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Abstract This paper investigates the nonparametric

analysis of technology under non-convexity. The analysis

extends two approaches now commonly used in efficiency

and productivity analysis: data envelopment analysis where

convexity is imposed; and free disposal hull (FDH) models.

We argue that, while the FDH model allows for non-con-

vexity, its representation of non-convexity is too extreme.

We propose a new nonparametric model that relies on a

neighborhood-based technology assessment which allows

for less extreme forms of non-convexity. The distinctive

feature of our approach is that it allows for non-convexity

to arise in any part of the feasible set. We show how it can

be implemented empirically by solving simple linear pro-

gramming problems. And we illustrate the usefulness of the

approach in an empirical application to the analysis of

technical and scale efficiency on Korean farms.

Keywords Technology � Productivity � Nonparametric �
Non-convexity

JEL Classification C6 � D2 � Q12

1 Introduction

Nonparametric analysis of technology and productivity has

been the subject of much interest (e.g., Afriat 1972; Färe et al.

1994; Varian 1984). It has provided the basis for data

envelopment analysis (DEA) now commonly used in the

investigation of productivity and firm efficiency (e.g.,

Banker 1984; Banker et al. 1984; Ray 2004; Cook and Sei-

ford 2009). DEA has been seen as an attractive approach for

three reasons: it allows for a flexible representation of multi-

input multi-output technology; it involves solving simple

linear programming problems; and it can provide firm-spe-

cific estimates of productivity and efficiency. Yet, it has one

significant limitation: it assumes that the feasible set is

always convex (where diminishing marginal productivity

applies everywhere). As such, DEA is not appropriate in the

investigation of non-convex technologies. How important

are non-convexity issues in the analysis of productivity and

firm efficiency? There are situations where non-convexity

has significant implications for economics and management.

For example, it is an important issue in the analysis of multi-

product firms: non-convexity contributes to generating pro-

ductivity benefits from specialization (e.g., Bogetoft 1996;

Chavas and Kim 2007). This implies a need to develop

empirical methods that can support the analysis of non-

convex technology. Such methods are needed to examine

empirically when and where non-convexity may arise.

The objective of this paper is to propose a refined non-

parametric method for the analysis of technology under non-

convexity. Note that non-parametric representations of

technology under non-convexity are not new. Relaxing

convexity assumptions in DEA has been explored by Deprins

et al. (1984), Petersen (1990a, b), Bogetoft (1996), Chang

(1999), Kerstens and Vanden Eeckaut (1999), Bogetoft et al.

(2000), Briec et al. (2004), Podinosvki (2005), Leleu (2006,

2009), De Witte and Marques (2011), Briec and Liang (2011)

and others. The most common approach is the ‘‘free disposal

hull’’ (FDH) representation investigated by Deprins et al.

(1984), Tulkens (1993), Kerstens and Vanden Eeckaut
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(1999) and Agrell and Tind (2001). But while the FDH model

allows for non-convexity, we argue that its representation is

too extreme: it tends to find evidence of non-convexity ‘‘too

often’’. Note that other approaches have also been used to

relax the convexity assumption in nonparametric analyses.

They include Petersen (1990a, b), Bogetoft (1996), Agrell

et al. (2005) and Podinosvki (2005). Petersen (1990a, b) and

Bogetoft (1996) have proposed to restrict convexity only to

the input space or the output space. Agrell et al. (2005) have

considered technology represented by unions of pairs of

convex input and output sets. And Podinosvki (2005) has put

forward an approach where convexity is evaluated individ-

ually for each input or output.

In this paper, we propose a new nonparametric model

that relies on a neighborhood-based assessment of tech-

nology. Our approach allows for non-convexity to arise in

any part of the feasible set. It differs from the approaches

proposed by Petersen (1990a, b), Bogetoft (1996), Agrell

et al. (2005) or Podinosvki (2005), who explored depar-

tures from non-convexity based on specific inputs and/or

outputs. Our approach has three useful characteristics: it

provides a flexible representation of non-convexity; it nests

as (restrictive) special cases both the DEA model and the

FDH model; and it is easy to implement empirically. As

such, our new nonparametric approach extends the related

literature both theoretically and empirically. Its usefulness

is illustrated in an application to the analysis of technical

and scale efficiency on Korean farms. The empirical results

show how allowing for non-convexity reduces the extent of

technical inefficiency. They report evidence that non-con-

vexity is more common on large farms. Finally, they

document how non-convexity matters in the analysis of

scale effects.

The new model and its neighborhood-based assessment

of technology are presented in Sect. 2. Its use in the

evaluation of non-convex technologies is discussed in Sect.

3. Using a directional distance function, Sect. 4 presents

productivity analysis under non-convexity and proposes a

new measure to evaluate the extent of non-convexity.

Section 5 examines the evaluation of returns to scale and

scale efficiency under non-convexity. In Sect. 6, we show

how our approach can be implemented easily by solving

simple optimization problems. The usefulness of the

method is illustrated in an application presented in Sect. 7.

Finally, Sect. 8 concludes.

2 The model

Consider the observation of production activities on a set

of N firms in an industry. Each firm produces m netputs

z [ Rm and faces a production technology represented

by the feasible set T , Rm. We use the netput notation

where inputs are negative and outputs are positive. Let

zi : (z1i, …, zmi) [ Rm be the netput vector produced by

the i-th firm, where zji is the j-th netput used/produced

by the i-th firm, and zi [ T means that netputs zi are

feasible, i [ N : {1, …, N}. The technology T may

exhibit different scale properties. It is said to exhibit

non-decreasing returns to scale (NDRS)

constant returns to scale (CRS)

non-increasing returns to scale (NIRS)

8
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:

9
=

;
if T

�
¼
�

8
<

:

9
=

;

d T for any scalar d[ 1. And the technology is said to

exhibit variable returns to scale (VRS) if no a priori

restriction is imposed on returns to scale. Throughout the

paper, we assume that the technology T satisfies free

disposal, where free disposal means that T = T - Rm
þ.

First, consider the case where T is convex.1 Then, under

free disposal, a nonparametric representation of the tech-

nology is given by

Tv ¼ fz : z�
X

i2N

kizi; ki 2 Rþ; i 2 N;
X

i2N

ki ¼ 1g ð1Þ

Tv in (1) is the smallest convex set containing all data

points {zi: i [ N} under free disposal and VRS (e.g., Afriat

1972; Varian 1984). It is the representation commonly used

in DEA (e.g., Banker 1984; Banker et al. 1984; Ray 2004;

Cook and Seiford 2009).

Alternative representations have been proposed

depending on the scale properties of the technology. Fol-

lowing Färe et al. (1994) and Banker et al. (2004), they are

Ts ¼ fz : z�
X

i2N

kizi; ki 2 Rþ; i 2 N;
X

i2N

ki 2 Ssg; ð2Þ

where s [ {v, c, ni, nd}, with Sv = 1 under VRS, Sc = [0,

?] under constant returns to scale (CRS), Sni = [0, 1] under

non-increasing returns to scale (NIRS), and Snd = [1, ?]

under non-decreasing returns to scale (NDRS). Indeed,

when Sv = 1, Tv in (2) reduces to Eq. (1) under VRS.

Alternatively, when Sc = [0, ?], Tc in (2) provides a rep-

resentation of a convex technology under CRS. Tc is the

smallest convex cone containing all data points {zi: i [ N}.

When Sni = [0, 1], Tni in (2) provides a representation of a

convex technology under NIRS. Finally, when Snd = [1,

?], Tnd in (2) represents a convex technology under NDRS.

Since Sv , Sni , Sc and Sv , Snd , Sc, it follows from (2)

that Tv , Tni , Tc and Tv , Tnd , Tc. Also, Sc = Sni [
Snd implies that Tc = Tni [ Tnd. Note that the sets Tv, Tni,

Tnd and Tc are all convex.

Next, we want to introduce non-convexity in the ana-

lysis. For that purpose, consider the following nonpara-

metric representation of technology

1 The technology T is convex if, for any z and z’ [ T, then (h z ?

(1-h) z’) [ T for any scalar h [ [0, 1].
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TFDHv ¼ fz : z�
X

i2N

kizi; ki 2 0; 1f g; i 2 N;
X

i2N

ki ¼ 1g;

ð3Þ

where FDH stands for ‘‘FDH’’ (Deprins et al. 1984; Tul-

kens 1993; Kerstens and Vanden Eeckaut 1999; Agrell and

Tind 2001). Under free disposal, TFDHv is the smallest set

containing all data points {zi: i [ N} under VRS. It provides

a non-convex representation of the technology under VRS.

Alternative non-convex representations have been pro-

posed depending on the scale properties of the technology.

Following Kerstens and Vanden Eeckaut (1999), they

include

TFDHs ¼ fz : z�
X

i2N

kizi; ki 2 f0; dg;

i 2 N;
X

i2N

ki ¼ d; d 2 Ssg:
ð4Þ

where s [ {v, c, ni, nd}, and the Ss’s are as defined above.

When Sv = 1, TFDHv in (4) reduces to Eq. (3) under VRS.

Alternatively, when Sc = [0, ?], TFDHc in (4) provides a

representation of a FDH technology under CRS. TFDHc is

the smallest cone containing all data points {zi: i [ N}.

When Sni = [0, 1], TFDHni in (4) provides a representation

of a FDH technology under NIRS. Finally, when Snd = [1,

?], TFGHnd in (4) represents a FDH technology under

NDRS.2 Since Sv , Sni , Sc and Sv , Snd , Sc, it fol-

lows from (4) that TFDHv , TFDHni , TFDHc and

TFDHv , TFDHnd , TFDHc. Also, Sc = Sni [ Snd implies

that TFDHc = TFDHni [ TFDHnd. Note that each of the sets

Tv, Tni, Tnd and Tc is in general non-convex. Finally, note

that the k‘s are restricted to take discrete values in (4) but

not in (2). It follows that TFDHs , Ts, i.e., that TFDHs is a

subset of Ts, for s [ {v, c, ni, nd}.

The sets Tv, Tc and TFDHv are illustrated in Fig. 1. Fig-

ure 1 shows that these sets satisfy TFDHv , Tv , Tc. Note

that the sets Tv and Tc are convex, but that the set TFDHv is in

non-convex. This indicates that DEA is clearly inappropriate

in the analysis of non-convexity. Indeed, since Tv is always

convex, DEA offers no prospect to uncover any evidence of

non-convexity and produces biased estimates of technical

efficiency under a non-convex technology. In contrast, FDH

can provide a basis to represent a non-convex technology.

Yet, it has a rather undesirable characteristic: it has a ten-

dency to find non-convexity at many places. This can be seen

in Fig. 1, where the frontier technology is given by the line

ABDHJ under Tv and by ABCDEFGHJ under TFDHv. While

the frontier line ABDHJ is concave, the frontier line

ABCDEFGHJ is not. The two lines coincide only along the

segments AB and HJ, where marginal products are either

zero or infinite under Tv. At all other points, the two lines

differ. It means that, under FDH, the frontier technology

would basically exhibit non-convexity at all points where

marginal products are positive and bounded under Tv. Yet,

we are usually interested in situations where marginal pro-

ducts are positive and bounded. The fact that FDH would

always reveal non-convexity in these situations seems

undesirable. In other words, while TFDHv can provide a

representation of non-convexity, it may reveal it ‘‘too

often’’.3 This indicates a need to develop alternative repre-

sentations of technology that can capture non-convexity in a

more useful and credible way. Below, we explore alternative

formulations that allow for flexible representations of the

technology T under non-convexity.

Define a neighborhood of z : (z1, …, zm) [ Rm as Br(z,

r) = {z0: Dp(z, z0) B r: z0 [ Rm} , Rm, where r [ 0 and

Dp(z, z0) :
Pm

j¼1 [(|zj - zj’|/rj)
p]1/p is a weighted Min-

kowski distance between z and z0, with weights r = (r1,

…, rm) [Rm
þþand based on a p-norm 1 B p \?.4 Let

I(z, r) = {i: zi [ Br(z, r), i [N} , N, where I(z, r) is the set

of firms in N that are located in the neighborhood Br(z, r)

of z.5 Define a local representation of the technology T in

the neighborhood of point z as:

y
K

Tc 

H ×       J

Tv 

F ×   G 
D ×     E 

TFDHv 

× 
B ×    C 

A
O x

Fig. 1 Representations of Technology under Tv, Tc and TFDHv

2 Note that Boussemart et al. (2009) analyze returns to scale under

general conditions, allowing the technology to be either convex or

non-convex.

3 In the context of a statistical model, fewer data points being used to

evaluate the FDH frontier, Park et al. (2000) have showed that the rate

of convergence of the efficiency estimator is slower under FDH than

under DEA. This has led Jeong and Simar (2006) to propose a

linearized version of FDH with better convergence properties.
4 For example, when p = 2, this corresponds to the Euclidean

distance: D2(z, z0) :
Pm

j¼1 [(|zj - zj’|/rj)
2]1/2. And when p ? ?,

this corresponds to the Chebyshev distance: limp?? Dp(z, z0) = Maxj

{|zj - zj
0|/rj: j = 1, …, m}.

5 The choice and evaluation of the neighborhood Br(z, r) will be

further discussed in Sect. 6.3 below.
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Trv zð Þ ¼ fz : z�
X

i2I z;rð Þ
kizi; ki 2 Rþ; i 2 I z; rð Þ;

X

i2I z;rð Þ
ki ¼ 1g:

ð5Þ

Equation (5) corresponds to Eq. (1) except that it applies

locally using information limited to points in the neigh-

borhood Br(z, r) of z under VRS. Using (2), alternative

local representations of the technology can be obtained

depending on its scale properties. They are

Trs zð Þ ¼ fz : z�
X

i2I z;rð Þ
kizi; ki 2 Rþ; i 2 I z; rð Þ;

X

i2I z;rð Þ
ki 2 Ssg:

ð6Þ

where s [ {v, c, ni, nd}, and the Ss’s are as defined above.

When Sv = 1, Trv(z) in (6) reduces to Eq/ (5) under VRS.

Alternatively, when Sc = [0, ?], Trc(z) in (6) provides a

local representation of the technology under CRS. When

Sni = [0, 1], Trni(z) in (6) is a local representation of the

technology under NIRS. Finally, when Snd = [1, ?],

Trnd(z) in (6) gives a local representation of the technology

under NDRS. Since Sv , Sni , Sc and Sv , Snd , Sc, it

follows from (6) that Trv(z) , Trni(z) , Trc(z) and

Trv(z) , Trnd(z) , Trc(z). Also, Sc = Sni [ Snd implies

that Trc(z) = Trni(z) [ Trnd(z). Finally, note that, for a

given z, the sets Trv(z), Trni(z), Trnd(z) and Trc(z) are all

convex.

Definition 1 Consider the following neighborhood-based

representation of the technology T:

T�rs ¼ [i2NTrsðziÞ; for s 2 v; c; ni; ndf g: ð7Þ

Equation (5) defines the set Trs
* as the union of the sets

Trs(zi), i [ N. In the neighborhood of point zi, the set Trs(zi)

is convex and provides a local representation of the

technology T under free disposal and returns to scale

characterized by s [ {v, c, ni, nd}. Since the union of

convex sets is not necessarily convex, it follows that Trs
*

defined in (7) is not necessarily convex for each s [ {v, c,

ni, nd}. Since the sets Trs(zi) in (6) are convex, it means

that the rise of non-convexity in Trs
* necessarily comes from

the union of the neighborhood-based sets Trs(zi). As

discussed below, this provides useful flexibility in

investigating a non-convex technology.

Equation (7) is our proposed neighborhood-based rep-

resentation of technology. It extends previous literature by

allowing for non-convexity to arise in any part of the

feasible set. Our approach has two points in common with

Agrell et al. (2005): 1/we both rely on the fact that unions

of convex sets are not necessarily convex; and 2/like Agrell

et al.’s approach, our approach can nest FDH as a special

case (as shown below). But the convex pair approach

proposed by Agrell et al. (2005) did not rely on neigh-

borhood-based measures used in (). As such, the neigh-

borhood-based sets Trs(zi) (7) is specific to our approach.

As argued below, our neighborhood-based characterization

provides useful flexibility in the characterization of a non-

convex technology.

Equation (7) differs from the approaches proposed by

Petersen (1990a, b), Bogetoft (1996), or Podinosvki

(2005), who explored departures from non-convexity

based on inputs and/or outputs. Petersen (1990a, b) and

Bogetoft (1996) assume full convexity in the output set or

the input set. The selective convexity approach proposed

by Podinosvki (2005) is more general in the sense that it

allows for non-convexity to arise for specific inputs or

outputs. By defining non-convexity for all values of

selected sets of inputs or outputs, the approaches proposed

by Petersen (1990a, b), Bogetoft (1996) or Podinosvki

(2005) focus on a global characterization of non-con-

vexity. It means that they cannot examine the possible

presence of non-convexity in particular subsets of feasible

inputs/outputs. As such, they do not allow for a local

specification of convexity (Podinosvki 2005, p. 556). Our

approach does. Indeed, our neighborhood-based approach

is flexible enough to allow for non-convexity to arise in

any region of the feasible set. As noted above, the non-

convexity of Trs
* in (7) comes from the union of the

neighborhood-based convex sets Trs(zi). This provides

useful guidance in the choice of neighborhoods: choose a

neighborhood to be ‘‘large’’ in parts of the feasible region

that are thought to be convex, but ‘‘small’’ in parts that

are thought to be non-convex (see Sect. 6.3 below). Our

proposed approach offers a flexible representation of parts

of the feasible set that exhibit non-convexity. This local

flexibility can apply to specific ranges of values taken by

given inputs or outputs (as discussed in Sect. 6). Impor-

tantly, this useful property is not shared with the global

approaches proposed by Petersen (1990a, b), Bogetoft

(1996) or Podinosvki (2005). The flexibility can also

apply to all values taken by specific netputs (in a way

similar to the approach proposed by Podinosvki (2005)).

To see that, given r = (r1, …, rm), choosing rj deter-

mines how large (or small) a neighborhood Br(z, r) is for

the j-th netput. In this context, the choice of r = (r1, …,

rm) implies that convexity would apply for the inputs/

outputs that have a ‘‘large’’ neighborhood while non-

convexity can arise for inputs/outputs that have a ‘‘small’’

neighborhood.

As showed below, Trs
* has three useful characteristics:

1/it provides a flexible representation of non-convexity; 2/it

nests as (restrictive) special cases both the DEA model and

the FDH model; and 3/it is easy to implement empirically.
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3 Evaluating non-convexity

Our evaluation of non-convexity of the technology relies

on the properties of the representations Ts and Trs
* . The

following properties will prove useful.

Lemma 1 For s [ {v, c, ni, nd}, the set Trs
* satisfies

limr!1T�rs ¼ Ts� ð8Þ

Proof Note that limr?? I(z, r) = N for any finite z [ Rm.

Using Eqs. (2), (6) and (7), it follows that Ts = limr??

Trs(zi) = limr?? Trs
* for any i [ N and s [ {v, c, ni, nd}.

Lemma 2 For s [ {v, c, ni, nd}, the set Trs
* satisfies

limr!0T�rs ¼ TFDHs: ð9Þ

Proof Note that limr?0 Br(zi, r) = {zi} and limr?0 I(zi,

r) = {i} for any i [ N. Using Eq. (6), we have limr?0

Trs(zi) = {z: z B c zi, c [ Ss}. Eq. (7) can be alternatively

written as Trs
* = {Ri[M ai Trs(zi): ai [ {0, 1}, i [ M; Ri[M

ai = 1}. Letting gi = ai c, this implies that limr?0

Trs
* = {z: z B Ri[M gi zi; gi [ {0, c}, i [ M; Ri[M

gi = c, c [ Ss}. Using Eq. (4), this gives (9).

Given s [ {v, c, ni, nd}, Eqs. (8) and (9) show that Trs
*

includes two important special cases. From Eq. (8), the set

Trs
* reduces to the set Ts when r ? ?, i.e., when the

neighborhood Br(z, r) of any z becomes ‘‘very large’’. And

from Eq. (9), the set Trs
* reduces to the set TFDHs when

r ? 0, i.e., when the neighborhood Br(zi, r) become ‘‘very

small’’ for any i [ N.

Proposition 1 For s [ {v, c, ni, nd}, the sets satisfy

TFDHs � T�rs � T�r0s � Ts; for any r’ [ r [ 0: ð10Þ

Proof Note that limr?0 Br(zi, r) , Br(zi, r) , Br0(zi,

r) , limr?? Br(zi, r) for any r0[ r [ 0. Thus, for any

r0[ r [ 0, limr?0 I(zi, r) , I(zi, r) , I(zi, r0) , limr??

I(zi, r) = N. Then, Eq. (6) implies that limr?0

Trs(zi) , Trs(zi) , Tr’s(zi) , limr?? Trs(zi) for any

r0[ r [ 0 and any i [ N. Using Eqs. (7), (8) and (9), this

proves (10).

Proposition 1 states that TFDHs is in general a subset of

Ts: TFDHs , Ts, for s [ {v, c, ni, nd}. It also establishes that

the set Trs
* , our neighborhood-based representation of

technology, is bounded between TFDHs and Ts, with TFDHs

as lower bound and Ts as upper bound. Noting that the set

Ts is convex, and the set TFDHs is in general non-convex, it

means that Trs
* provides a generic way of introducing non-

convexity in production analysis. The sets Tv, TFDHv and

Trv
* are illustrated in Fig. 2 under VRS. Figure 2 shows that

these sets satisfy TFDHv , Trv
* , Tv. Note that the set Tv is

convex, but that the sets Trv
* and TFDHv are non-convex.

These representations apply under alternative scale

properties: under VRS when s [ v (with Sv = 1), under

CRS when s = c (with Sc = [0, ?]), under NIRS when

s = ni (with Sni = [0, 1]), as well as under NDRS when

s = ni (with Snd = [1, ?]). Finally, Eq. (10) states that the

set Trs
* becomes larger when r increases, i.e., when the

neighborhoods used to evaluate Trs
* become larger. As

further discussed below, this provides some flexibility in

the empirical analysis of non-convexity issues.

4 Productivity under non-convexity

Let g [ Rþmbe a reference bundle satisfying g = 0. Fol-

lowing Chambers et al. (1996), consider the directional

distance function6

D z; Tð Þ ¼ supbfb : ðz þ bgÞ 2 Tg if there is a scalar

bsatisfying ðz þ bgÞ 2 Tg;
¼ �1otherwise: ð11Þ

The directional distance function is the distance between

point z and the upper bound of the technology T, measured

in number of units of the reference bundle g. It provides a

general measure of productivity. In general, D(z, T) = 0

means that point z is on the frontier of the technology T.

Alternatively, D(z) [ 0 implies that z is technically inef-

ficient (as it is below the frontier),7 while D(z, T) \ 0

identifies z as being infeasible (as it is located above the

frontier). Luenberger (1995) and Chambers et al. (1996)

provide a detailed analysis of the properties of D(z, T).

y

H × J
Trv

*

Tv 

F × G
D × E

TFDHv 

× 
B × C

A
x

 Br(D) 

 Br(F) 

Fig. 2 Representations of Technology under Tv, TFDHv and Trv
*

6 The directional distance function D(z, T) in (11) is the negative of

Luenberger’s shortage function (see Luenberger 1995).
7 Note that D(z, T) includes as special cases many measures of

technical inefficiency that have appeared in the literature. Relation-

ships with Shephard’s distance functions (Shephard 1953) or Farrell’s

measure of technical efficiency (Farrell 1957) are discussed in

Chambers et al. (1996) and Färe and Grosskopf (2000).
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First, by definition in (11), z [ T implies that D(z, T) C 0

(since b = 0 would then be feasible in (11)), meaning that

T , {z: D(z, T) C 0}. Second, D(z, T) C 0 in (11) implies

that (z ? D(z, T) g)) [ T. When the technology T exhib-

iting free disposal, it follows that D(z, T) C 0 implies that

z [ T, meaning that T . {z: D(z, T) C 0}. Combining

these two properties, we obtain the following result: under

free disposal, T = {z: D(z, T) C 0} and D(z, T) provides a

complete representation of the technology T. Importantly,

besides being convenient, this result is general: it allows

for an arbitrary multi-input multi-output technology; and it

applies with or without convexity.

Using (10) and (11), we obtain the following key result.

Proposition 2 For any point z [ Rm where D(z, Ts) [
-?, the directional distance function satisfies

Dðz;TFDHsÞ�D z;T�rs
� �

�D z;T�r0s
� �

�D z;Tsð Þ;
for any r0[ r [ 0; for s 2 fv, c, ni, ndg ð12Þ

Proposition 2 shows that D(z, Trs
* ) is bounded between

D(z, TFDHs) and D(z, Ts), with D(z, TFDHs) as lower bound

and D(z, Ts) as upper bound. When s = v, Eq. (12) implies

that DEA (relying on Tv) is more likely to find evidence of

technical inefficiency than FDH. This is illustrated in

Fig. 1, which shows that the production frontier tends to be

higher under DEA compared to FDH. With s [ {v, c, ni,

nd}, Eq. (12) shows that this result applies under

alternative characterizations of returns to scale. It also

shows that D(z, Trs
* ) tends to increase with r, where Trs

* is

our neighborhood-based representation of technology

given in (7). Finally, as discussed next, Proposition 2

provides a basis to evaluate the role of non-convexity in

productivity analysis.

Definition 2 At point z, define the following measure of

non-convexity

Crs zð Þ � D z; Tsð Þ � D z; T�rs
� �

;
for s 2 v; c; ni; ndf g: ð13Þ

Proposition 3 At point z where D(z, Tv) [ -?,

lim
r!0

CrsðzÞ	CrsðzÞ	Cr0sðzÞ	 lim
r!1

CrsðzÞ
¼ 0; for any r’ [ r [ 0;
for s 2 fv, c, ni, ndg:

ð14Þ

Proof The inequalities in (14) are obtained from

combining (12) and (13), and using Eqs. (8) and (9).

Proposition 3 applies under alternative characterizations

of returns to scale: under VRS (when s = v), CRS (when

s = c), NIRS (when s = ni), as well as NDRS (when

s = nd). Equation (13) defines Crs(z) as a measure of

non-convexity, evaluated in number of units of the refer-

ence bundle g. From Eq. (14), this measure is always

non-negative: Crs(z) C 0. Equation (14) states that limr??

Crs(z) = 0. This is intuitive: DEA assumes convexity and

does not provide any opportunity to uncover the presence

of non-convexity. It means that the search for non-con-

vexity must rely on the case where r \?. Then, for a

given r \?, finding Crs(z) [ 0 at some point z implies

that the set Trs
* is non-convex. In addition, (14) states that

limr?0 Crs(z) is an upper bound measure for Crs(z). This

reflects the fact that, under free disposal, FDH offers the

greatest prospects to uncover non-convexity. Finally,

Eq. (14) shows that Crs(z) tends to decrease with r, indi-

cating that the opportunity to uncover non-convexity

declines with the size of the neighborhoods used to eval-

uate Trs
* . The effects of r on the evaluation of non-con-

vexity are further discussed below.

5 Evaluating returns to scale

Since our analysis applies under alternative scale charac-

terization, it can also be used to investigate returns to scale.

While evaluating scale efficiency is well known under

convexity (e.g., Färe et al. 1994; Banker et al. 2004), this

section explores how this can be done under non-

convexity.

Proposition 4 The sets satisfy

T�rv � T�rni � T�rc; ð15aÞ

T�rv � T�rnd � T�rc: ð15bÞ

Proof We have seen that Trv(z) , Trni(z) , Trc(z) and

Trv(z) , Trnd(z) , Trc(z). Then, (15a) and (15b) follow

from (7).

Definition 3 At point z, define the following measure of

scale efficiency

SErs zð Þ � D z; T�rc
� �

� D z; T�rs
� �

;
for s 2 v; c; ni; ndf g: ð16Þ

Proposition 5 At point z where D(z, Tv) [ -?, the scale

efficiency measures SErs(z) satisfy

SErv zð Þ 	 SErni zð Þ 	 0; ð17aÞ
SErv zð Þ 	 SErnd zð Þ 	 0: ð17bÞ

Proof Equations (11), (15a) and (15b) imply that

D z; T�rc
� �

	 D z; T�rni

� �
	 D z; T�rv

� �
; and D z; T�rc

� �

	 D z; T�rnd

� �
	 D z; T�rv

� �
. Using (16), this gives (17a)

and (17b).

Equation (16) defines SErs(z) as a measure of departure

from CRS, evaluated in number of units of the reference

bundle g. From Eqs. (17a)–(17b), evaluated under VRS

(with s = v), the measure is always non-negative:
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SErv(z) C 0. This is intuitive: it follows from the fact that

the set Trc
* is always at least as large as Trv

* , as stated in

(15a)–(15b). In addition, (17a) states that, under NIRS

(with s = ni), SErni(z) is also non-negative but has

SErv(z) as an upper bound. This follows from the fact that

the set Trni
* is always at least as large as Trv

* but never larger

than Trc
* , as stated in (15a). And (17b) establishes a similar

result under NDRS (with s = nd): SErnd(z) is non-negative

but has SErv(z) as an upper bound. This shows

how SErs(z) in equation (16) provides a basis to measure

scale efficiency under non-convexity. Indeed, finding

SErs(z) [ 0 at point z implies that the set Trs
* exhibits a

departure from CRS and that point z is scale inefficient.

The effects of r on the evaluation of scale efficiency will be

evaluated below.

6 Empirical assessment

Consider a data set involving observations of m netputs

chosen by N firms: {zi = (z1i, …, zmi): i [ N}, where zji is

the j-th netput used by the i-th firm. As suggested in

propositions 2–5, we want to find some convenient way to

solve for the directional distance function D(z, T) under

alternative representations of the technology T.

6.1 Empirical evaluation of directional distance

functions

This section examines empirical applications using the data

{zi = (z1i, …, zmi): i [ N}. First consider the optimization

problem (11) under Ts in (2), where s [{v, c, ni, nd},

Sv = 1, Sc = [0, ?], Sni = [0, 1] and Snd = [1, ?1]. For

each s [{v, c, ni, nd} and assuming that a solution exists,

this gives the standard linear programming (LP) problems:

D(z, Ts) = maxb {b: z ? b g B Ri[M ki zi; ki [ R?, i [ M,

Ri[M ki [ Ss}. In all these cases, convexity is imposed.

Second, consider the optimization problem (11) under

TFDHs in (4) for s [{v, c, ni, nd}. Assuming that a solution

exists, this gives D(z, TFDHs) = maxb {b: z ? b g B Ri[M

ki zi; ki [ {0, d}, i [ M; Ri[M ki = d; d [ Ss}, which is a

mixed integer linear programming (MILP) problem for

s = v (where Sv = 1), but a mixed integer nonlinear pro-

gramming (MINLP) problem for s [{c, ni, nd}.8

Below, we explore how to solve (14) under Trv
* , the

neighborhood-based representation of technology given in

(7). For s [ {v, n, ni, nd}, note that Eq. (7) can be alter-

natively written as

T�rs ¼ f
X

j2N

ajTrs zj

� �
; aj 2 0; 1f g; j 2 N;

X

j2N

aj ¼ 1g;

ð18Þ

for s [{v, c, ni, nd}. Let kij be the weight ki associated with

z = zj in (7). Letting gij = aj kij, it follows from (6), (11)

and (18) that

D z; T�rs
� �

¼ Maxb;k;g;afb : ðzþ bgÞ�
X

j2N

X

i2Iðzj;rÞ

gijzi : gij ¼ ajkij; kij 2 Rþ;
X

i2Iðzj;rÞ
kij 2 Ss; aj 2 0; 1f g;

X

j2N

aj ¼ 1; i 2 I zj; r
� �

; j 2 Ng

if a solution exists;

¼ �1otherwise; ð19Þ

for s [{v, c, ni, nd}. Equation (19) is a MINLP problem.

Solving it numerically can provide a way to assess the

directional distance functions D(z, Tra
* ) for s [{v, c, ni, nd}.

Yet, dealing with non-linear constraints in (19) can be

empirically challenging. In this context, alternative for-

mulations that avoid non-linear constraints are of interest.

One such formulation is the following optimization

problem

Dþ z; T�rs
� �

¼ Maxb;g;afb : ðzþ bgÞ�
X

j2N

X

i2Iðzj;rÞ

gijzi : gij 2 Rþ;
X

i2Iðzj;rÞ
gij 2 ajSs;aj 2 0; 1f g;

X

j2N

aj ¼ 1; i 2 I zj; r
� �

; j 2 Ng

if a solution exists;

¼ �1 otherwise: ð20Þ

for s [{v, c, ni, nd}. Equation (20) is a MILP problem.

Because it does not include the nonlinear restrictions

gij = aj kij, solving (20) is simpler than solving (19). But

the absence of the restrictions gij = aj kij in (20) implies

that D?(z, Trs
* ) is in general an upper bound to D(z, Trs

* ):

D?(z, Trs
* ) C D(z, Trs

* ). When would the two objective

functions coincide? They would coincide (with D?(z,

Trs
* ) = D(z, Trs

* )) when the solution to (20), (g*, a*), sat-

isfies gij
* = 0 for all i when aj

* = 0, j [ N. Otherwise, they

would differ, and D?(z, Trs
* ) would be strictly larger than

D(z, Trs
* ): D?(z, Trs

* ) [ D(z, Trs
* ). In this later case, solving

the simpler problem (20) would provide upward biased

estimates of D(z, Trs
* ).

8 Since dealing with non-linear constraints can be empirically

challenging, note that alternative formulations have been proposed

avoiding non-linear constraints in productivity analysis (e.g., Podi-

nosvki 2004; Leleu 2006; Soleimani-Damneh and Reshadi 2007; De

Witte and Marques 2011). In this context, Briec et al. (2004)

developed a much simpler enumeration approach to efficiency

analysis under FDH.
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6.2 Linear programming formulation

Given the potential empirical difficulties in solving the

nonlinear optimization problem (19), we now explore a

simpler way to evaluate D(z, Trs
* ) in (19). From (7), note

that Trs
* is defined from Trs(zj), j [ N. This suggests

obtaining D(z, Trs
* ) using the following two-step approach.

In step one, solve (11) under Trs(z
0) in (6). For s [{v, c,

ni, nd}, this corresponds to the (primal) linear program-

ming (LP) problem

Dðz; Trsðz0ÞÞ ¼ Maxb;kfb : ðzþ bgÞ
�

X

i2I z0;rð Þ
kizi; ki 2 Rþ; i 2 Iðz0; rÞ;

X

i2I z0;rð Þ
ki 2 Ss if a solution exists,g

¼ �1 otherwise ð21Þ

or its dual LP formulation

Dðz;Trsðz0ÞÞ ¼Minu;vfv� zTu : zT
j u� v; j 2 Iðz0; rÞ;

gTu ¼ 1; u 2; v 2 Vsg;
if a solution exists;

¼ �1 otherwise,

ð210Þ

where u and v are the Lagrange multipliers associated with

the constraints [(z ? b g) B Ri[I(z
0
,r) ki zi] and [Ri[I(z

0
,r) ki

[ Ss] in (21), with Vv = [-?, ?], Vc = 0, Vni = [0, ?]

and Vdi = [-?, 0].

Then, in step two, assuming that D(z, Trs(zi)) [ -? for

some i [ I, and using (18), D(z, Trs
* ) can be obtained as

D z; T�rs
� �

¼ MaxifD z; Trs zið Þð Þ : i 2 Ng: ð22Þ

In this two-step approach, step one involves solving

linear programming (LP) problems in (21) or (21’). And

step 2 stated in (22) is a simple maximization problem. This

shows how (21)-(22) can be used to obtain D(z, Trs
* ) by

solving simple linear programming problems. This provides

a convenient way to solve (11) under Trs
* , our neighborhood-

based representation of technology given in (7).

6.3 Defining the neighborhood Br(z, r)

As discussed in Sect. 2, our analysis relies on the definition of

a neighborhood Br(z, r) = {z0: Dp(z, z0) B r: z0 [
Rm} , Rm, where Dp(z, z0) is a weighted Minkowski dis-

tance with 1 B p \?. Below, it will be convenient to rely

on a weighted Chebyshev distance defined as limp?? Dp(z,

z0) = Maxj {|zj - zj’|/rj: j = 1, …, m}. In this context, Br(z,

r) can be written as Br(z, r) = {z0: -r rj B zj - zj
0 B r rj;

j = 1, …, m; z0 [ Rm} and I(z, r) can be written as I(z, r) =

{i: –r rj B zj - zjj’ B r rj; j = 1, …, m; i [ N}.

Below, we discuss general rules that can be used in

choosing this neighborhood. Sometimes, we may have a

priori information about the regions where non-convexity

is likely to arise. Assume that one of these regions is region

A(z) around point z. In general we want to choose the

neighborhood of Br(z, r) to be no larger than A(z). Indeed,

choosing Br(z, r) . A(z) may just ‘‘hide’’ the non-con-

vexity in A(z) within the larger region Br(z, r). This

generates the following rule:

Rule R1 Around point z, choose a neighborhood Br(z, r)

that is no larger than the region A(z) where non-convexity

is suspected: Br(z, r) , A(z).

Rule R1 assumes that we do have a priori information

about the presence of non-convexity. This a priori infor-

mation can come from theoretical considerations. For

example, the presence of fixed cost is a well-known source

of non-convexity. It means that non-convexity can be

expected in any region of the feasible set where ‘‘fixed

resources’’ are being used. This can include labor or

management (e.g., ‘‘fixed’’ labor or management wasted in

the process of switching between tasks) as well as capital

(e.g., ‘‘fixed’’ machinery, equipment or infrastructure used

in the production process). This could also include

‘‘resource fixity’’ on the output side (e.g., for perishable

products).

What if we do not have the a priori information stipu-

lated in rule R1? Then we need to find other ways to

identify the neighborhood Br(z, r). In this context, we can

use the data to help choose these neighborhoods. To see

that, let Mj : [Maxi[N {zji} - Mini[N {zji}] be the range

of observations for zj, j = 1, …, m. For the j-th netput,

consider partitioning the line [Mini[N {zji}, Maxi[N {zji}]

into k intervals, j = 1, …, m, where k is an integer satis-

fying 1 B k B N. One way is to choose these intervals to

be equally spaced.9 Then, for the j-th netput, the width of

an interval is Mj/k. Given Br(z, r) = {z0: –r rj B zj -

zj’ B r rj; j = 1, …, m; z0 [ Rm}, associate these intervals

with a neighborhood of point z by letting r rj = Mj/k, k

being a positive integer, j = 1, …, m. For a given k, it

follows that the neighborhood of z can be written as

Br(z, �) = {z0: - Mj/k B zj - zj
0 B Mj/k; j = 1, …, m;

z0 [ Rm}. When z ad z0 are points within the range of the

data, then choosing k = 1 implies that Br(z, �) is a ‘‘large

neighborhood’’ of z which includes all data points. And

choosing k [ 1 means that we partition the range of each

netput into k equally spaced intervals, the neighborhood

Br(z, �) of z becoming smaller as k becomes larger.

9 An alternative way to choose the intervals would be to rely on the

empirical distribution of netputs. In this context, one option would be

to choose the intervals such that, for each netput, each interval

includes the same number of sample observations.
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Next, we propose the following rule to guide us in the

choice of neighborhoods.

Rule R2 Around point z, choose a neighborhood Br(z, r)

that includes more than one data point.

R2 has important implications. First, it implies that point

z cannot be outside the range of the data. That is intuitive:

in any analysis, we should always try to avoid extrapolating

beyond the data. Second, Rule R2 requires that there are

sufficient data points to support the analysis. It hints that

the number of observations N should be ‘‘large enough’’ to

provide credible evidence on non-convexity in the neigh-

borhood of point z. Third, R2 rules out FDH. Indeed, from

Eq. (9) in Lemma 2, FDH is obtained when r ? 0,

implying that the neighborhood of any point zj would

include just the point zj. This would be inconsistent with

R2. As discussed in Sect. 2, the FDH approach seems

undesirable as it can find evidence of non-convexity ‘‘too

often’’. Intuitively, R2 stresses the importance of having a

minimal number of observations (more than 1) to evaluate

the characteristics of technology in any neighborhood

within the data. As such, R2 can help improve the credi-

bility of finding evidence that a technology is non-convex.

Fourth, Rule R2 puts some upper bound on the number of

intervals k discussed above. Indeed, increasing k would

also reduce the number of observations in each interval.

Again, to be credible, evidence of non-convexity in the

neighborhood of point z should rely on a sufficient number

of data points. Overall, Rule R2 implies that the number of

observations N should be ‘‘large enough’’ while the number

of intervals should ‘‘not be too large’’. As such, it provides

useful guidance to support productivity analysis under non-

convexity.

7 Empirical illustration

To illustrate the usefulness of our proposed approach, we

apply it to a data set on production activities from a sample

of Korean farm households.

7.1 Data

The data were collected in 2007 in a Farm Household

Economy Survey conducted by the Korean National Sta-

tistical Office. Our analysis focuses on a sample of farms

classified as paddy rice farms located in the Jeon-Nam

province, a rice-producing province in the southern part of

Korea. Being in the same region, all farms face similar

agro-climatic conditions. The sample includes 122 rice

farms. It provides data on ten outputs: rice, vegetable,

soybean, fruit, potato, barley, miscellaneous, specialty,

livestock, and others; and four inputs: labor, size of paddy

land, size of upland, and other inputs. Labor input is

measured in hours, and land inputs are measured in hect-

ares (ha). Other netputs are measured in value, assuming

that all farmers face the same prices.

Descriptive statistics on the variables used in our ana-

lysis are presented in Table 1. The average revenue from

rice production is 15,398.81 (measured in 1,000 won10),

accounting for 62.7 % of total farm revenue. The second

largest source of revenue is vegetable production: 3,608.15

(measured in 1,000 won), accounting for 14.7 % of total

farm revenue. The average size of a farm is 1.31 ha

(including both paddy land and upland).

10 Note that 1,000 won (the Korean currency) = 0.89 US dollars.

Table 1 Descriptive statistics

Variable Obs. Sample mean Std. deviation Min. Max.

Rice revenue (in 1,000 won) 122 15,398.81 20,251.10 892.04 133,825.21

Vegetable revenue (in 1,000 won) 122 3,608.15 4,470.39 0 24,964.58

Soybean revenue (in 1,000 won) 122 448.82 689.75 0 4,471.78

Fruit revenue (in 1,000 won) 122 255.16 663.12 0 5,272.20

Potato revenue (in 1,000 won) 122 592.49 3,444.29 0 37,230.10

Barley revenue (in 1,000 won) 122 1,536.48 4,212.75 0 26,533.03

Miscellaneous revenue (in 1,000 won) 122 19.02 52.03 0 402.40

Specialty revenue (in 1,000 won) 122 579.57 1,510.00 0 9,897.81

Other revenue (in 1,000 won) 122 92.33 445.88 0 4,292.03

Livestock revenue (in 1,000 won) 122 2,014.37 4,325.63 0 21,604.84

Production costs (in 1,000 won) 122 13,863.11 16,470.88 868.75 115,432.24

Family labor (hours) 122 641.25 469.48 71.50 3,112.10

Paddy land (in ha) 122 1.07 1.36 0 9.71

Upland (in ha) 122 0.24 0.30 0 1.61

Note that 1,000 won (the Korean currency) is approximately equivalent to 0.89 US dollar
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7.2 Results

Our analysis uses data on production activities from our

sample of 122 Korean farms. It covers 14 netputs: 10

outputs treated as positive, and 4 inputs treated as negative.

For the i-th farm, the netputs are zi = (zji: j = 1, …., 14),

i [ N : {1, 2, …, 122}.

The estimation of the directional distance function in

(11), (19) or (21)–(22) produces a nonparametric estimate

of the distance between point z and the boundary of the

feasible set, as measured by the number of units of the

reference bundle g. When z is the netput vector for the i-th

farm, then the distance function D(zi, T) C 0 provides a

measure of technical inefficiency for the i-th farm, with

D(zi, T) [ 0 when the i-th farm is technically inefficient.

The reference bundle g = (g1, …, g14) is chosen as fol-

lows. We let gj = 0 when j is an input, and gj = sample

mean for the j-th output when j is an output. Thus, our

reference bundle g = (g1, …, g14) is the typical bundle

associated with the outputs of an average farm. This choice

leads to a simple interpretation of our directional distance

estimates. For example, for a given T, finding that D(zi,

T) = 0.2 would mean that the i-th farm is technically

inefficient: it could move the production frontier and

increase its outputs by a maximum of 20 percent of the

average outputs in our sample by becoming technically

efficient. Note that this interpretation remains valid under

alternative characterizations of the technology T.

We evaluate the directional distance function D(zj, T) in

(11) for each farm under alternative representations of the

technology. First, we start with DEA analysis and solve for

D(zj, T) under technologies Tv under VRS and Tc under

CRS (as given in Eqs. (1) and (2)). Second, using TFDHv in

(3), we obtain FDH measures D(zj, TFDHv) under VRS

technology by solving the corresponding mixed integer

programming problems. The results are reported in the

‘‘Appendix’’ for each farm. Since our neighborhood-based

representation of technology allows for non-convexity to

arise in any part of the feasible set, it can provide a basis to

evaluate productivity and non-convexity for different firm

types. We investigate this issue for three categories of

farms: small farms, medium farms, and large farms.11 The

results are summarized in Table 2. Table 2 presents the

average technical inefficiency estimates D(zj, T) for each

group of farms under alternative representation of the

technology. It shows that DEA finds evidence of technical

inefficiency across all farm sizes. The mean value of D(zj,

Tv) is 0.063 for small farms, 0.159 for medium farms, and

0.119 for large farms. Table 2 also reports that FDH finds

that all farms are technically efficient, with D(zj,

TFDHv) = 0 for all j = 1, …, 122. Note that this is con-

sistent with Proposition 2, which showed that DEA (relying

on Tv) is more likely to find evidence of technical ineffi-

ciency than FDH (as the production frontier tends to be

higher under DEA compared to FDH). But in this case,

allowing for non-convexity under FDH eliminates all evi-

dence of technical inefficiency. This has two implications.

First, there can be a large difference between the DEA

measure of technical inefficiency D(zj, Tv), and its FDH

counterpart D(zj, TFDHv). Second, this difference is due

entirely to relaxing the convexity assumption. One must

wonder whether this difference is ‘‘credible’’. As discussed

in Sect. 2, this raises the question: Does the FDH approach

finds non-convexity ‘‘too often’’? We believe that it does

(as further discussed below).

Next, using the neighborhood-based representation of

technology Trs
* in (7) or (18), we obtain estimates of the

directional distance D(zj, Trs
* ) by solving the linear pro-

gramming problems in (21)–(22). In the absence of strong a

priori information about where non-convexity may arise,

we define the neighborhoods Br(z, r) as follows. Assuming

equally spaced intervals, we let r rj = Mj/k, and define

Br(z, �) = {z0: - Mj/k B zj - zj’ B Mj/k; j = 1, …, m;

z0 [ Rm} as neighborhood of z, where Mj : [Maxi[N

{zji} - Mini[N {zji}] and k denotes the number of intervals

within the data range. The set Trv
* in (7) is then defined

accordingly. The analysis is repeated for alternative num-

bers of intervals k: k = 1, 2, 4, 6, 8, 10, 12. The distances

D(zj, Trs
* ) are estimated under VRS (with s = v) for each

farm. The results are reported in the ‘‘Appendix’’ for each

farm. Summary measures are presented in Table 2 for our

three farm sizes: small farms, medium farms, and large

farms. The results are consistent with Proposition 2. First,

as expected, D(z, Trv
* ) is bounded between D(z, TFDHv) and

D(z, Tv), with D(z, TFDHv) as lower bound and D(z, Tv) as

upper bound. Second, D(z, Trv
* ) tends to increase with the

size of the neighborhood r, or equivalently decrease with

the number of intervals k (given r rj = Mj/k). Third,

Table 2 shows that our estimates D(z, Trv
* ) nest DEA

estimates and FDH estimates as special cases. Indeed, D(z,

Trv
* ) becomes equal to D(z, Tv) when neighborhoods

become ‘‘large’’ (in our case, when k = 1), and it becomes

equal to D(z, TFDHv) when neighborhoods become ‘‘small’’

(in our case, when k = 12). Yet, neither case seems real-

istic. Indeed, choosing k = 1 imposes a convex technology

and prevents any possibility of uncovering evidence of

non-convexity. Alternatively, choosing k = 12 likely finds

non-convexity ‘‘too often’’. As noted above, FDH does not

satisfy our ‘‘Rule 2’’. In this case, 12 intervals are ‘‘too

many’’ as there are not enough points in each neighborhood

11 Farm size is measured by the total amount of land (in ha). Small

farms are defined as farms being in the 0–30 percentile of the sample

distribution of farm size, medium farms are between the 30 percentile

and 70 percentile, and large farms are in the 70–100 percentile. The

average farm size of small, medium and large farms are 0.574, 1.624,

and 5.965 ha, respectively.
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to obtain a reliable estimate of marginal productivity

around each data point. And this has adverse effects on the

ability to find evidence of technical inefficiency. Indeed, in

this case FDH or k = 12 fails to find any evidence of

technical inefficiency.12 These results help document why

FDH does not provide a reasonable approach in the ana-

lysis of non-convexity.

One advantage of our approach is that it allows us to

choose neighborhoods that satisfy our Rules R1 and R2.

These rules seek a balance between finding evidence of

technical inefficiency versus finding evidence of non-con-

vexity. In our application, we believe that choosing k = 4 is

a good choice: it is between k = 1 (corresponding to DEA)

and k = 12 (corresponding to FDH). It identifies neighbor-

hoods that are ‘‘not too large’’ to allow us to uncover evi-

dence of non-convexity, and ‘‘not too small’’ to generate a

more reliable estimate of the production technology around

any data point. Interestingly, when k = 4, we still find evi-

dence of technical inefficiency. Indeed, Table 2 reports

mean estimates of technical inefficiency of 0.025 for small

farms (with 62.2 % of small farms being technically effi-

cient), 0.035 for medium farms (with 75.5 % of medium

farms being technically efficient), and 0.003 for large farms

(with most large farms being technically efficient).

In addition, Table 2 reports estimates of the non-con-

vexity measure Crv(z) given in Eq. (13). When k = 4, the

mean estimates of Crv(z) are 0.039 for small farms, 0.123

for medium farms, and 0.116 for large farms. For example,

it means that, for medium farms, the effects of non-con-

vexity amount to a 12.3 percent change in average outputs.

These estimates indicate that the technology facing Korean

farmers exhibit significant non-convexity. They also show

that the extent of non-convexity is larger on medium and

large farms (compared to small farms). As analyzed by

Chavas and Kim (2007), non-convexity contributes to

increasing the productivity benefits of specialization. This

would indicate that large farms have stronger incentives to

specialize than smaller farms. To our knowledge, this is the

first evidence that non-convexity appears to vary with firm

size.

Finally, we evaluate returns to scale under non-convexity.

Using (16), we use our neighborhood-based representation Trv
*

under VRS to evaluate scale efficiency SErv(z). The results are

summarized in in Table 3 for our three farm sizes. Recall that

SErv(z) = 0 when point z is scale efficient, and SErv(z) [ 0

implies a departure from CRS and measures the magnitude of

scale inefficiency. The evidence against CRS is in general

modest. Under DEA (obtained when r is large and k = 1), the

average SE is 0.026 for small farms, 0.024 for medium farms,

and 0.13 for large farms. Alternatively, under FDH (obtained

when r is large and k = 12), all farms are found to be scale

efficient (with all SE = 0). Using our neighborhood-based

representation of technology with k = 4, the average SE is

Table 2 Average technical inefficiency D(z, T) and non-convexity C(z) under alternative representations of the technology, by farm size

Farm sizea Small farm Medium farm Large farm

Technology

T

Technical inefficiency

D(z, T)

Non-convexity

Crv(z)

Technical inefficiency

D(z, T)

Non-convexity

Crv(z)

Technical inefficiency

D(z, T)

Non-convexity

Crv(z)

Tv (DEA) 0.063 (51.4)c 0.159 (49.0) 0.119 (61.1)

TFDHv (FDH) 0.000 (100.0) 0.000 (100.0) 0.000 (100.0)

Trv
* (Neighborhood-based representation of technology)

k = 1b 0.063 (51.4) 0.000 0.159 (49.0) 0.000 0.119 (61.1) 0.000

k = 2 0.038 (62.2) 0.025 0.082 (65.3) 0.077 0.017 (86.1) 0.103

k = 4 0.025 (62.2) 0.039 0.035 (75.5) 0.123 0.003 (100) 0.116

k = 6 0.013 (64.9) 0.050 0.009 (89.8) 0.150 0.000 (100) 0.119

k = 8 0.011 (70.3) 0.052 0.001 (95.9) 0.158 0.000 (100) 0.119

k = 10 0.000 (94.6) 0.063 0.000 (100) 0.159 0.000 (100) 0.119

k = 12 0.000 (100) 0.063 0.000 (100) 0.159 0.000 (100) 0.119

a Farm size is identified by the size of total land. Small farms are defined as farms being in the 0–30 percentile of the sample distribution of farm

size, medium farms are between the 30 percentile and 70 percentile, and large farms are in the 70–100 percentile
b Assuming equally spaced intervals, we let r rj = Mj/k, where Trv

* is defined using Br(z, �) = {z0: - Mj/k B zj - zj’ B Mj/k; j = 1, …, m; z0 [
Rm} as neighborhood of z, and k denotes the number of intervals within the data range
c Next to the average technical inefficiency in each group, the number in parentheses is the percentage of technically efficient farms within the

group

12 Note that Wheelock and Wilson (2009) found a similar result in

their analysis of bank efficiency. This does suggest that estimates of

technical inefficiency reported in the literature are driven in part by

the assumption of convexity.
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0.02 for small farms, 0.041 on medium farms, and 0.030 on

large farms.

These results have several implications. First, Korean

farms exhibit a high level of scale efficiency. This is

consistent with the dominant small-scale rice farming

system commonly found in Korea. Second, introducing

non-convexity affects the estimate of scale effects. Table 3

shows that the relationship between SE and k is not always

monotonic. For example, in the case of medium farms, the

average SE first rises then declines with k. This indicates

that there is no general relationship between non-convexity

and returns to scale. Yet, our results indicate that non-

convexity matters in the analysis of scale effects. Indeed,

Table 3 suggests that neglecting non-convexity (by using

DEA) would generate ‘‘upward-biased’’ estimates of SE,

while relying on FDH would likely generate ‘‘downward-

biased’’ estimates of SE.13 Finally, Table 3 indicates that

these biases vary with farm size. In particular, the estimate

of SE is found to be more sensitive to the choice of k for

large farms. This is likely due to the fact that non-con-

vexity effects are more important on large farms. This

stresses the need to account for non-convexity in the

evaluation of returns to scale. This also illustrates the

usefulness of our approach in understanding and evaluating

the technical and scale efficiency of firms under non-

convexity.

8 Concluding remarks

This paper has presented a new nonparametric approach to

the analysis of technology and productivity under non-

convexity. Our approach relies on a neighborhood-based

representation of technology. We investigate the general

properties of our model and its use in the evaluation of

technology and productivity under non-convexity. Our

approach nests two well-known approaches as special

cases: DEA, and FDH models. Yet either of these two

approaches is overly restrictive: DEA because it does not

allow for any non-convexity; and FDH because it allows

for ‘‘too much’’ non-convexity. We argue that our new

nonparametric model allows for non-convexity in a more

flexible way. Its neighborhood-based representation of

technology allows for non-convexity to arise in any part of

the feasible set. In this context, we propose a measure

capturing the extent of non-convexity. We also use our

approach to evaluate scale efficiency under non-convexity.

We show how our approach can be applied by solving

simple optimization problems. Finally, we illustrate its

usefulness through an empirical application to Korean

farms. The empirical analysis shows how non-convexity

can reduce the extent of technical inefficiency. It finds

evidence that non-convexity is more common on large

farms. Finally, it documents how non-convexity matters in

the analysis of scale effects.

Note that our analysis could be extended in number of

directions. First, while our neighborhood-based approach

provides a flexible way to investigate the presence of non-

convex technology, there is a need for additional research

Table 3 Scale efficiency SErs(z) under alternative representations of the technology, by farm size

Farm sizea Small farm Medium farm Large farm

Technology T Scale efficiency

SErs(z, T)

% of

scale- efficient

farms

Scale

efficiency

SErs(z, T)

% of

scale- efficient

farms

Scale

efficiency

SErs(z, T)

% of

scale- efficient

farms

Tv (DEA) 0.026 35.1 0.024 49.0 0.130 50.0

TFDHv (FDH) 0.000 81.1 0.000 95.9 0.000 100.0

Trv
* (Neighborhood-based representation of technology)

k = 1b 0.026 35.1 0.024 49.0 0.130 50.0

k = 2 0.034 43.2 0.050 57.1 0.156 66.7

k = 4 0.020 45.9 0.041 63.3 0.030 77.8

k = 6 0.014 54.1 0.033 69.4 0.011 88.9

k = 8 0.013 56.8 0.022 69.4 0.004 94.4

k = 10 0.000 70.3 0.000 79.6 0.000 97.2

k = 12 0.000 81.1 0.000 95.9 0.000 100.0

a Farm size is identified by the size of total land. Small farms are defined as farms being in the 0–30 percentile of the sample distribution of farm

size, medium farms are between the 30 percentile and 70 percentile, and large farms are in the 70–100 percentile
b Assuming equally spaced intervals, we let r rj = Mj/k, where Trv

* is defined using Br(z, �) = {z0: - Mj/k B zj - zj’ B Mj/k; j = 1, …, m; z0 [
Rm} as neighborhood of z, and k denotes the number of intervals within the data range

13 Note that, since our model is not presented as a statistical model,

our use of the term ‘‘bias’’ does not have a statistical meaning.

Exploring the statistical properties of our proposed efficiency

estimator appears to be a good topic for further research.
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exploring the implications of neighborhood choice for

productivity and efficiency analysis. Second, exploring the

statistical properties of our proposed efficiency estimator

and investigating linkages with stochastic frontier analysis

(e.g., Kumbhakar et al. 2007; Simar and Zelenyuk 2011)

are good topics for further investigation. Third, the eco-

nomics and management implications of non-convexity

need to be examined in more details. For example, evalu-

ating the productivity effects of firm specialization is a

good topic for further research. Fourth, there is a need for

additional studies of the economic implications of non-

convex technologies in a market equilibrium context (e.g.,

Chavas and Briec 2012). Finally, empirical applications to

different industries are needed to uncover evidence of sit-

uations where non-convexity may be important.
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Appendix

See Table 4.

TAble 4 Technical inefficiency D(z, T) for each farm under TFDHv, Tv and Trv
*

Farm D(z,Tv) D(z,TFDH) D(z, Trv
*) (Neighborhood-based representation of technology)

(DEA) (FDH) k = 1a k = 2 k = 4 k = 6 k = 8 k = 10 k = 12

1 0.05807 0 0.05807 0.0479 0.03516 0.03384 0.01293 0 0

2 0.10923 0 0.10923 0 0 0 0 0 0

3 0.18831 0 0.18831 0.07778 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 0 0 0 ‘0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

9 0.31028 0 0.31028 0.22411 0.19119 0 0 0 0

10 0.05524 0 0.05524 0.04318 0.02931 0.02182 0.0169 0 0

11 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0

14 0.26196 0 0.26196 0.20173 0.0349 0 0 0 0

15 0.51059 0 0.51059 0.39757 0.17102 0 0 0 0

16 0 0 0 0 0 0 0 0 0

17 0.02883 0 0.02883 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0

20 0.21193 0 0.21193 0.16466 0.12403 0.09727 0.09617 0 0

21 0.18871 0 0.18871 0.12015 0.09719 0.03407 0 0 0

22 0.07299 0 0.07299 0.05625 0.05354 0.04957 0.03771 0 0

23 0.39656 0 0.39656 0.28693 0.19527 0.00464 0 0 0

24 0.18342 0 0.18342 0.11953 0.06646 0.05183 0.04381 0 0

25 0.53594 0 0.53594 0.23268 0.10263 0 0 0 0

26 0 0 0 0 0 0 0 0 0

27 0.02422 0 0.02422 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0

32 0.08687 0 0.08687 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0
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TAble 4 continued

Farm D(z,Tv) D(z,TFDH) D(z, Trv
*) (Neighborhood-based representation of technology)

(DEA) (FDH) k = 1a k = 2 k = 4 k = 6 k = 8 k = 10 k = 12

35 0.44221 0 0.44221 0 0 0 0 0 0

36 0 0 0 0 0 0 0 0 0

37 0.12865 0 0.12865 0.05661 0.03722 0 0 0 0

38 0 0 0 0 0 0 0 0 0

39 0.00554 0 0.00554 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0

41 0.20641 0 0.20641 0.16212 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0

44 0.57311 0 0.57311 0.36557 0.20672 0.16115 0 0 0

45 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0

48 0.57423 0 0.57423 0.44153 0 0 0 0 0

49 0.0673 0 0.0673 0.05051 0.04933 0.01082 0.00971 0.00002 0

50 0.31944 0 0.31944 0.25168 0.21994 0.16052 0.0001 0 0

51 0.06644 0 0.06644 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0

53 0.12894 0 0.12894 0.08894 0.05457 0.04748 0.04748 0 0

54 0.16182 0 0.16182 0.13281 0.11595 0.06936 0.03247 0 0

55 0 0 0 0 0 0 0 0 0

56 0 0 0 0 0 0 0 0 0

57 0.22042 0 0.22042 0.14666 0.11822 0.07754 0.07754 0.00008 0

58 0.06441 0 0.06441 0 0 0 0 0 0

59 0 0 0 0 0 0 0 0 0

60 0.20663 0 0.20663 0.02283 0 0 0 0 0

61 0.42666 0 0.42666 0.13009 0 0 0 0 0

62 0.27122 0 0.27122 0 0 0 0 0 0

63 0.42611 0 0.42611 0.0579 0 0 0 0 0

64 0.11448 0 0.11448 0 0 0 0 0 0

65 0.10595 0 0.10595 0 0 0 0 0 0

66 0.1534 0 0.1534 0.10582 0.02841 0.02265 0.02012 0 0

67 0 0 0 0 0 0 0 0 0

68 0 0 0 0 0 0 0 0 0

69 0.06306 0 0.06306 0.03721 0.03029 0.02786 0.00003 0 0

70 0 0 0 0 0 0 0 0 0

71 0.28092 0 0.28092 0.17012 0.14187 0 0 0 0

72 0 0 0 0 0 0 0 0 0

73 0.34399 0 0.34399 0.1714 0.12672 0 0 0 0

74 0 0 0 0 0 0 0 0 0

75 1.01598 0 1.01598 0.50718 0.14919 0 0 0 0

76 0 0 0 0 0 0 0 0 0

77 0 0 0 0 0 0 0 0 0

78 0 0 0 0 0 0 0 0 0

79 0.3037 0 0.3037 0 0 0 0 0 0

80 0 0 0 0 0 0 0 0 0

81 0 0 0 0 0 0 0 0 0
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TAble 4 continued

Farm D(z,Tv) D(z,TFDH) D(z, Trv
*) (Neighborhood-based representation of technology)

(DEA) (FDH) k = 1a k = 2 k = 4 k = 6 k = 8 k = 10 k = 12

82 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0

84 0 0 0 0 0 0 0 0 0

85 0 0 0 0 0 0 0 0 0

86 0.06372 0 0.06372 0 0 0 0 0 0

87 0 0 0 0 0 0 0 0 0

88 0.41894 0 0.41894 0 0 0 0 0 0

89 0.02432 0 0.02432 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0

91 0.05367 0 0.05367 0.05293 0.03424 0.02802 0.00002 0 0

92 0.53044 0 0.53044 0.37717 0 0 0 0 0

93 0 0 0 0 0 0 0 0 0

94 0.38548 0 0.38548 0.09954 0.01607 0 0 0 0

95 0 0 0 0 0 0 0 0 0

96 0.05229 0 0.05229 0 0 0 0 0 0

97 0.05395 0 0.05395 0.02783 0.01066 0.009 0 0 0

98 0.74293 0 0.74293 0 0 0 0 0 0

99 0 0 0 0 0 0 0 0 0

100 0.13083 0 0.13083 0.00503 0 0 0 0 0

101 0.30122 0 0.30122 0 0 0 0 0 0

102 0 0 0 0 0 0 0 0 0

103 0 0 0 0 0 0 0 0 0

104 0 0 0 0 0 0 0 0 0

105 0.43983 0 0.43983 0 0 0 0 0 0

106 0.20599 0 0.20599 0 0 0 0 0 0

107 0.00137 0 0.00137 0 0 0 0 0 0

108 0.69812 0 0.69812 0.31127 0.17893 0 0 0 0

109 0 0 0 0 0 0 0 0 0

110 0 0 0 0 0 0 0 0 0

111 0 0 0 0 0 0 0 0 0

112 0.43043 0 0.43043 0.30188 0.15191 0.00995 0 0 0

113 0 0 0 0 0 0 0 0 0

114 0 0 0 0 0 0 0 0 0

115 0 0 0 0 0 0 0 0 0

116 0 0 0 0 0 0 0 0 0

117 0 0 0 0 0 0 0 0 0

118 0 0 0 0 0 0 0 0 0

119 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0

121 0 0 0 0 0 0 0 0 0

122 0 0 0 0 0 0 0 0 0

a Assuming equally spaced intervals, we let r rj = Mj/k, where Trv
* is defined using Br(z, �) = {z0: –Mj/k B zj - zj’ B Mj/k; j = 1, …, m; z0 [

Rm} as neighborhood of z, and k denotes the number of intervals within the data range
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