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Abstract Applications of data envelopment analysis

(DEA) models show that inadequate results may arise in

some cases, two of these inadequacies being: (1) too many

efficient units may appear in some DEA models; (2) a DEA

model may show an inefficient unit from the point of view of

experts as an efficient one. The purpose of this paper is to

identify units that may unduly become efficient. The concept

of a terminal unit is introduced for such units. It is shown by

establishing theorems how units can be identified as terminal

units. An approach for improving the adequacy of DEA

models based on terminal units is suggested, and an example

shown based on a real-life data set for Russian banks.
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1 Introduction

The seminal paper of Farrell (1957) defined efficiency

measures and suggested both non-parametric and

parametric estimation methods, and Farrell and Fieldhouse

(1962) used linear programming for the first time. Charnes

et al. (1978) (CCR) coined the term data envelopment

analysis (DEA) and generalised and put DEA into the

linear programming format we use today.

After a decade of applications of DEA following the pub-

lication of CCR, it was recognised that results both concerning

efficiency scores and shape of the frontier production func-

tion, on which Farrell efficiency measures are based, were not

always adequate when confronted with expert knowledge of

the units to which DEA was applied. Types of inadequacies

discussed in the literature have been that too many efficient

units may appear in some DEA models, a DEA model may

show an inefficient unit from the point of view of experts as an

efficient one, too many zeros appear as solutions for the

multipliers (or shadow prices or weights) (variables appearing

in the dual solution if the primal model is the envelopment

model formulated in the space of inputs and outputs), and units

are not ‘properly’ enveloped.

Already Farrell (1957, p. 256–257) restricted the esti-

mation of the non-parametric frontier function and conse-

quently some of the efficiency scores by introducing

artificial observations of the zero-infinity type in order to

secure convex isoquants. CCR criticised this approach and

introduced a non-Archimedean number weighting the

slacks in the objective function and restricting the shadow

prices (multipliers) to be strictly positive ‘‘because all

resources and outputs are assumed to have ‘some’ positive

value’’ (Charnes et al. 1979).

Thompson et al. (1986) generalised the restriction on

dual variables introduced by CCR restricting the multipli-

ers (weights) in a more general way than using the non-

Archimedean number as a lower constraint on the weights.

The problem of Thompson et al. (1986) was that the

number of units under investigation was so small (only six)
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that all but one of the units was rated efficient using con-

ventional DEA. In order to increase the discrimination

restrictions on the multipliers or shadow prices or weights

were enforced.

Based on Thompson et al. (1986) an elegant and subtle

approach was developed in the DEA literature to deal with

the problems of inadequacies of the DEA models. This

approach was based on incorporating domination cones (Yu

1974) in DEA models. A number of outstanding papers were

devoted to substantiation, development and applications of

domination cones to DEA models (Brockett et al. 1997;

Thompson et al. 1990, 1997; Wei et al. 2008; Yu et al. 1996;

Charnes et al. 1989, 1990). The two latter papers introduced

the cone-ratio approach of basing the shape of the frontier on

a few efficient units selected by experts by restricting the

weights (multipliers) to be within cones in the dual space.

Building on an approach in Thanassoulis and Allen

(1998) and Allen and Thanassoulis (2004) followed the

idea of Farrell (without a reference) of dealing with the

inadequacies of the DEA solution by introducing artificial

observation termed anchor units in the case of constant

returns to scale and a single input. This definition was

generalised in Bougnol and Dulá (2009) to multiple inputs

and outputs and variable returns to scale. An elaborate

algorithm for finding anchor points was introduced. The

empirical applications gave the somewhat surprising result

that almost all extreme efficient units are in fact anchor

points. The situation of some zeros for weights seems to be

the normal situation for DEA applications. However, their

algorithms may produce units that are just usual efficient

units (vertices) in DEA models.

Thanassoulis et al. (2012) elaborated further the super-

efficiency approach for finding anchor units in a general

model exhibiting variable returns to scale. However, their

approach does not reveal all efficient units that may be the

point of departure for improving envelopment in the

Banker et al. (1984) model of variable returns to scale.

Edvardsen et al. (2008) suggested an empirical witty

method for discovering ‘‘suspicious’’ units, which is units

that may cause inadequate results in the DEA models; they

call them exterior units. However, their method cannot

discover all suspicious units.

The purpose of this paper is to identify units that may

unduly become efficient by making use of a new concept; a

terminal unit. This concept is better suited as points of

departure for introducing artificial observations than the

definitions of anchor units or exterior units. The definition

of terminal units is linked both to the Farrell approach of

introducing artificial observations and to the approach of

incorporating domination cones in DEA models.

Cones are usually determined in the dual space of

multipliers. It is rather difficult, however, for a manager

(the decision-maker) to determine cones in the multipliers

space that is dual to the space of inputs and outputs where a

production possibility set is constructed (Cooper et al.

2000). For this very reason only two particular DEA

models with cones are widely used in practice at present:

the assurance region model and the cone-ratio model

(Cooper et al. 2000).

The plan of the paper is to go into the background in

Sect. 2, using key elements from the cone-ratio approach

developed in Charnes et al. (1990), based on the Banker

et al. (1984) model of variable returns to scale, and

establish necessary definitions. The main results are pre-

sented in Sect. 3, including the definition of a terminal unit

and illustrating its difference from the term anchor unit and

using domination cones to establish that terminal produc-

tion units exist if some production units become inefficient

if cones are inserted in the model. Some numerical

experiments on data for Russian banks are carried out in

Sect. 4, showing how to find a terminal unit and how to use

experts to indicate an artificial efficient unit using a visual

interactive graphical technique. Section 5 concludes and

offer ideas for further research.

2 Background

It was shown in the DEA scientific literature (see Krivo-

nozhko et al. 2009) that the model in Banker et al. (1984)

exhibiting variable returns to scale (hereafter termed the

BCC model) can approximate any DEA model from a large

family of DEA models. For this reason, we consider the

BCC model as a basic model in our exposition.

Consider a set of n observations of actual production

units (Xj, Yj), j = 1, …, n, where the vector of outputs

Yj = (y1j, …, yrj) C 0, j = 1, …, n, is produced from the

vector of inputs Xj = (x1j, …, xmj) C 0. The production

possibility set T is the set {(X, Y) | the outputs Y C 0 can

be produced from the inputs X C 0}. The primal input-

oriented BCC model can be written in the form

min h

subject to

Xn

j¼1

Xjkj þ S� ¼ hXo;

Xn

j¼1

Yjkj � Sþ ¼ Yo;

Xn

j¼1

kj ¼ 1 ;

kj� 0; j ¼ 1; . . .; n;

s�k � 0; k ¼ 1; . . .;m;

sþi � 0; i ¼ 1; . . .; r;

ð1aÞ
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where Xj = (x1j, …, xmj) and Yj = (y1j, …, yrj) represent

the observed inputs and outputs of production units

j = 1, …, n, S� ¼ ðs�1 ; . . .; s�mÞ and S? = (s1
?, …, sr

?) are

vectors of slack variables. In this primal model the effi-

ciency score h of production unit (Xo, Yo) is found; (Xo, Yo)

is any unit from the set of production units (Xj, Yj),

j = 1, …, n.

Notice that we do not use an infinitesimal constant e (a

non-Archimedean quantity) explicitly in the DEA models,

since we suppose that each model is solved in two stages in

order to separate efficient and weakly efficient units.

The dual multiplier form of the BCC model (1a) is

expressed as

max uT Y0 � u0

� �

subject to

uT Yj � vTXj � u0� 0; j ¼ 1; . . .; n

vT X0 ¼ 1;

vk � 0; k ¼ 1; . . .;m; ui� 0; i ¼ 1; . . .; r

ð1bÞ

where (v, u, u0) is a vector of dual variables, v [ Em,

u [ Er, u0 is an unconstrained scalar variable associated

with the convexity constraint.

The BCC primal output-oriented model can be written in

the following form

max g

subject to

Xn

j¼1

Xjkj þ S� ¼ X0;

Xn

j¼1

Yjkj � Sþ ¼ gY0;

Xn

j¼1

kj ¼ 1 ;

kj� 0 ; j ¼ 1; . . .; n;

s�k � 0; k ¼ 1; . . .;m;

sþi � 0; i ¼ 1; . . .; r:

ð1cÞ

The dual multiplier form of the BCC output-oriented

model (1c) is written in the form

min vT X0 þ u0

� �

subject to

uT Yj � vTXj � u0� 0; j ¼ 1; . . .; n

uT Y0 ¼ 1;

vk � 0; k ¼ 1; . . .;m; ui� 0; i ¼ 1; . . .; r;

ð1dÞ

where (v, u, u0) is a vector of dual variables, v [ Em,

u [ Er, u0 is a scalar variable associated with the convex

constraint [the same symbols for dual variables are used as

for models (1b)].

Definition 1 (Cooper et al. 2000). Unit (Xo, Yo) [ T is

called efficient with respect to the input-oriented BCC model

if and only if any optimal solution of (1a) satisfies: (a) h* = 1,

(b) all slacks sk
-, si

?, k = 1, …, m, i = 1, …, r are zero.

If the first condition (a) in Definition 1 is satisfied, then

unit (Xo, Yo) is called input weakly efficient with respect to

the BCC input-oriented model. We denote the set of these

weakly efficient points by WEffIT. In the DEA literature

(Banker and Thrall 1992; Seiford and Thrall 1990) this set

is also called the input boundary.

Definition 2 (Cooper et al. 2000). Unit (Xo, Yo) [ T is

called efficient with respect to the output-oriented BCC model

if and only if any optimal solution of (1c) satisfies: (a) g* = 1,

(b) all slacks sk
-, si

?, k = 1, …, m, i = 1, …, r are zero.

If the first condition in Definition 2 is satisfied, then unit

(Xo, Yo) is called output weakly efficient with respect to the

BCC model. We denote the set of these weakly efficient

points by WEffOT. In the DEA literature (Banker and Thrall

1992; Seiford and Thrall 1990), this set is also called the

output boundary.

Definition 3 (Cooper et al. 2000). Activity (X0, Y0) [ T is

weakly Pareto efficient if and only if there is no

(X, Y) [ T such that X \ X0 and Y [ Y0. We denote the set

of weakly Pareto efficient activities by WEffPT.

We denote the set of efficient points of T with respect to

the BCC model (1a–1d) by EffT. Krivonozhko et al. (2005)

have proved that the following relations hold:

Eff T � WEffIT \WEffOT ;
WEffIT [WEffOT � WEffPT ¼ Bound T ;

where the boundary of T is designated as BoundT.

The production possibility set TB for the BCC model can

be written in the form (Banker et al. 1984)

TB ¼ ðX; YÞ
Xn

j¼1

Xjkj�X;
Xn

j¼1

Yjkj� Y;

�����

(

Xn

j¼1

kj ¼ 1; kj� 0; j ¼ 1; . . .; n

)
:

ð2Þ

In this paper we will mainly consider production

possibility sets of this type.

3 Main results

The use of cones will play a crucial role in our search for

terminal units. The main idea of incorporating domination

cones in DEA models is to reduce the domain of multi-

pliers. For this purpose, additional constraints on multi-

pliers are incorporated in the DEA models.
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In the assurance region method, constraints on the

multipliers are added to the CCR model in the following

manner; see Charnes et al. (1990),

l1i�
vi

v1

� k1i; ði ¼ 2; . . .;mÞ;

L1s�
us

u1

�K1s; ðs ¼ 2; . . .; rÞ;
ð3Þ

where l1i, k1i, L1s, K1s are given low and upper bounds on

the ratios of multipliers.

Assertion 1 There exist polyhedral cones in multidi-

mensional space Em?r that cannot be described by rela-

tions (3).

Thus, formulas (3) describe only some subset of possible

polyhedral cones in multidimensional space Em?r. The next

model enables one to use more general form of domination

cones in the DEA models.

The dual multiplier form of the cone-ratio model is

expressed as (Charnes et al. 1989, 1990; Yu et al. 1996)

max uYo � uoð Þ
subject to

vT Xo ¼ 1;

� vT Xj þ uT Yj � uo� 0; j ¼ 1; . . .; n;

u 2 U; v 2 V;

ð4aÞ

where variables v [ Em, u [ Er, uo [ E1 and U ( E?
r ,

V ( E?
m are given polyhedral cones.

The primal problem of (4a) is written as

min h

subject to

Xn

j¼1

Xjkj � hXo 2 V�;

Yo �
Xn

j¼1

Yjkj 2 U�;

Xn

j¼1

kj ¼ 1 ;

kj� 0; j ¼ 1; . . .; n;

ð4bÞ

where V* and U* are negative polar cones of sets V and U,

respectively.

In practice (Charnes et al. 1990; Cooper et al. 2000),

polyhedral cones U and V are constructed as follows:

(a) some excellent units are chosen from the point of view

of experts; (b) averages of the optimal multipliers ui
*, vi

* are

computed for every excellent unit i [ Ex, where Ex denotes

the set of excellent units (a subset of Eff T). Vectors ui
*, vi

*,

i [ Ex form polyhedral cones U and V.

Cones U and V reduce the feasible domain of multipli-

ers, while the feasible domains of inputs, see Fig. 1, and

outputs, see Fig. 2, are expanding.

Now, we make an attempt to reveal the causes of

inadequacies in DEA models.

Assumption Let the cone-ratio method allows one to

reduce the number of ‘‘suspicious’’ production units, i.e.

the units that are efficient, but should be inefficient from

the point of view of experts.

Production possibility set TB (2) is a convex polyhedral

set. According to the classical theorems of Goldman (1956)

and Motzkin (1936) any convex polyhedral set can be rep-

resented as a vector sum of convex combination of vertices

and the non-negative linear combination of vectors (rays).

Before going further, let us recall some notions from

convex analysis. Faces are formed by an intersection of the

supporting hyperplane and the polyhedral set. In the DEA

models, the dimension of face may vary from 0 up to

(m ? r - 1), the maximal dimension. Faces of maximal

dimension are called facets. Faces of 0-dimension are

known as vertices, 1-dimension as edges.

Definition 4 We call an efficient (vertex) unit terminal

unit if an infinite edge is going out from this unit.

Fig. 1 Transformation of the frontier in the output subspace in the

cone-ratio method

Fig. 2 Transformation of the frontier in the input subspace in the

cone-ratio method
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According to the classification of Charnes et al. (1991)

terminal units belong to the class E (extreme efficient).

We denote the set of terminal units with respect to the

production possibility set (2) by Tterm.

Definition 5 We call a face C of set TB a terminal face if

this face contains an infinite edge.

Then the following assertion can be proved.

Theorem 1 If some efficient production units in model

(1a–1d) become inefficient in model (4a, 4b) as a result of

inserting cones in the BCC model (1a–1d), then it is nec-

essary that there exist terminal production units among

such inefficient units.

Proof See the proof of Theorem 12 in ‘‘Appendix 1’’ for

a more general case.

Observe that the results of Theorem 1 was proved for

the cone-ratio model at first, since this model was thor-

oughly elaborated from theoretical and practical points of

view in the scientific literature on the DEA models, see

Charnes et al. (1990), Brockett et al. (1997) and Cooper

et al. (2000). However, the cone-ratio model cannot cover

all possible cases where inadequate results may appear in

the DEA models. Therefore, theorem 12 is proven in this

paper for the generalized DEA model with domination

cones.

Thus, Theorem 1 shows that terminal points are the first

‘‘suspicious’’ units which may cause inadequate results in

the DEA models.

The following optimization models enable us to find

terminal units or units belonging to terminal faces of the

production possibility set. For this purpose two types of

models are solved for every efficient unit (vertex) q that

belongs to the class E according to the classification of

Charnes et al. (1991).

Problem Pk (q) (k = 1, …, m):

max J1k ¼ g
Xn

j¼1

Xjkj�Xq þ s dk;

Xn

j¼1

Yjkj� g Yq;

Xn

j¼1

kj ¼ 1;

kj� 0; s� 0;

ð5Þ

where dk = (0, …, 1, …, 0) [ Em, the unity is in kth

position.

Variable s provides that ray (Xq ? sdk, Yq) going out

from unit (Xq, Yq) belongs to the feasible set of the model

(5).

Theorem 2 If in problem (5) the optimal value J1k
* = 1,

then unit (Xq, Yq) is a terminal one or belongs to a terminal

face C , WEffOT.

Proof Under any s C 0 ray (Xq ? sdk, Yq) is a feasible

subset for production possibility set TB (2) due to monoto-

nicity of TB. As it follows from model (5), if J1k
* = 1, then

this ray belongs to the set WEffOTB. Hence this ray is an

unbounded edge or belongs to an unbounded face of set TB.

This completes the proof.

The following models determine infinite edges ema-

nating along direction gi, where gi = (0, …, 1, …, 0) [ Er

(the unity is in ith position).

Problem Ri (q) (i = 1, …, r)

min J2i ¼ h
Xn

j¼1

Xjkj� h Xq;

Xn

j¼1

Yjkj� Yq � s gi;

Xn

j¼1

kj ¼ 1;

kj� 0; s� 0:

ð6Þ

Theorem 3 If in problem (6) the optimal value J2i
* = 1,

then unit (Xq, Yq) is a terminal one or belongs to a terminal

face C , WEffIT.

The proof of Theorem 3 is very similar to the proof of

the previous theorem and is therefore skipped.

Thus, models (5) and (6) enable us to reveal terminal units

or efficient units belonging to unbounded faces and also

directions of infinite edges going out from efficient units.

The following problems enable one to discover only

terminal units among all units belonging to the class E.

Problem �PkðqÞ (k = 1, …, m):

min �J1k ¼ kq

Xn

j¼1

Xjkj�Xq þ sdk;

Xn

j¼1

Yjkj� Yq;

Xn

j¼1

kj ¼ 1;

kj� 0; j ¼ 1; . . .; n; s� 0;

ð7Þ

Theorem 4 Unit (Xq, Yq) from the class E is a terminal

one if the optimal value of problem (7) �J�1i ¼ k�q ¼ 1.

Proof Observe that solution kj = 0, j = 1, …, n, j = q,

kq = 1, s = 0 is a feasible solution of problem (7). So, if
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kq
* = 1, this implies that any interior point belonging to the

ray (Xq ? sdk, Yq) cannot be represented as a convex

combination of some other points of production possibility

set TB. Hence this ray is an infinite edge and point (Xq, Yq)

is a terminal unit.

However, if kq
* \ 1, this implies that some interior

points of the ray (Xq ? sdk, Yq) can be represented as a

convex combination of some other points of set TB.

This completes the proof.

The following problems allow one to find only terminal

units and infinite edges emanating along directions gi,

i = 1, …, r.

Problem �RiðqÞ (i = 1, …, r)

min �J2i ¼ kq

Xn

j¼1

Xjkj�Xq;

Xn

j¼1

Yjkj� Yq � sgi;

Xn

j¼1

kj ¼ 1;

kj� 0; j ¼ 1; . . .; n; s� 0;

ð8Þ

Theorem 5 Unit (Xq, Yq) from the class E is a terminal

one if the optimal value of problem (8) �J�2i ¼ k�q ¼ 1.

The proof of Theorem 5 is very similar to the proof of

Theorem 4 and is therefore skipped.

Let us introduce the following designations �dk ¼ ðdk; 0Þ
2 Emþr, k = 1, …, m, �gi ¼ ð0; giÞ 2 Emþr, i = 1, …, r.

Proposition Only vectors of the following forms �dk ¼
ðdk; 0Þ 2 Emþr, k = 1, …, m, �gi ¼ ð0; giÞ 2 Emþr, i =

1, …, r can be the direction vectors of infinite edges of set TB.

The assertion of the proposition follows from the

structure of the polyhedral set TB (Goldman 1956; Nikaido

1968; Rockafellar 1970).

Based on assertions formulated above we can prove the

following result.

Theorem 6 Unit (Xq, Yq) from the class E is a terminal

one if and only if it turns out to be terminal at least in one

of the problems �PkðqÞ, k = 1, …, m in (7) or �RiðqÞ,
i = 1, …, r in (8).

Proof Let unit (Xq, Yq) be a terminal one. Then an infinite

edge with direction vector of the form �dk ¼ ðdk; 0Þ 2 Emþr,

k = 1, …, m, �gi ¼ ð0; giÞ 2 Emþr, i = 1, …, r is going out

from this unit according to Theorem 6. Let it be vector �dk,

without loss of generality. Consider problem of type �PkðqÞ
(7), where direction vector dk is used. Since dk determines

an infinite edge, then any interior point belonging to the ray

(Xq ? sdk, Yq) cannot be represented as a convex combi-

nation of some other points of set TB. Hence k�q ¼ 1,

k�j ¼ 0, j = 1, …, n, j = q, s* C 0 is an optimal solution

of problem (7).

Conversely, let unit (Xq, Yq) be a terminal one in one of

the problems �PkðqÞ, k = 1, …, m in (7) or �RiðqÞ,
i = 1, …, r in (8). Then according to Theorems 4 and 5,

this unit is a terminal one.

This completes the proof.

Bougnol and Dulá (2009) determined an anchor point as

an efficient vertex belonging to an unbounded face of set TB.

They proposed algorithms for discovering anchor points.

Let us denote the set of anchor units in the BCC model

(1a–1d) with respect to the definition of Bougnol and Dulá

(2009) by Tanc
1 .

Theorem 7 Unit (Xq, Yq) belongs to the set Tanc
1 in the

BCC model (1a–1d) if and only if the optimal value J1k
* = 1

and/or J2i
* = 1 at least in one of the problems Pk(q),

k = 1, …, m in (5) and Ri(q), i = 1, …, r in (6).

Proof The result follows from Theorems 2 and 3. Indeed,

if J1k
* = 1 and/or J2i

* = 1 at least in one of the problems Pk

(q), k = 1, …, m (5) and Ri (q), i = 1, …, r (6), then unit

(Xq, Yq) belongs to an edge or to a terminal face of the

production possibility set TB (2). Remember from the

convex analysis that an edge of the polyhedral set repre-

sents also a face of 1-dimension. Hence unit (Xq, Yq) is an

anchor point with respect to the definition of Bougnol and

Dulá (2009).

Conversely, let vertex (Xq, Yq) belong to Tanc
1 . Hence

unit (Xq, Yq) belongs to an unbounded face. All unbounded

directions of this face are determined by some of the

vectors �dk, k = 1, …, m, �gi, i = 1, …, r. Take some of

these vectors. Let it be vector �dk, without loss of generality.

Consider problem of type Pk (q) (5), where direction vector

dk is used. The ray ðXq þ sdk; YqÞ belongs to the set

WEffO TB, since (Xq, Yq) is an efficient unit (vertex) and

vector (0, Yq) is perpendicular to �dk. Hence solving (5), we

obtain J1k
* = 1.

This completes the proof.

Thus Theorem 7 gives us a constructive way to reveal

whether unit (Xq, Yq) from the class E belongs to the set

Tanc
1 or not. For this purpose one has to solve problems

Pk(q), k = 1, …, m (5) and/or Ri(q), i = 1, …, r (6).

Now we can formulate the following result.

Corollary 1 The set of terminal units Tterm of the BCC

model (1a–1d) belongs to the set of anchor points Tanc
1 with

respect to the definition of Bougnol and Dulá, i.e.

Tterm ( Tanc
1 .
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This result immediately follows from Theorems 2, 3 and

7.

Edvardsen et al. (2008) suggested an empirical method

for discovering ‘‘suspicious’’ units, they call them ‘‘exterior

units’’. Let Text denote the set of exterior units in the BCC

model (1a–1d). However, their method cannot discover all

suspicious units. Indeed, consider the following illustrative

example, Fig. 3, panel (a). The three dimensional BCC

model is determined by units A, B, C, D. Inputs and outputs

of these units are presented in Table 2, see ‘‘Appendix 2’’.

Again consider the BCC model with the same units, but

now y is an input variable, x1 and x2 are output variables,

see Fig. 3, panel (b), points E and F are projections of

points B and C onto planes x1Oy and x2Oy, respectively.

Point D is not efficient in this case. Hence this point is not

exterior. At the same time this point is a ‘‘suspicious’’ unit,

since it may cause inadequacy in the DEA model. Units,

like point D, belonging to unbounded faces and not being

terminal units are also ‘‘suspicious’’ points. These units

may also cause inadequate results in the DEA models.

However, our computational experience shows that the

number of such units in real-life data sets is very small in

comparison with the number of terminal units.

The next theorem establishes that the set of terminal

units includes the set of exterior units.

Theorem 8 The set of terminal units Tterm of the BCC

model contains the set of exterior units Text, i.e.

Text ( Tterm.

Proof See ‘‘Appendix 1’’.

However, some terminal units may not belong to the set

of exterior units. Indeed, consider the following illustrative

example. Figure 4 depicts a 3-dimensional BCC model,

points A–F (efficient units) determine the production pos-

sibility set TB. Inputs and outputs of these units are indi-

cated in Table 3, see ‘‘Appendix 2’’.

Units D and E are terminal ones since these units belong

to unbounded edges. However, these units are not exterior

ones since these units will be inefficient after ‘‘reversing

the inputs and outputs’’.

The following assertion summarizes the results of Cor-

ollary 1 and Theorem 8.

Theorem 9 For BCC model (1a–1d) the following rela-

tions hold Text ( Tterm ( Tanc
1 .

Its proof is based on previously stated results.

Thanassoulis et al. (2012, p. 178) proposed a new defi-

nition of anchor units for efficient units, ‘‘which with ref-

erence to the extreme-efficient DMUs [vertices] but

excluding the evaluated DMU itself, can be rendered class

F by contracting radially their output levels, while keeping

their input level constant OR by increasing inputs and

keeping their output levels constant’’, where class

F according to Charnes et al. (1991) contains inefficient

DMUs that are on the PPS boundary. However, the set of

anchor units with respect to definition of Thanassoulis et al.

(2012, p. 178) does not coincide with the set of anchor

units according to Bougnol and Dulá (2009). Indeed,

consider the following illustrative example. In Fig. 5, a

two-inputs/one-output BCC model is depicted. Units A, B,

C, D, E are the observed efficient production units that

determines set TB. Inputs and outputs of these units are

indicated in Table 4, see ‘‘Appendix 2’’.

Points M,A, B, C, L form the face of set TB. This face

belongs to the orthant X1OY. However, unit B is just a

common vertex of the BCC model. Let ‘‘unit B be rendered

class F by increasing inputs and keeping their output levels

constant’’. As a result point B1 will be obtained. This point

belongs to segment AC, an efficient part of the frontier.

Again, let ‘‘unit B be rendered class F by contracting radially

their output levels, while keeping their input level constant’’.

As a result point B2 will be obtained. Point B2 belongs to an

efficient part of the frontier, segment AC. Hence, unit B is not

anchor unit according to Thanassoulis et al. (2012). How-

ever, unit B is an anchor unit according to Bougnol and Dulá

(2009), since this unit belongs to an unbounded face.

Fig. 3 Point D is not an

exterior unit in the

3-dimensional BCC model
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Let us denote the set of anchor units in the BCC model (1a–

1d) with respect to the definition of Thanassoulis et al. (2012,

p. 178) by Tanc
2 . Then the following assertion can be proved.

Theorem 10 For BCC model (1a–1d) the following

relation holds Tanc
2 ( Tterm.

Proof See ‘‘Appendix 1’’.

Theorem 10 shows that approach of Thanassoulis et al.

(2012) does not reveal all efficient units that may be used

for improving envelopment in BCC models.

Consider again an illustrative example in Fig. 4. Units

D and E are not anchor units with respect to the definition of

Thanassoulis et al. (2012). However, units D and E are ter-

minal ones, since infinite edges start from this units. Figure 6

depicts an input isoquant for unit D. Unit G is inefficient. Its

projection will be point G0 on some slack face. However, their

approach cannot improve this part of the boundary, unit D is

not identified as an anchor unit, since unit D can be moved to

the efficient part of the frontier by contracting radially its

output level while keeping its input levels constant or by

increasing inputs and keeping its output levels constant. Fig-

ure 7 illustrates this fact. So, their approach is incomplete.

Summarizing all mentioned above, the following

assertion can be formulated.

Theorem 11 For BCC model (1a–1d) the following

relations hold Tanc
2 ( Tterm ( Tanc

1 .

So, the approach of Bougnol and Dulá (2009) generates

excess number of anchor units and approach of Thanas-

soulis et al. (2012) may not generate sufficient number of

units in order to improve the frontier.

The cone-ratio model (3) cannot help in every case

where suspicious units appear in the DEA models. In

Fig. 4, point B is a terminal unit. However, it is impossible

to transform the frontier with the help of cones U and V in

such a way that terminal point B would be inefficient, see

Fig. 6.

Only simultaneous transformation of the frontier in the

space of inputs and outputs enables one to make suspicious

unit B inefficient, see Fig. 8.

Yu et al. (1996) proposed the following generalized

DEA (GDEA) model that unifies and extends most the

well-known DEA models based on using domination cones

(see, e.g. Yu 1974) in their constraint sets.

max ðuT Y0 � d1u0Þ
subject to

vT X � uT Y þ u0d1eT 2 K;

vT X0 ¼ 1;

v

u

� �
2 W ; d1d2ð�1Þd3 u0� 0;

v 2 Em; u 2 Er; u0 2 E1:

ð9aÞ

The optimization dual problem to (9a) is written in the

form (Yu et al. 1996):

min h

subject to

Xk� hX0

�Ykþ Y0

 !
2 W�;

d1eTkþ d1d2ð�1Þd3knþ1 ¼ d1;

k 2 �K�; knþ1� 0; h 2 E1;

ð9bÞ

Fig. 4 Three-dimensional BCC model, units D and E are not exterior

ones

Fig. 5 Unit B is an anchor point, but not a terminal point Fig. 6 Input isoquants for units B and D
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where X ¼ ðX1; . . .;XnÞ is an m 9 n matrix,

Xj = (x1j, …, xmj) C 0 is the input vector for the jth pro-

duction unit j = 1, …, n; Y ¼ ðY1; . . .; YnÞ is an

r 9 n matrix, Yj = (y1j, …, yrj) C 0 is the output vector for

the jth production unit j = 1, …, n. Parameters d1, d2, d3

are binary ones assuming only the values 0 and 1. Vector e is

determined as e = (1, …, 1) [ En. Sets W ( Em?r and

K ( En are the closed convex cones, where Em?r and En are

Euclidean spaces of the dimensions (m ? r) and n, respec-

tively. W* and K* are the negative polar cones (Charnes et al.

1989; Yu et al. 1996) of sets W and K, respectively. It is

usually assumed in the DEA models that the polyhedral

cones W ( E?
m?r and K ( E?

n and int W = Ø and int

K = Ø, then we get W*
= Ø and K*

= Ø.

Theorem 12 If some efficient units in model (1a–1d)

become inefficient in model (9a, 9b) as a result of inserting

cones in the BCC model, then it is necessary that there

exist terminal production units among such inefficient

units.

Proof See ‘‘Appendix 1’’.

It is rather difficult for a manager (expert) to determine

cones in the multipliers space that is dual to the space of

inputs and outputs where a production possibility set is

constructed.

For this very reason it is difficult to use the GDEA

model in practice.

Krivonozhko et al. (2009) proposed a model that is more

general than the GDEA model, on the one hand, as it

covers situations that the GDEA model cannot describe. On

the other hand, this model enables one to construct step-by-

step any model from a large family of the DEA models by

incorporating artificial units and rays in the space of inputs

and outputs in the BCC model, which makes the process of

model construction visible and more understandable.

The production possibility set of this model is written in

the form

TG ¼
�
ðX; YÞ X�

Xn

j¼1

Xjkj þ
X

i2I

Dili þ
X

k2J

Akqk;

����� :

Y �
Xn

j¼1

Yjkj þ
X

i2I

Gili þ
X

k2J

Bkqk;
Xn

j¼1

kj þ
X

i2I

li ¼ 1;

kj� 0; j ¼ 1; . . .; n; li� 0; i 2 I; qk � 0; k 2 J

�
:

ð10Þ

where (Di, Gi), i [ I, I is a set of artificial production units,

(Ak, Bk), k [ J, J is a set of vectors (rays) added to the

model.

Figure 9 shows the transformation of the frontier of the

2-dimensional BCC model with the help of artificial units

and rays. In the figure, cone Q is formed by artificial rays,

point B0 is an artificial unit.

In addition to problem (7) and (8), we can also discover

terminal (suspicious) production units with the help of

constructions of 2-dimensional and 3-dimensional sections

of the frontier.

Define 3-dimensional affine subspace in space Em?r as

Pl ðXo; Yo; d1; d2; d3Þ ¼ ðXo; YoÞ þ a d1 þ b d2 þ c d3;

ð11Þ

where (Xo, Yo) [ TB, a, b and c are any real numbers,

directions d1, d2, d3 [ Em?r are not parallel to each other.

Next, define intersections of the frontier with 3-dimen-

sional affine subspace

Sec ðXo; Yo; d1; d2; d3Þ
¼ f ðX; YÞ j ðX; YÞ 2 Pl ðXo; Yo; d1; d2; d3Þ \
\ WEffP TðX; YÞ; d1; d2; d3 2 Emþr g; ð12Þ

where WEffPT is a set of weakly Pareto-efficient points.

Krivonozhko et al. (2005) have proved that set

WEffPT coincides with the boundary of TB (2).

By choosing different directions d1, d2 and d3 we can

construct various 2-dimensional and 3-dimensional

Fig. 7 Production function for unit D Fig. 8 Production function for unit B
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sections going through point (Xo, Yo) and cutting the

frontier. Parametric optimization algorithms for con-

struction of sections of the type (12) are described in

detail by Krivonozhko et al. (2004) and Volodin et al.

(2004).

Moreover, thanks to our package FrontierVision, one

can add to the DEA model any artificial units and rays on

the computer screen interactively.

Assertion 2 There always exists a section (12) that

reveals any terminal unit and/or efficient units belonging to

an unbounded face.

However, the specific section may not reveal some ter-

minal units. In the 3-dimensional BCC model, see Fig. 4,

unit B is a terminal one. In Fig. 6, unit B does not look like

a terminal one. The section in Fig. 7 reveals this unit as a

terminal point.

Generally speaking, a 2-dimensional section of the type

(12) consists mainly of a number of segments and two rays.

The first and the last vertices in the chain of segments are

usually terminal units.

Next, a user (expert) can control the changes of effi-

ciency scores of inefficient units as a result of inserting

artificial rays and units with the help of our package

FrontierVision. Indeed, the following assertion is valid.

Assertion 3 There always exists a vicinity for any ter-

minal unit such that any change of this unit’s position

within this vicinity will change only efficiency scores of

some inefficient units within some small range.

So, if some changes in efficiency scores are unaccept-

able according to expert’s opinion, he/she can move arti-

ficial units closer to some small vicinity of a terminal unit

just on the screen of the computer.

Now, we are ready to present our general Procedure for

improving the adequacy of DEA models.

1. Solve BCC models (1a–1d) for all units DMUj,

j = 1, …, n.

If experts (decision making persons) agree with com-

putational results, then STOP, else go to the next step.

2. Experts are requested to indicate units whose effi-

ciency scores do not correspond to their opinions. For

every such units several sections of the type (12) are

constructed. Set Tterm of terminal units is determined.

Experts are requested to indicate on the 2-dimensional

or 3-dimensional sections artificial efficient units or

rays in the some vicinity of every terminal unit.

3. Add the set of artificial units and rays to the current set

of units.

Solve BCC models (1a–1d) with modified set of

production units.

If computational results are acceptable, then STOP,

else change vicinities of terminal units or/and positions

of artificial units within vicinities of terminal units.

Go to the beginning of step 3.

Observe that in the Procedure the process of frontier

transformation is controllable from the very beginning up

to the end. Our computational experiments showed that it is

sufficient to make two or three steps of Procedure in order

to adjust his/her model and obtain reliable computational

results.

Notice that we present here only general Procedure for

improving of the adequacy of the DEA models. This Pro-

cedure may be specified in dependence of the real-life

problems. This is an interesting problem for future

development.

4 Computational results

In order to illustrate consequences of letting experts choose

one unit from the terminal units and change data to more

reasonable values we used a dataset for 920 Russia banks’

financial accounts for January 1 of 2009. The following

inputs and outputs for the BCC output-oriented model were

used:

Inputs: working assets; time liabilities; demand liabilities.

Outputs: equity capital; liquid assets; fixed assets.

The data were financial accounts of Russian banks for the

year 2008. Remember that this year was the first year of the

world crisis. It was important at that time for financial experts

to have reliable tools for forecasting the behavior of financial

institutes and for warning about possible bankruptcies.

The number of efficient banks is very low; 42 units out

of 920. The majority of banks have efficiency scores

\50 %. This situation is different from the situation

reported in Charnes et al. (1990).

However, financial experts expressed doubt about the

result of full efficiency of some banks. For example,
Fig. 9 Transformation of the frontier with the help of artificial units

and rays
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Fig. 10 presents a cut of the frontier in a 6-dimensional

space by the 2-dimensional plane for bank A; certainly we

use legends instead of real names of banks. The directions

of the plane are determined by two inputs: demand liabil-

ities and working assets. Small circles denote the projec-

tions of the actual observations of banks onto the

2-dimensional plane. The colors of circles are associated

with the efficiency scores of appropriate units. The red

color means that the corresponding unit is efficient. The

green color designates units with low efficiency score; the

yellow color denotes that a unit has an intermediate value

of efficiency score.

The scale is such that point (1, 1) in the figure corre-

sponds to bank A. According to the BCC model bank A is

100 % efficient. However, experts did not agree with this

evaluation, and they were right, since bank A was bank-

rupted in 6 months. In fact point A is a typical terminal

unit, since unbounded edges go out from this unit. How-

ever, Fig. 10 cannot help us to improve the frontier.

For this purpose we should use another section. Fig-

ure 11 shows a cut of the frontier in a 6-dimensional space

by the 2-dimensional plane for bank A. The horizontal axis

in the figure is determined by input vector Xo and the

vertical axis corresponds to output vector Yo of bank A,

respectively. The scale is such that point (1, 1) corresponds

to bank A. The solid line outlines the production function

(the cut of the production possibility set) of the model. The

balls in the figure denote projections of some other banks

on the 2-dimensional plane. Again, according to the model,

bank A is efficient, which contradicts experts’ opinion.

However, Fig. 11 can help us to improve the frontier.

Experts were asked to insert an artificial efficient unit on

the screen by phrasing the question how much outputs

should be expected from an efficient unit using the

observed inputs of unit A (implicitly assuming a propor-

tional increase of the outputs). This artificial unit is denoted

by B. In the figure, the dotted line together with the solid

line after it shows the frontier of the modified model.

After the frontier transformation the efficiency score of

bank A became 48.3 %. Some other banks also changed

their efficiency scores after inserting artificial unit in the

model. Table 1 shows efficiency scores of some banks,

which were bankrupted during 6 months, in the BCC

model before and after frontier transformation.

After the second run of the model, the experts recog-

nized the modelling results to be adequate and reliable.

We have presented an investigation for only one ter-

minal unit, but demonstrated that the choice of terminal

units as units that should be investigated using expert

information worked out satisfactorily; reducing the effi-

cient unit to an inefficient one and also reducing several

other units’ scores and improving the realism of the results.

However, the working out of a more formal procedure for

eliciting expert help in providing more realistic efficient

units based on terminal units is still to be done.

5 Conclusions

In this paper, we proposed tools for discovering units

which may cause inadequate results in the DEA models. It

was shown that terminal units constitute ‘‘suspicious’’

points in the first place. If the graph of intersection of the

frontier with a 2-dimensional plane is constructed, then the

first and the last vertices of the graph are usually terminal

units. However, it is not necessarily the case that terminal

units may cause inadequate results in the DEA models,

such units may be quite normal efficient points. Only

experts in the specific area can evaluate the adequacy of

efficiency scores of terminal units.

Terminal units arise because a non-countable (continu-

ous) production possibility set T is determined on the basis

of a finite number of production units; some of these units

turn out to be terminal ones. A gap between derivatives

Fig. 10 Input isoquant for bank A

Fig. 11 Production function for bank A
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may take place at these points. For example, the left-hand

side scale elasticity takes infinite value, and the right-hand

side scale elasticity takes zero value at some terminal

points, see Førsund et al. (2007).

Let us remember that Farrell (1957) introduced artificial

units at infinity in order to smooth his model, see also

Førsund et al. (2009).

We also propose how to deal with inadequacies in the

DEA models with the help of incorporating artificial units

and rays interactively on the screen of the computer by

experts into some BCC model. This makes the DEA

models more adequate and adjustable.

Only one case of eliciting information from experts

suggesting artificial units that should be efficient based on

terminal units has been shown. However, several other

experiments were carried out. Carrying out systematic

experiments on new real-life datasets will be attempted in a

further research, together with developing more formal

procedures for eliciting information from experts on the

activities under investigation constructing artificial effi-

cient units based on terminal units. The use of interactive

graphical representation in a space of sufficiently reduced

dimensions to be readily understandable and recognizable

by experts seems a promising approach.

Appendix 1

Proof of Theorem 8 Take any point Zq = (Xq, Yq) [ Text.

Assume that Zq is not a terminal unit. Consider the fol-

lowing ray

RðZqÞ ¼ Z Z ¼ Zq þ s
Xm

k¼1

ak
�dk �

Xr

i¼1

bi �gi

 !
; s[ 0

�����

( )
;

ð12Þ

where ak [ 0, k = 1, …, m, and bi [ 0, i = 1, …, r are

constants, �dk ¼ ðdk; 0Þ 2 Emþr (k = 1, …, m), �gi ¼
ð0; giÞ 2 Emþr (i = 1, …, r).

Since Zq is not a terminal unit, some part of ray (12)

goes through the interior of the set

�Text ¼ Z Z ¼
X

s2Text

lsZs

����� ;
X

s2Text

ls ¼ 1; ls [ 0; s 2 Text

( )
:

ð13Þ

Consider some point Z* that belongs to set (12) and to

set (13).

After ‘‘reversing the inputs and outputs’’ according to

the procedure of Edvardsen et al. (2008) point Z* will

dominate point Zq. Hence point Zq cannot belong to the set

of exterior points, contradicting the assumption.

This completes the proof.

Proof of Theorem 10 Take any unit Zo = (X-

o, Yo) [ Tanc
2 from the class E. Consider the case when

this unit ‘‘can be rendered class F by increasing inputs

and keeping their output levels constant’’, where class F

contains inefficient DMUs that are on the PPS boundary.

Let us denote the face where unit Z1 can be rendered by

C1. Since face C1 is infinite, it can be represented in the

form

C1 ¼ Z Z ¼
X

j2J

Zjkjþ
X

k2I1

lkek �
X

i2I2

qiei

����� ;

(

X

j2J

kj ¼ 1; kj�0; j 2 J; lk�0; k 2 I1;qi�0; i 2 I2

)
;

where J is a subset of vertices of polyhedral set T, I1

and I2 are index subsets of vector Z = (X, Y) [ Em?r

associated with vectors X and Y, respectively, and

|I1| B m, |I2| B r, where |I| denotes the power of set I,

ei [ Em?r is an identity vector with a one in position

i.

Let the projection of unit Zo onto the face C1 be ~Zo.

Point ~Zo belongs to riC1, where riC stands for relative

interior of face C, since lk and qi are not zero.

Unit Zo does not belong to C1, and point ~Zo belongs to

riC1, hence according to convex analysis (Goldman 1956;

Nikaido 1968; Rockafellar 1970) half-segment ½Zo; ~ZoÞ
does not belongs to face C1.

Let us denote production possibility set of problem (1a–

1d) without unit Zo by ~T . Construct a supporting hyper-

plane H for set ~T , which contains face C1.

If face C1 has full dimension, then hyperplane separates

unit Zo and set ~T , since half-segment does not belong to

face C1.

If the dimension of face C1 is less then (m ? r - 1),

then there is some degree of freedom in building support-

ing hyper-plane H. Let us build hyper-plane H in such a

way that it separates unit Zo and set ~T and hyper-plane

H does not contain unit Zo.

Consider the affine set S of the following form:

Table 1 Changes of efficiency scores after the frontier

transformation

Name Efficiency score

before frontier

transformation, in %

Efficiency score after

frontier

transformation, in %

Date of

bankruptcy

C 1.79 1.50 30.03.2009

D 46.34 41.87 16.04.2009

H 11.49 9.16 21.05.2009

A 100.00 48.36 25.06.2009

K 7.43 6.35 25.06.2009
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S ¼ Z

�����Z ¼ Zo þ
X

k2I1

lkek

(

�
X

i2I2

qiei; lk� 0; k 2 I1; qi� 0; i 2 I2

)

Hyperplane H separates affine set S and set ~T , since

direction vectors ek, k [ I1, ei, i [ I2 are parallel to

hyperplane H.

So, unit Zo emanates rays along directions ek, k [ I1, and

ei, i [ I2. However, these rays are infinite edges since

interior points of every ray cannot be represented as convex

combination of points from set ~T due to existence of

separating hyperplane H. Hence unit Zo is a terminal unit.

The case when unit Zo ‘‘can be rendered class F by

contracting radially their output levels, while keeping their

input level constant’’ is proved in a similar way.

This completes the proof.

Proof of Theorem 12 Consider efficient unit (X1, Y1) in

model (1a–1d) under evaluation, that remains efficient in

model (9a, 9b) after inserting domination cones, and effi-

cient unit (X2, Y2) in model (1a–1d) that becomes ineffi-

cient in model (9a, 9b) after inserting domination cones.

Assume, at first, that K = E?
n , this implies that cone

K coincides with the first non-negative orthant.

If unit (X2, Y2) is a terminal point, then the theorem is

proved. Assume that unit (X2, Y2) is not a terminal unit.

Let (v1, u1) be optimal dual solution in model (9a, 9b)

and (v2, u2) be optimal dual solution in model (1a–1d) for

units (X1, Y1) and (X2, Y2), respectively. It is known that

dual optimal solution (v1, u1) is an orthogonal vector to

some face of the frontier at point (X1, Y1) (see Cooper et al.

2000, p. 120, theorem 5.1). Notice that we do not write

here the third part u0 of the dual vector, because we need

only an orthogonal vector for our purpose.

Dual optimal solution (v1, u1) for problem (9a, 9b) is

also optimal solution for problem (1a–1d) since the

inclusion of cones in model (1a–1d) may only decrease

the feasible set of dual variables (Yu et al. 1996).

Denote vector of dual variables by w = (v, u) [ Em?r.

Next, let kwk2 be the quadratic norm of vector w.

Consider the following linear programming problem

with a parameter a in the objective function (see Dantzig

and Thapa 1997, 2003)

max u1 þ aðu2 � u1Þ½ �TY � v1 þ aðv2 � v1Þ½ �T X

X�
Xn

j¼1

Xjkj; Y �
Xn

j¼1

Yjkj;
Xn

j¼1

kj ¼ 1; kj� 0; ð14Þ

here

u1 ¼ u1

	
w1k k2; u2 ¼ u2

	
w2k k2; v1 ¼ v1

	
w1k k2; v2

¼ v2

	
w2k k2; ð15Þ

where w1 = (v1, u1) and w2 = (v2, u2).

According to the theory of linear programming with a

parameter in the objective function when a is increasing,

the optimal solution of problem (14) moves along the

frontier from one face to another face.

It follows from (15), that some components of w1 ¼
ðv1; u1Þ will be greater than the corresponding components

of w2 ¼ ðv2; u2Þ and vice versa. Some components of

vector w3 ¼ v1 þ a�ðv2 � v1Þ; u1 þ a�ðu2 � u1Þð Þ will be

equal to zero under some a* [ 1.

Since vector w3 is orthogonal to some face C , TB, this

face contains at least one unbounded edge and one terminal

point.

Points of face C are not efficient in model (9a, 9b) with

domination cones. Let us dwell on this in detail.

According to the assumption, unit (X1, Y1) is efficient

in model (1a–1d) and in model (9a, 9b). Optimal dual

variables w1 = (v1, u1) are associated with efficient unit

(X1, Y1) in both model (1a–1d) and model (9a, 9b).

Hence vectors w1, w1 belongs to some cone W1 that is

included in problem (1a–1d) in order to get problem

(9a). Unit (X2, Y2) is efficient in problem (1a–1d) and

inefficient in problem (9a, 9b). Hence vector

w2 = (v2, u2) associated with unit (X2, Y2) does not

belong to cone W1.

Since vectors w2, w2 and cone W1 are convex sets, we

can construct a hyper-plane

ðb;wÞ ¼ b; ð16Þ

where b [ Em?r, w [ Em?r, b is a scalar, that separates

these two vectors and cone W1, or, in other words,

b;wð Þ\b; under w 2 W1

b;w2ð Þ[ b:
ð17Þ

It follows from (17), that

ðb;w3Þ ¼ bT w1 � a�w1 þ a�w2½ �
¼ �ða� � 1ÞbT w1 þ a�bT w2 [
� ða� � 1Þbþ a�b ¼ b

under a* [ 1.

Hence vectors w3 and w3 ¼ w3

	
w3k k2 do not belong to

cone W1.

Thus, points of face C associated with dual vector w3 are

inefficient in model (9a, 9b), and among units of face C
there exist terminal points.

Now, let K ( E?
n . The inclusion of cone K in model

(9a, 9b) may only expand the production possibility set TB,

therefore the number of efficient units in model (1a–1d)

that become inefficient in model (9a, 9b) may only

increase.

This completes the proof.
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Appendix 2

See Tables 2, 3 and 4.
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Table 2 An illustrative example regarding exterior units in Fig. 3

DMU A B C D

Input x1 1.0 2.0 4.0 2.5

Input x2 1.0 4.0 2.0 2.5

Output y 0.5 2.0 2.0 2.0

Table 3 An illustrative example regarding terminal and exterior

units in Fig. 4

DMU A B C D E F G

Input x1 3.5 1.5 1.0 3.0 4.5 7.5 7.0

Input x2 1.0 2.0 4.0 4.0 6.0 10.0 5.0

Output y 0.6 0.5 0.6 1.5 2.0 2.5 1.5

Table 4 An illustrative example regarding anchor points in Fig. 5

DMU A B C D E M

Input x1 3.0 4.0 5.0 3.5 1.0 3.0

Input x2 0 0 0 1.0 1.5 0

Output y 1.5 2.5 3.0 2.8 1.0 0
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