricted model were 0.883,
0.94, and 1.034, respectively. Hence, for the KFE and BC
estimator the returns to scale estimates are robust to the
choice of the functional form. Nevertheless, for both
restricted and unrestricted translog production models the
constant returns to scale value of 1 lies within one sample
standard deviation away from the median value of returns to
scale estimates from each of these estimates. All the esti-
mators satisfy the monotonicity conditions at the median
values of the regressors at each time period. In contrast to
the restricted translog production model where only KFE
satisfied the regularity conditions at the median values of
the regressors, KFE and CSSW estimator satisfies the cur-
vature conditions at each time period. BC estimator failed to

Table 10 Full translog
production model estimates

KFE CSSW BC

Parameter SE P-value Parameter SE P-value Parameter SE P-value

QL −0.0089 1.0890 0.994 0.7998 1.5907 0.616 0.0014 0.9090 0.999

QK −0.1172 1.2252 0.924 −1.3316 2.2313 0.551 1.0972 1.0054 0.275

LF −5.7379 3.5219 0.103 −10.0304** 4.8566 0.040 −3.3730 3.2929 0.306

SL 1.5702 1.6977 0.355 3.0570 3.9807 0.444 0.6302 1.0701 0.556

JET 1.4254 3.7352 0.703 −0.7014 7.8046 0.929 2.7640 2.6859 0.303

SIZE 2.0494* 1.1825 0.083 2.5571 1.7101 0.137 1.4932 1.0830 0.168

QL
2/2 0.0246 0.1242 0.843 0.0402 0.1803 0.824 0.1643 0.1155 0.155

QLQK −0.0531 0.1672 0.751 −0.1901 0.2575 0.461 −0.2372 0.1499 0.113

QK
2/2 0.0446 0.2387 0.852 0.1038 0.3357 0.758 0.3134 0.2118 0.139

QL*LF −1.2529*** 0.4792 0.009 −0.5198 0.7011 0.459 −0.9848** 0.4560 0.031

QL*SL 0.0932 0.1812 0.607 −0.0084 0.2874 0.977 0.0952 0.1610 0.554

QL*JET −0.2995 0.3119 0.337 −0.1378 0.5324 0.796 −0.0963 0.2632 0.714

QL*SIZE 0.1159 0.1909 0.544 0.1047 0.2912 0.720 0.0266 0.1714 0.877

QK*LF 1.2675** 0.6688 0.058 1.1587 0.9225 0.211 0.7433 0.6395 0.245

QK*SL 0.2430 0.1930 0.208 0.6086* 0.3117 0.053 0.0294 0.1773 0.868

QK*JET 0.0934 0.3227 0.772 0.2476 0.5345 0.644 0.0685 0.2710 0.801

QK*SIZE −0.3233 0.2184 0.139 −0.4501 0.3476 0.197 −0.1541 0.1829 0.399

LF2/2 −0.2952 1.9220 0.878 −0.7059 2.5419 0.782 0.0693 1.9108 0.971

LF*SL 0.1669 0.7224 0.817 0.7364 1.1108 0.508 −0.1252 0.6683 0.851

LF*JET −1.3066 1.1015 0.236 −0.6086 1.6222 0.708 −2.1325** 1.0320 0.039

LF*SIZE 2.1381*** 0.7714 0.006 1.0604 1.0125 0.296 2.2467*** 0.7231 0.002

SL2/2 −0.3187 0.2814 0.257 −1.1233 0.6824 0.102 0.2830 0.2175 0.193

SL*JET 0.5056 0.6801 0.457 0.6476 1.4195 0.649 −0.2578 0.5127 0.615

SL*SIZE −0.2258 0.3277 0.491 0.3829 0.4871 0.433 −0.4680 0.2912 0.108

JET2/2 −0.8982 1.5261 0.556 −2.8892 2.7732 0.299 0.6862 1.3207 0.603

JET*SIZE −0.1954 0.3535 0.580 −0.0562 0.5124 0.913 0.1144 0.3446 0.740

SIZE2/2 −0.1791 0.4180 0.668 −1.0108 0.6392 0.116 0.2608 0.3503 0.457

σε 0.1228*** 0.0146 0.000 – – – – – –

σe 0.1075*** 0.0200 0.000 – – – – – –

Constant – – – −1.2421 5.7035 0.828 – – –

Note: * P-value< 0.10, ** P-value< 0.05, and *** P-value < 0.01
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Fig. 2 Efficiency estimates for translog model
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Fig. 3 Efficiency estimates for restricted translog model
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Fig. 4 Efficiency estimates for translog model

Year

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 KFE
CSS
BC

Fig. 5 Efficiency estimates for restricted translog model without
trimming

Table 11 Alternative Kalman filter model estimates

Random walk with deterministic trend AR(1)

Parameter SE P-value Parameter SE P-value

QL 0.5537 0.3573 0.1212 0.1723 0.2971 0.5620

QK 1.7832*** 0.6854 0.0093 0.4194 0.3262 0.1986

LF −5.8284* 3.0391 0.0551 −6.5806*** 2.1545 0.0023

SL 3.0405 1.8894 0.1076 1.4127** 0.6682 0.0345

JET 0.3770 4.6739 0.9357 0.7883 2.4007 0.7426

SIZE 1.8449* 0.9941 0.0635 1.1706 0.7310 0.1093

QL
2/2 0.0664 0.1214 0.5843 0.0573 0.0719 0.4260

QLQK −0.2007 0.1751 0.2519 −0.0869 0.1047 0.4065

QK
2/2 0.0844 0.2344 0.7188 0.2174 0.1719 0.2060

LF2/2 1.3581 1.9264 0.4808 1.9357 1.7737 0.2751

LF*SL 0.0767 0.8360 0.9269 −0.1756 0.6559 0.7889

LF*JET −0.9579 1.3006 0.4614 −1.4287 0.9906 0.1492

LF*SIZE 1.2606 0.8475 0.1369 1.8966*** 0.7116 0.0077

SL2/2 −0.3812 0.3150 0.2262 0.0339 0.1509 0.8221

SL*JET 0.3743 0.8704 0.6672 0.3379 0.4714 0.4735

SL*SIZE −0.1095 0.3146 0.7279 −0.2671** 0.1315 0.0423

JET2/2 −0.8360 1.8501 0.6514 −0.5862 1.2679 0.6438

JET*SIZE −0.2047 0.3968 0.6060 −0.2582 0.2774 0.3520

SIZE2/2 −0.3137 0.4115 0.4459 0.0151 0.1779 0.9324

σε 0.0925*** 0.0212 0.0000 0.1703*** 0.0061 0.0000

σe 0.1636*** 0.0242 0.0000 0.0000 0.0047 0.9997

ρ – – – 1.0315*** 0.0254 0.0000

Note: * P-value< 0.10, ** P-value< 0.05, and *** P-value<0.01
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satisfy the regularity conditions at four of the time periods.
The estimates for the production function parameters and
average efficiencies for the KFE and the BC and CSSW
estimators are given in Table 10 and Fig. 2. The overall
average efficiencies for the KFE, CSSW, and BC are 0.637,
0.458, and 0.605, respectively. These values are not sub-
stantially different from their restricted counterparts, i.e.,
0.577, 0.438, and 0.632. The average efficiencies for the
full translog model are provided in Fig. 2. In line with the
restricted translog model, KFE predicts decrease in effi-
ciency in first few years of the study period and relatively
stable efficiency levels for the last couple of years.

Now, we present the efficiency estimates when the
trimming for KFE and CSSW are done for top–bottom 5%
(rather than 7.5 %) of the effects term when calculating the
efficiencies. The BC estimates remain the same as they are
not subject to such trimming. The average efficiency esti-
mates for 5 % trimming case are provided in Figs. 3 and 4.

Figure 5 presents the average of efficiency estimates for
restricted translog model. Due to outliers the KFE and CSS
model estimates are low.

Finally, we provide our estimates for alternative Kalman
filter models in Table 11. As we mentioned we failed to
estimate the full Kalman filter model that we presented in
Eq. 1. We rather estimated the models given in Eq. 12
(random walk model with deterministic trend) and Eq. 13
(AR(1) model).22 Based on the BIC values the random walk
model with deterministic trend is not preferred. In parti-
cular, BIC values for random walk with deterministic trend
and random walk models are 2.1 vs. 1.7, respectively. The
second model seems to be subject to the pile up problem as
one of the variance parameters is collapsed to zero. Hence,
we only provide the results for the sake of completeness.
Nevertheless, the estimate of ρ= 1.0315 parameter indicates
that our random walk assumption for the trend term is
sensible for our empirical example. Hence, these findings
support our choice for using the random walk model as our
benchmark model.
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