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Abstract In the usual stochastic frontier model, all firms

are inefficient, because inefficiency is non-negative and the

probability that inefficiency is exactly zero equals zero. We

modify this model by adding a parameter p which equals

the probability that a firm is fully efficient. We can estimate

this model by MLE and obtain estimates of the fraction of

firms that are fully efficient and of the distribution of

inefficiency for the inefficient firms. This model has also

been considered by Kumbhakar et al. (J Econ 172:66–76,

2013). We extend their paper in several ways. We discuss

some identification issues that arise if all firms are ineffi-

cient or no firms are inefficient. We show that results like

those of Waldman (J Econ 18:275–279, 1982) hold for this

model, that is, that the likelihood has a stationary point at

parameters that indicate no inefficiency and that this point

is a local maximum if the OLS residuals are positively

skewed. Finally, we consider problems involved in testing

the hypothesis that p = 0. We also provide some simula-

tions and an empirical example.

Keywords Stochastic frontier model � Finite
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1 Introduction

In the basic stochastic frontier model of Aigner et al.

(1977) and Meeusen and van den Broeck (1977), all firms

are inefficient to some degree. The one-sided error that

represents technical inefficiency has a distribution (for

example, half normal) for which zero is in the support, so

that zero is a possible value, but it is still the case that the

probability is zero that a draw from a half normal exactly

equals zero. This may be restrictive empirically, since it is

plausible, or at least possible, that an industry may contain

a set of firms that are fully efficient.

In this paper we allow the possibility that some firms are

fully efficient. We introduce a parameter p which repre-

sents the probability that a firm is fully efficient. So the

case of p = 0 corresponds to the usual stochastic frontier

model and the case of p = 1 corresponds to the case of full

efficiency (no one-sided error), while if 0\ p\ 1 a frac-

tion p of the firms are fully efficient and a fraction

1 - p are inefficient. This may be important because if

some of the firms actually are fully efficient, the usual

stochastic frontier model is misspecified and can be

expected to yield biased estimates of the technology and of

firms’ inefficiency levels.

This model is a special form of the latent class model

considered by Caudill (2003), Orea and Kumbhakar

(2004), Greene (2005) and others. It has the special fea-

ture that the frontier itself does not vary across the two

classes of firms; only the existence or non-existence of

inefficiency differs. Our model has previously been con-

sidered by Kumbhakar, Parmeter, and Tsionas (2013),

hereafter KPT. See also Grassetti (2011). Our results were

derived without knowledge of the KPT paper, but in this

paper we will naturally focus on our results which are not

in their paper.
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The plan of the paper is as follows. In Sect. 2 we will

present the model and give a brief summary of the basic

results that are also in the KPT paper. These include the

likelihood to be maximized, the form of the posterior

probabilities of full efficiency for each firm, and the

expression for the estimated inefficiencies for each firm. In

Sect. 3 we provide some new results. We discuss identifi-

cation issues. We give the generalization of the results of

Waldman (1982), which establish that there is a stationary

point of the likelihood at a point of full efficiency and that

this point is a local maximum of the likelihood if the OLS

residuals are positively skewed. We propose using logit or

probit models to allow additional explanatory variables to

affect the probability of a firm being fully efficient. We

also discuss the problem of testing the hypothesis that

p = 0. In Sect. 4 we present some simulations, and in Sect.

5 we give an empirical example. Finally, Sect. 6 gives our

conclusions.

Since this paper is in a volume in honor of Lennart

Hjalmarsson, it is appropriate to comment on Lennart’s

contributions to efficiency and productivity analysis, and to

ask whether there is any link between his work and this

paper. Lennart was of course an extremely productive

scholar and one of very broad interests. His most remark-

able paper is arguably Førsund and Hjalmarsson (1974),

‘‘On the Measurement of Productive Efficiency’’. This

paper laid out in careful terms what it is that we seek to

measure, several years before the first non-stone-age tools

were developed to measure it. It is harder to find links

between his work and this paper, because this is an SFA

paper and he was at heart a DEA person. He did some

influential work with Almas Heshmati and Subal Kum-

bhakar comparing the results from different models,

including SFA and DEA, but when it came to actual

applications he generally picked DEA. His applications

were amazing diverse, in terms of industry if not geo-

graphical location: Swedish banking, Swedish dairy plants,

Swedish electrical distribution, Swedish social insurance

offices, Swedish dairy farms, Swedish cement plants, and

the Swedish pork industry, to give a partial list. He did

occasionally peek at data from the rest of the world, for

example banks of other Nordic countries or Columbian

cement plants, but this was rare. The best specific link

between his work and this paper is that in some of his

applications he took interest in the percentage of firms that

were 100 % efficient, which of course occurs naturally in

DEA, or in the percentage of output produced by firms that

were 100 % efficient. For example, in Berg et al. (1993),

he commented on the fact that the percentage of loans

produced by banks that are 100 % efficient was 44 % in

Finland, 52 % in Norway and 72 % in Sweden. So we

would like to think that he would have regarded the topic of

this paper as interesting.

2 The model and basic results

We begin with the standard stochastic frontier model of the

form:

yi ¼ x0ibþ ei; ei ¼ vi � ui; ui � 0: ð1Þ

Here i ¼ 1; . . .; n indexes firms. We have in mind a pro-

duction frontier so that y is typically log output and x is a

vector of functions of inputs. The vi are iid N 0; r2v
� �

; the ui

are iid Nþ 0; r2u
� �

(i.e., half-normal), and x, v, and u are

mutually independent (so x can be treated as fixed). We

will refer to this model as the basic stochastic frontier (or

basic SF) model.

We now define some standard notation. Let / be the

standard normal density, and U be the standard normal cdf.

Let fv and fu represent the densities of v and u:

fv vð Þ ¼ 1
ffiffiffiffiffiffi
2p

p
rv

exp � v2

2r2v

� �
¼ 1

rv
/

v

rv

� �
;

fu uð Þ ¼ 2
ffiffiffiffiffiffi
2p

p
ru

exp � u2

2r2u

� �
¼ 2

ru
/

u

ru

� �
; u� 0:

ð2Þ

Also define k = ru/rv and r2 = ru
2 ? rv

2. This implies that

rv
2 = r2/(1 ? k2) and ru

2 = r2k2/(1 ? k2). Finally, we let

fe represent the density of e ¼ v� u :

fe eð Þ ¼ 2

r
/

e
r

� �
1� U

ek
r

� �	 

: ð3Þ

Now we define the model of this paper. Suppose there is an

unobservable variable zi such that

zi ¼ 1 ui ¼ 0ð Þ ¼ 1 if ui ¼ 0

0 if ui [ 0:

�

Define p ¼ P zi ¼ 1ð Þ ¼ P ui ¼ 0ð Þ:We assume that uijzi ¼
0 is distributed as N?(0,ru

2), that is, half normal. Thus

ui ¼
0 with probability p

Nþ 0; r2u
� �

with probability 1� p:

�

This model contains the parameters b, ru
2, rv

2, and p or

b, k, r2, and p.

We will follow the terminology of KPT and call this

model the ‘‘zero-inefficiency stochastic frontier’’ (ZISF)

model. The name refers to the fact that, in this model, the

event ui = 0 can occur with non-zero frequency. Note that

f ejz ¼ 1ð Þ ¼ fv eð Þ;
f ejz ¼ 0ð Þ ¼ fe eð Þ;

(where fv and fe are defined in (2) and (3) above) and so the

marginal (unconditional) density of e is

fp eð Þ ¼ pfv eð Þ þ 1� pð Þfe eð Þ: ð4Þ

Using this density, we can form the (log) likelihood for the

model:
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ln L b; r2u; r
2
v ; p

� �
¼
Xn

i¼1

ln fp yi � x0ib
� �

: ð5Þ

We will estimate the model by MLE; that is, by maxi-

mizing ln L with respect to b, ru
2, rv

2, and p. Or, alterna-

tively, the model may be parameterized in terms of

b, k, r2, and p, with maximization over that set of

parameters.

When we have estimated the model, we can obtain êi ¼
yi � x0ib̂; an estimate of ei ¼ yi � x0ib: Using Bayes rule, we

can now update the probability that a particular firm is fully

efficient, because ei is informative about that possibility.

That is, we can calculate

P zi ¼ 1jeið Þ ¼ P zi ¼ 1ð Þ f eijzi ¼ 1ð Þ
fp eið Þ ¼ pfv eið Þ

fp eið Þ

¼ pfv eið Þ
pfv eið Þ þ ð1� pÞfe eið Þ: ð6Þ

We will call this the ‘‘posterior’’ probability that firm i is

fully efficient. It is evaluated at p̂; êi and also r̂2u and r̂2v ;
which enter into the densities of fv and fe: We put quotes

around ‘‘posterior’’ because it is not truly the posterior

probability of zi = 1 in a Bayesian sense. (A true Bayesian

posterior would give P zi ¼ 1jyi; xið Þ and would have star-

ted with a prior distribution for the parameters b, ru
2, rv

2,

and p.)

We now wish to estimate (predict) ui for each firm.

Following the logic of Jondrow, Lovell, Materov and

Schmidt (1982) (hereafter JLMS), we define ûi ¼ E uijeið Þ:
Now

E uijeið Þ ¼ EzjeE uijei; zið Þ
¼ P zi ¼ 1jeið ÞE uijei; zi ¼ 1ð Þ
þ P zi ¼ 0jeið ÞE uijei; zi ¼ 0ð Þ

¼ P zi ¼ 0jeið ÞE uijei; zi ¼ 0ð Þ

ð7Þ

since ui: 0 when zi = 1. But E uijei; zi ¼ 0ð Þ is the usual

expression from JLMS, and P zi ¼ 0jeið Þ ¼ 1� P zi ¼ 1jeið Þ
which can be evaluated using Eq. (6) above. Therefore,

ûi ¼ E uijeið Þ

¼ 1� pð Þfe eið Þ
pfv eið Þ þ 1� pð Þfe eið Þ � r�

/ aið Þ
1� U aið Þ � ai

	 

; ð8Þ

where ai ¼ eik=r and r� ¼ rurv=r ¼ kr=ð1þ k2Þ:
A slight extension of this result, which is not in KPT, is

to follow Battese and Coelli (1988) and define technical

efficiency as TE ¼ exp �uð Þ: Correspondingly technical

inefficiency would be 1� TE ¼ 1� exp �uð Þ; which is

only approximately equal to u (for small u). They provide

the expression for E TEjeð Þ: In our model the expression is a

little more complicated. The equivalent of (7) is that

Eðe�ui jeiÞ ¼ Pðzi ¼ 1jeiÞEðe�ui jei; zi ¼ 1Þ
þ Pðzi ¼ 0jeiÞEðe�ui jei; zi ¼ 0Þ:

But now Eðe�ui jei; zi ¼ 1Þ ¼ 1 and so both terms are non-

zero. This leads to the expression

cTEi ¼ E e�ui jeið Þ

¼ 1� pð Þfe eið Þ
pfv eið Þ þ 1� pð Þfe eið Þ �

U l�i
r�
� r�

� �

U l�
i

r�

� � exp
r2�
2
� l�i

� �

þ pfv eið Þ
pfv eið Þ þ 1� pð Þfe eið Þ;

ð9Þ

where l�i ¼ �eir2u=r
2; r� ¼ rurv=r (as above), and corre-

spondingly l�i =r� ¼ �ai where ai ¼ eik=r (as above).

Note that the expression for ûi is just a simple scaling of

the JLMS expression. However, for dTEi ; this is not the

case. dTEi is a scaling of the Battese–Coelli estimate, plus a

non-zero additive term reflecting Pðzi ¼ 1jeiÞEðe�ui jei; zi ¼
1Þ ¼ Pðzi ¼ 1jeiÞ: As in Jondrow et al. (1982), the

expression in either (8) or (9) would need to be evaluated at

the estimated values of the parameters (p, ru
2, and rv

2) and at

êi ¼ yi � x0ib̂:
In this paper we have maximized the likelihood by a

direct optimization (numerical search) with respect to all of

the parameters. An alternative would be the EM algorithm,

which is applicable when the model can be viewed as one

with missing data. In our case the missing data are the zi
that indicate whether or not the firm is fully efficient. If we

knew the zi, the resulting likelihood (the ‘‘complete data

likelihood’’) would be simple. The EM algorithm alternates

between two steps. The first (E) step is to replace the zi by

their expectations given the observed data and the tentative

parameter values. These expectations are just the posterior

probabilities given in (6) above. Then, taking these values

as given, the second (M) step is to maximize the likelihood

with respect to the remaining parameters. Also the value of

p is updated as the average of the posterior probabilities.

This procedure is continued until convergence. Greene

(2012, pp. 1104–1106) gives computational details for the

EM algorithm for a latent class model which is very similar

to our model. A conventional wisdom [e.g. Greene (2012,

pp. 1104–1106)] is that the EM algorithm can be very slow

(many iterations until convergence) but that it is numeri-

cally very stable. In particular it is guaranteed that each

iteration raises the likelihood value. We did not encounter

any serious computational issues in estimating the model,

so in our view the choice of method is mostly a matter of

personal taste and/or software availability.
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3 Extensions of the basic model

We now investigate some extensions of the basic results of

the previous section. Most of the results in this section are

not in KPT.

3.1 Identification issues

Some of the parameters are not identified under certain

circumstances. When p = 1, so that all firms are fully

efficient, ru
2 is not identified. Conversely, when ru

2 = 0, p is

not identified. In fact, the likelihood value is exactly the

same when (i) ru
2 = 0, p = anything as when (ii) p = 1,

ru
2 = anything. More generally, we might suppose that ru

2

and p will be estimated imprecisely when a data set con-

tains little inefficiency, since it will be hard to determine

whether there is little inefficiency because ru
2 is small or

because p is close to one.

This issue of identification is relevant to the problem of

testing the null hypothesis that p = 1 against the alternative

that p\ 1. This is a test of the null hypothesis that all firms

are efficient against the alternative that some fraction

(possibly all) of them are inefficient, and that is an eco-

nomically interesting hypothesis. KPT suggest a likelihood

ratio test of this hypothesis. As they note, the null distri-

bution of their statistic is affected by the fact that the null

hypothesis is on the boundary of the parameter space. They

refer to Chen and Liang (2010, Case 2, p. 608) to justify an

asymptotic distribution of 1/2v0
2 ? 1/2v1

2 for the likelihood

ratio statistic. However, it is not clear that this result applies,

given that one of the parameters (ru
2) is not identified under

the null that p = 1. Specifically, the argument of Chen and

Liang (2010) depends on the existence and asymptotic

normality of the estimator ĝðc0Þ (see p. 606, line 4) where c0
corresponds to p0 (= 1), and where g corresponds to the

other parameters of our model, including ru
2.

A more relevant reference, which KPT note but do not

pursue, is Andrews (2001). This paper explicitly allows the

case in which the parameter vector under the null may lie

on the boundary of the maintained hypothesis and there

may be a nuisance parameter that appears under the

alternative hypothesis, but not under the null. See his

Theorem 4, p. 707, for the relevant asymptotic distribution

result, which unfortunately is considerably more compli-

cated than the simple result (50–50 mixture of chi-squar-

eds) of Chen and Liang (2010).

3.2 A stationary point for the likelihood

For the basic stochastic frontier model, let the parameter

vector be h ¼ ðb0; k; r2Þ0: Then Waldman (1982)

established the following results. First, the log likelihood

always has a stationary point at h� ¼ ðb̂0; 0; r̂2Þ0; where

b̂ ¼ OLS and r̂2 ¼ ðOLSsum of squared residualsÞ=n:
Note that these parameter values correspond to r̂2u ¼ 0; that

is, to full efficiency of each firm. Second, the Hessian

matrix is singular at this point. It is negative semi-definite

with one zero eigenvalue. Third, these parameter values are

a local maximizer of the log likelihood if the OLS residuals

are positively skewed. This is the so-called ‘‘wrong skew

problem’’.

The log likelihood for the ZISF model has a stationary

point very similar to that for the basic stochastic frontier

model. This stationary point is also a local maximum of the

log likelihood if the least squares residuals are positively

skewed.

Theorem 1 Let h ¼ ðb0; k; r2; pÞ0 and let h�� ¼
ðb̂0; 0; r̂2; p̂Þ0; where b̂ ¼ OLS; r̂2 ¼ ðOLS sum of squared

residualsÞ=n; and where p̂ is any value in [0,1]. Then

1. h** is a stationary point of the log likelihood.

2. The Hessian matrix is singular at this point. It is

negative semi-definite with two zero eigenvalues.

3. h** with p̂ 2 0; 1½ Þ is a local maximizer of the log

likelihood function if and only if
Pn

i¼1 ê
3
i[ 0; where

êi ¼ yi � x0ib̂ is the OLS residual.

4. h** with p̂ ¼ 1 is a local maximizer of the log

likelihood function if
Pn

i¼1 ê
3
i[ 0:

Proof See Appendix. h

As is typically done for the basic stochastic frontier

model, we will presume that h** is the global maximizer of

the log likelihood when the residuals have positive

(‘‘wrong’’) skew. Note that at h**, we have k̂ ¼ 0 or

equivalently r̂2u ¼ 0; and p is not identified when ru
2 = 0.

We get the same likelihood value for any value of p. In our

simulations (in Sect. 4) we will set p̂ ¼ 1 in the case of

wrong skew, since p̂ ¼ 1 is another way of reflecting full

efficiency. However, for a given data set, the value of p̂

does not matter when h = h**.

Since plim 1=nð Þ
P

ê3i
� �

¼ E ei � E eið Þð Þ3¼ r3u
ffiffiffiffiffiffiffiffi
2=p

p

1� pð Þ �4p2 þ ð8� 3pÞpþ p� 4ð Þ=p� 0 for any p 2
½0; 1�; as the number of observations increases, the

probability of a positive third moment of the OLS residuals

goes to zero asymptotically. In a finite sample, the proba-

bility of a positive third moment increases when k is small

and/or p is near 0 or 1. See Table 1 below. The entries in

Table 1 are based on simulations with 100,000 replica-

tions, with ru ¼ 1; k ¼ ru=rv; k 2 0:5; 1; 2f g; and p 2
0; 0:1; . . .;f 0:9g; for sample sizes 50,100,200, and 400.
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3.3 Models for the distribution of ui

The ZISF model can be extended by allowing the distri-

bution of ui to depend on some observable variables wi. For

example, in our empirical analysis of Sect. 5, the wi will

include variables like the age and education of the farmer

and the size of his household. These variables can be

assumed to affect either P(zi = 1) or f ðuijzi ¼ 0Þ or both.
First consider the case in which we assume that wi

affects the distribution of ui for the inefficient firms. A

general assumption would be that the distribution of ui
conditional on wi and on zi = 0 is N?(li, ri

2) where li and/
or ri

2 depend on wi. For example, in Sect. 5 we will assume

the RSCFG model of Reifschneider and Stevenson (1991),

Caudill and Ford (1993) and Caudill et al. (1995), under

the specific assumptions that li = 0 and r2i ¼ exp ðw0
icÞ:

Another possible model is the KGMHLBC model of

Kumbhakar et al. (1991), Huang and Liu (1994) and Bat-

tese and Coelli (1995), with ri
2 = ru

2 constant and with

li ¼ w0
iw or li ¼ c exp ðw0

iwÞ: Wang (2002) proposes

parameterizing both li and ri
2. See also Alvarez et al.

(2006).

A second case is the one in which we assume that wi

affects P(zi = 1). For example, we could assume a logit

model:

P zi ¼ 1jwið Þ ¼ exp ðw0
idÞ

1þ exp ðw0
idÞ

:

KPT, p. 68, make the same suggestion. A probit model

would be another obvious possibility.

Finally, we can consider a more general model in which

both Pðzi ¼ 1jwiÞ and f ðuijzi ¼ 0;wiÞ depend on wi, as

above. We will estimate such a model in our empirical

section.

3.4 Testing the hypothesis that p = 0

In this section, we discuss the problem of testing the null

hypothesis H0: p = 0 against the alternative HA:p[ 0. The

null hypothesis is that all firms are inefficient, so the basic

stochastic frontier model applies. The alternative is that

some firms are fully efficient and so the ZISF model is

needed.

It is a standard result that, under certain regularity

conditions, notably that the parameter value specified by

the null hypothesis is an interior point of the parameter

space, the likelihood (LR), Lagrange multiplier (LM), and

Wald tests all have the same asymptotic v2 distribution.

However, in our case p cannot be negative, and therefore

the null hypothesis that p = 0 lies on the boundary of the

parameter space. This is therefore a non-standard problem.

Unlike the case of testing the hypothesis that p = 1,

however, there is no problem with the identification of the

other parameters (nuisance parameters) b, ru
2, and rv

2, or

b, k, and r2. We need to restrict ru
2[ 0 and rv

2[ 0 so that

the nuisance parameters are in the interior of the parameter

space, and also because p would not be identified if ru
2 = 0.

However, with these modest restrictions, this is only a

mildly non-standard problem, which has been discussed by

Rogers (1986), Self and Liang (1987), and Gouriéroux and

Monfort (1995, chapter 21), for example.

We consider five test statistics: the likelihood ratio

(LR), Wald, Lagrange multiplier (LM), modified

Lagrange multiplier (modified LM), and Kuhn–Tucker

(KT) tests. All of these except the LM test will have

asymptotic distributions that are different from the usual

(v1
2) distribution.

We will assume that the likelihood function LnðhÞ sat-

isfies the usual conditions,

Table 1 Frequency of a positive third moment of the OLS residuals

n = 50 n = 100 n = 200 n = 400

k = 0.5 k = 1 k = 2 k = 0.5 k = 1 k = 2 k = 0.5 k = 1 k = 2 k = 0.5 k = 1 k = 2

p = 0 0.476 0.363 0.114 0.463 0.300 0.038 0.447 0.224 0.006 0.421 0.139 0.000

p = 0.1 0.475 0.352 0.102 0.460 0.286 0.031 0.443 0.210 0.003 0.416 0.123 0.000

p = 0.2 0.472 0.338 0.080 0.456 0.266 0.019 0.438 0.185 0.001 0.407 0.101 0.000

p = 0.3 0.469 0.322 0.058 0.451 0.245 0.011 0.431 0.161 0.000 0.398 0.079 0.000

p = 0.4 0.466 0.308 0.042 0.447 0.226 0.006 0.424 0.141 0.000 0.391 0.062 0.000

p = 0.5 0.465 0.300 0.034 0.444 0.215 0.004 0.421 0.129 0.000 0.386 0.053 0.000

p = 0.6 0.466 0.299 0.033 0.445 0.215 0.004 0.420 0.128 0.000 0.387 0.052 0.000

p = 0.7 0.468 0.311 0.043 0.449 0.229 0.006 0.427 0.143 0.000 0.394 0.063 0.000

p = 0.8 0.474 0.342 0.076 0.458 0.268 0.017 0.439 0.185 0.001 0.414 0.098 0.000

p = 0.9 0.485 0.399 0.178 0.474 0.348 0.079 0.463 0.280 0.019 0.446 0.200 0.001
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1
ffiffiffi
n

p nðh0Þ
oh

!d N 0; I 0ð Þ;

1

n

o2Lnðh0Þ
ohoh

!p H0 ¼ �I 0;

where h ¼ ðb0; ru; rv; pÞ0; and the parameters other than

p are away from the boundary of their parameter spaces.

Define the restricted estimator ð~hÞ and the unrestricted

estimator ðĥÞ:
~h ¼ argmax

ru � 0;rv � 0;p¼0

ln LnðhÞ;

ĥ ¼ argmax
ru � 0;rv � 0;0� p� 1

ln LnðhÞ:

We also define li ¼ ln f ðeiÞ; ŝi ¼ oliðĥÞ=oh; ~si ¼ olið~hÞ=
oh; ĥi ¼ o2liðĥÞ=ohoh0; and ~hi ¼ o2lið~hÞ=ohoh0:

3.4.1 LR test

The LR statistic when testing H0: p = 0 is nLR ¼
2ðln LnðĥÞ � ln Lnð~hÞÞ: Under standard regularity condi-

tions, the asymptotic distribution of nLR is a mixture of v0
2

and v1
2, with mixing weights 1/2, where v0

2 is defined as the

point mass distribution at zero. That is nLR!d 1=2v20 þ
1=2v21: This follows, for example, from Chen and Liang

(2010), as cited by KPT.

3.4.2 Wald test

The Wald statistic for H0 : p = 0 is nW ¼ p̂2=se p̂ð Þ2: Note
that seðp̂Þ2 can be computed using the outer product of the

score form of the variance matrix of ĥ; ½ð
Pn

i¼1 ŝiŝ
0
iÞ
�1�; the

Hessian form, ½ð
Pn

i¼1 �ĥiÞ�1�; or the Robust form,

½ð
Pn

i¼1 �ĥiÞ�1ð
Pn

i¼1 ŝiŝ
0
iÞð
Pn

i¼1 �ĥiÞ�1�: As with the LR

statistic, nW!d 1=2v20 þ 1=2v21: Note that the non-standard

nature of this result means that the ‘‘significance’’ of an

estimated p̂ from the ZISF model cannot be assessed using

standard results.

3.4.3 LM test

The LM statistic for H0 : p = 0 is nLM ¼
ð
Pn

i¼1 ~siÞ
0 ~M�1ð

Pn
i¼1 ~siÞ: ~M can be either ½ð

Pn
i¼1 ~si~s

0
iÞ� or

½ð
Pn

i¼1 �~hiÞ�; in either case evaluated at ~h: Unlike the other
statistics considered here, the LM statistic has the usual v1

2

distribution. It ignores the one-sided nature of the

alternative, because it rejects for a large (in absolute value)

positive or negative value of ~si: As pointed out by Rogers

(1986), this may result in a loss in power relative to tests

that take the one-sided nature of the alternative into

account.

3.4.4 Modified LM test

The LM statistic has the usual v1
2 distribution because it

does not take account of the one-sided nature of the

alternative. By taking account of the one-sided nature of

the alternative, the LM test might have better power. The

Modified LM statistic proposed by Rogers (1986) is

motivated by this point. The modified LM statistic is:

nmodified LM ¼ nLM; if
Pn

i¼1 ~si [ 0

0; otherwise:

�

In the modified LM statistic, a positive score is taken as

evidence against the null and in favor of the alternative

p[ 0, whereas a negative score is not. So a negative score

is simply set to zero. The asymptotic distribution of

nmodified LM is 1/2v0
2 ? 1/2v1

2.

3.4.5 KT test

Another variant of the score test statistic that takes account

of the one-sided nature of the alternative is the KT (Kuhn–

Tucker) statistic proposed by Gouriéroux et al. (1982). The

KT statistic for H0: p = 0 is:

nKT ¼
Xn

i¼1

~si �
Xn

i¼1

ŝi

 !0

~M�1
Xn

i¼1

~si �
Xn

i¼1

ŝi

 !

:

Here, ~si ¼ ið~hÞ=oh and ŝi ¼ iðĥÞ=oh; as given just before

the beginning of Sect. 3.4.1. Also ~M can be either
Pn

i¼1 ~si~s
0
i

(OPG form) or
Pn

i¼1ð�~hiÞ (Hessian form). When p̂ ¼ 0;

which occurs with probability one half under the null,Pn
i¼1 ~si ¼

Pn
i¼1 ŝi; and the statistic will equal zero.

Otherwise, when p̂[ 0;
Pn

i¼1 ŝi ¼ 0 and the test statistic

has the usual v1
2 distribution. Therefore,

nKT!d 1=2v20 þ 1=2v21:

3.4.6 The wrong skew problem, revisited

When the OLS residuals are positively skewed

ð
Pn

i¼1 ê
3
i [ 0Þ; we have r̂2u ¼ 0 (or equivalently, k̂ ¼ 0)

and p̂ is not well defined. Also the information matrix,

whether evaluated at ĥ or ~h; is singular. Specifically,
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All the matrices above are singular for any p̂ 2 ½0; 1�:
Therefore, when the third moment of the OLS residuals is

positive, only the LR statistic can be defined, and equals

zero. It remains to decide if we should reject the null

hypothesis or not when the OLS residuals have wrong

skew. Clearly, the LR test will not reject the null hypoth-

esis, since the statistic equals zero under wrong skew. But

for the other tests, the statistic is undefined and it is not

clear what to conclude. If we consider the wrong skew

cases as indicating that all firms are efficient, then it would

be reasonable to reject the null hypothesis. However, as a

practical matter, whether we reject the null hypothesis or

not does not affect anything, because the estimated model

whether p = 0 or not collapses to the same model. It might

be reasonable to simply say that p is not identified with

incorrectly skewed OLS residuals. For a given data set,

both the null and the alternative hypothesis would lead to

same results.

Assuming that ru
2[ 0, the wrong skew problem occurs

with a probability that goes to zero asymptotically. How-

ever, as shown in Table 1, it can occur with non-trivial

probability in finite samples. Also, the discussion above

may be relevant even when the data do not have the wrong

skew problem. The log likelihood has a stationary point at

h** regardless of the skew of the residuals. In the wrong

skew case, the likelihood is perfectly flat in the p direction

with b̂ ¼ OLS; k̂ ¼ 0; and r̂2 ¼ 1=nSSE: In the correct

skew case, this is not true, but when k is small, we expect

that the partial of log likelihood with respect to p (evalu-

ated at the MLE of the other parameters) would often be

small in the vicinity of p = 0, so that the LM test and its

variants might have low power. We will investigate this

issue in the simulations of the next section.

3.5 Panel data

A complete treatment of this model with panel data is

beyond the scope of this paper but we will make a few

general comments. Now we have data yit; xit; zit; i ¼
1; . . .; n; t ¼ 1; . . .; T: We will think in terms of n being

large and T being small (for example, 43 rice farms each

observed for eight years).

If T is small, it is feasible to let any of the parameters of

the model be different for different values of t. For

example, we might let p be different for different time
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ĥi ¼

�
Pn

i¼1

xix
0
i

r̂2v
1� p̂ð Þ

ffiffi
2
p

q
1
r̂2v

Pn
i¼1 xi 0 0

1� p̂ð Þ
ffiffi
2
p

q
1
r̂2v

Pn
i¼1 x

0
i � 1� p̂ð Þ22p n

r̂2v
0 0

0 0 �2n
r̂2v

0

0 0 0 0

0

BBBBBB@

1

CCCCCCA

Xn

i¼1

~hi ¼

�
Pn

i¼1
xix

0
i

~r2v

ffiffi
2
p

q
1
~r2v

Pn
i¼1 xi 0 0

ffiffi
2
p

q
1
~r2v

Pn
i¼1 x

0
i �2

p
n
~r2v

0 0

0 0 �2n
~r2v

0

0 0 0 0

0

BBBBBB@

1

CCCCCCA

:

J Prod Anal (2015) 43:327–349 333

123



T
a
b
le

2
B
as
ic

S
F
m
o
d
el

v
er
su
s
Z
IS
F
m
o
d
el
,
al
l
re
p
li
ca
ti
o
n
s:

n
=

2
0
0

B
as
ic

S
F
m
o
d
el

Z
IS
F
m
o
d
el

B
as
ic

S
F
m
o
d
el

Z
IS
F
m
o
d
el

B
as
ic

S
F
m
o
d
el

Z
IS
F
m
o
d
el

m
ea
n

b
ia
s

m
se

m
ea
n

b
ia
s

m
se

m
ea
n

b
ia
s

m
se

m
ea
n

b
ia
s

m
se

m
ea
n

b
ia
s

m
se

m
ea
n

b
ia
s

m
se

k
¼

1
r
u
¼

1
;r

v
¼

1
ð

Þ;
p
¼

0
k
¼

2
r
u
¼

1
;r

v
¼

0
:5

ð
Þ;
p
¼

0
k
¼

5
r u

¼
1
;r

v
¼

0
:2

ð
Þ;
p
¼

0

b 0
0
.8
7

-
0
.1
3

0
.2
0

0
.6
0

-
0
.4
0

0
.2
9

0
.9
8

-
0
.0
2

0
.0
2

0
.7
1

-
0
.2
9

0
.1
4

1
.0
0

0
.0
0

0
.0
0

0
.8
5

-
0
.1
5

0
.0
4

r u
0
.8
4

-
0
.1
6

0
.3
0

0
.9
1

-
0
.0
9

0
.4
0

0
.9
8

-
0
.0
2

0
.0
3

0
.9
7

-
0
.0
3

0
.0
5

1
.0
0

0
.0
0

0
.0
1

0
.9
7

-
0
.0
3

0
.0
1

r v
0
.9
9

-
0
.0
1

0
.0
2

1
.0
2

0
.0
2

0
.0
2

0
.5
0

0
.0
0

0
.0
1

0
.5
4

0
.0
4

0
.0
1

0
.1
9

-
0
.0
1

0
.0
0

0
.2
3

0
.0
3

0
.0
0

p
–

0
.5
3

0
.5
3

0
.4
3

–
0
.3
3

0
.3
3

0
.1
9

–
0
.1
6

0
.1
6

0
.0
5

k
0
.9
3

-
0
.0
7

0
.4
4

0
.9
5

-
0
.0
5

0
.4
5

2
.0
8

0
.0
8

0
.4
8

1
.8
9

-
0
.1
1

0
.4
1

5
.6
1

0
.6
1

7
.0
4

4
.7
9

-
0
.2
1

6
.2
1

r
1
.3
9

-
0
.0
2

0
.0
4

1
.4
7

0
.0
6

0
.1
2

1
.1
1

-
0
.0
1

0
.0
1

1
.1
2

0
.0
0

0
.0
3

1
.0
2

0
.0
0

0
.0
0

1
.0
0

-
0
.0
2

0
.0
1

lo
g
L

-
3
1
3
.0
0

-
3
1
2
.8
5

-
2
2
9
.9
3

-
2
2
9
.6
5

-
1
7
6
.4
3

-
1
7
6
.0
6

Ê
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periods. This creates more parameters to estimate but no

conceptual issues of estimation.

Let the errors be vit and uit and let eit ¼ vit � uit; the

obvious generalization of (1) above. Then the density of eit
is still as given in (4), and we can form the ‘‘likelihood’’ in

(5), except that the sum would now be over t ¼ 1; . . .; T as

well as over i. This would commonly be called a quasi-

likelihood. It is in fact the likelihood if the vit and uit are

independent and identically distributed (iid) over t as well

as i, in which case eit is also iid over t as well as i. How-

ever, if eit is not independent over t, then the true likelihood
would depend on the joint distribution of ðei1; . . .; eiTÞ; and
(5) is just an approximation that does not reflect the

dependence over t of the eit: It is a standard econometric

result that maximization of the quasi-likelihood yields a

consistent estimate, although it is not efficient unless we

really do have independence over t, and the con-

ventionally-calculated standard errors of the estimates are

wrong. Correct standard errors comes from the so-called

‘‘sandwich form’’ for robust standard errors. See e.g.,

Hayashi (2000, section 8.7, p. 544).

It is hard to specify a joint distribution for ðei1; . . .; eiTÞ
because there is no natural joint distribution when the

marginal distributions are non-normal. This problem is

discussed, for the simpler case of the standard SFA model,

by Amsler et al. (2014). They specify a joint distribution

using a copula. This leads to conceptual and computational

issues, for which the reader is referred to their paper. In the

present context the quasi-MLE approach is probably the

best we can reasonably hope for.

4 Simulations

We conducted simulations in order to investigate the finite

sample performance of the ZISF model, and to compare it

to the performance of the basic stochastic frontier model.

We are interested both in parameter estimation and in the

performance of tests of the hypothesis p = 0.

We consider a very simple data generating process: yi ¼
bþ ei; where as in Sect. 2 above, ei ¼ vi � ui and ui is half-

normal with probability 1 - p and ui = 0 with probability

p. We pick n = 200 and 500, b = 1, and ru = 1. We

consider p = 0, 0.25, 0.5, and 0.75, and k = 1, 2, and 5

(i.e., rv = 1, 0.5, and 0.2). Our simulations are based on

1,000 replications. Because the MLE’s were sensitive to

the starting values used, we used several sets of starting

values and chose the results with the highest maximized

likelihood value.

Our experimental design was similar to that in KPT.

They included a non-constant regressor, but in our exper-

iments that made little difference. A more substantialT
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difference is that we used n = 200 and 500 whereas they

used n = 500 and 1,000.

There were some technical problems related to the facts

that ru
2 is not identified when p = 1, and p is not identified

when ru
2 = 0. We define p̂ ¼ 1 when r̂u ¼ 0 and r̂u ¼ 0

when p̂ ¼ 1: This would imply that when the OLS residuals

have incorrect skew, the MLE would be h** with p̂ ¼ 1: It

was very seldom the case that r̂2u ¼ 0 or p̂ ¼ 1 other than in

the wrong skew cases.

4.1 Parameter estimation

Table 2 contains the mean, bias, and MSE of the various

parameter estimates, for the basic stochastic frontier model

and for the ZISF model, for the case that n = 200. We also

present the mean, bias, and MSE of the technical ineffi-

ciency estimates, and the mean of the ‘‘posterior’’ proba-

bilities of full efficiency.

Unsurprisingly, the basic stochastic frontier model per-

forms poorly except when p = 0 (in which case it is cor-

rectly specified). This is true for all three values of k. We

over-estimate technical inefficiency, because we act as if

all firms are inefficient, whereas in fact they are not. This

bias is naturally bigger when p is bigger.

For the ZISF model, the results depend strongly on the

value of k. When k = 1, the results are not very good. Note

in particular the mean values of p̂; which are 0.53, 0.49,

0.51, and 0.57 for p = 0, 0.25, 0.50, and 0.75, respectively.

It is disturbing that the mean estimate of p does not appear

to depend on the true value of p.

These problems are less severe for larger values of k.
The mean value of p̂ when p = 0 is 0.33 for k = 2 and

0.16 for k = 5. The estimates are considerably better for

the other values of p. So basically the model performs

reasonably well when k is large enough and p is not too

close to zero.

Table 3 is similar to Table 2 except that it reports the

results only for the cases of correct skew (i.e., wrong skew

cases are not included). This makes almost no difference

for k = 2 or 5, because there are very few wrong skew

cases when k = 2 or 5. For k = 1, it matters more. How-

ever, the conclusions given above really do not change.

Table 4 contains the same information as Table 2,

except that now we have n = 500 rather than n = 200. The

results are better for n = 500 than for n = 200, but a larger

sample size does not really solve the problems that the

ZISF model has in estimating p when p = 0 and/or k = 1.

For example, when p = 0, the mean p̂ for k = 1, 2, 5 is

0.53,0.33,0.16 when n = 200 and 0.50, 0.30, 0.12 when

n = 500. Reading the table in the other direction, when

k = 1, the mean p̂ for p = 0, 0.25, 0.5, 0.75 is

0.53,0.49,0.51,0.57 when n = 200 and 0.50,0.46,0.48,0.58T
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when n = 500. So again there are problems in estimating

p when p = 0 or when k is small.

It is perhaps not surprising that we encounter problems

when we estimate the ZISF model when the true value of

p is zero. Essentially, we are estimating a latent-class

model with more classes than there really are. It is true that

the class with zero probability contains no new parameters.

If it did, they would not be identified and the results would

presumably be much worse.

These results do not always agree with the summary

of the results in KPT. KPT concentrate on the technical

inefficiency estimates, and the only results they show

explicitly for the parameter estimates (their Figure 3) are

for n = 1,000, and k = 5 and p = 0.25. We did suc-

cessfully replicate their results, but n = 1,000 and k = 5

is a very favorable parameter configuration. In their Sect.

3.1, they say the following about the case when the true

p equals zero: ‘‘The ML estimator from the ZISF model

is found to perform quite well. … Estimates of p were

close to zero.’’ It is not clear what parameter configura-

tion this refers to, but in our simulations this is not true

except when k = 5. For smaller values of k, the ZISF

estimates of p when the true p = 0 are not very close to

zero.

4.2 Testing the hypothesis p = 0

We now turn to the results of our simulations that are

designed to investigate the size and power properties of

the tests of the hypothesis p = 0, as discussed in Sect.

3.4 above. This hypothesis is economically interesting,

and it is also practically important to know whether

p = 0, since our model does not appear to perform well

in that case. We would like to be able to recognize cases

when p = 0 and just use the basic SF model in these

cases.

The data generating process and parameter values for

these simulations are as discussed above (in the beginning

of Sect. 4). Specifically, the simulations are for n = 200

and n = 500.

We begin with the likelihood ratio (LR) test, which is

the test that we believed ex ante would be most reliable.

The results for n = 200 are given in Table 5. For each

value of k and p, we give the mean of the statistic (over the

full set of 1,000 replications), the number of rejections and

the frequency of rejection. The rejection rates in the rows

corresponding to p = 0 are the size of the test, whereas the

rejection rates in the rows corresponding to the positive

values of p represent power.

Look first at the set of results for all replications. The

size of the test is reasonable. It is undersized for k = 1 and

approximately correctly sized for k = 2 and 5. However,T
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the power is disappointing, except when k is large. There is

essentially no power, even against the alternative p = 0.75,

when k = 1. When k = 2, power is 0.60 against p = 0.75,

but only 0.24 against p = 0.50 and 0.06 against p = 0.25.

Power is more reasonable when k = 5.

Table 6 gives the same results for n = 500. Increasing

n has little effect on the size of the test, but it improves the

power. Power is still low when k = 1 or when k = 2 and

p is not large.

In either case (n = 200 or 500), looking separately at

the correct-skew cases does not change our conclusions.

In Tables 7 and 8, we give results for the Wald test, for

n = 200 and 500, respectively. Since the Wald test is

undefined in wrong-skew cases, we show the results only

Table 5 Likelihood ratio test, n = 200

All Correct skew Incorrect skew

Mean Rejection Total Mean Rejection Total Mean Rejection Total

k = 1

p = 0 0.29 21 (0.02) 1,000 0.38 21 (0.03) 776 0.00 0 (0.00) 224

p = 0.25 0.32 20 (0.02) 1,000 0.37 20 (0.02) 842 0.00 0 (0.00) 158

p = 0.5 0.46 40 (0.04) 1,000 0.53 40 (0.05) 878 0.00 0 (0.00) 122

p = 0.75 0.57 53 (0.05) 1,000 0.67 53 (0.06) 850 0.00 0 (0.00) 150

k = 2

p = 0 0.56 42 (0.04) 1,000 0.56 42 (0.04) 994 0.00 0 (0.00) 6

p = 0.25 0.66 63 (0.06) 1,000 0.66 63 (0.06) 999 0.00 0 (0.00) 1

p = 0.5 1.87 244 (0.24) 1,000 1.87 244 (0.24) 1,000 – 0

p = 0.75 4.81 596 (0.60) 1,000 4.81 596 (0.60) 999 0.00 0 (0.00) 1

k = 5

p = 0 0.73 60 (0.06) 999? 0.73 61 (0.06) 999? – 0

p = 0.25 2.76 393 (0.39) 996? 2.76 395 (0.40) 996? – 0

p = 0.5 19.82 988 (0.99) 997? 19.82 988 (0.99) 997? – 0

p = 0.75 49.98 997 (1.00) 997? 49.98 997 (1.00) 997? – 0

? Some iterations dropped due to r̂v being too small such that k̂ is not well defined

Table 6 Likelihood ratio test, n = 500

All Correct skew Incorrect skew

Mean Rejection Total Mean Rejection Total Mean Rejection Total

k = 1

p = 0 0.39 30 (0.03) 1,000 0.45 30 (0.03) 879 0.00 0 (0.00) 121

p = 0.25 0.41 28 (0.03) 1,000 0.45 28 (0.03) 921 0.00 0 (0.00) 79

p = 0.5 0.60 48 (0.05) 1,000 0.62 48 (0.05) 964 0.00 0 (0.00) 36

p = 0.75 0.95 102 (0.10) 1,000 1.01 102 (0.11) 939 0.00 0 (0.00) 61

k = 2

p = 0 0.66 56 (0.06) 1,000 0.66 56 (0.06) 1,000 – 0

p = 0.25 0.77 63 (0.06) 1,000 0.77 63 (0.06) 1,000 – 0

p = 0.5 3.19 461 (0.46) 1,000 3.19 461 (0.46) 1,000 – 0

p = 0.75 10.76 911 (0.91) 1,000 10.76 911 (0.91) 1,000 – 0

k = 5

p = 0 0.75 70 (0.07) 1,000 0.75 70 (0.07) 1,000 – 0

p = 0.25 5.55 689 (0.69) 1,000 5.55 689 (0.69) 1,000 – 0

p = 0.5 47.94 1,000 (1.00) 1,000 47.94 1,000 (1.00) 1,000 – 0

p = 0.75 124.42 1,000 (1.00) 1,000 124.42 1,000 (1.00) 1,000 – 0
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for the correct-skew cases. We consider separately the

OPG, Hessian, and Robust forms of the test, as defined in

Sect. 3.4.2 above. Regardless of which form of the test is

used, the test is considerably over-sized. This is true for

both sample sizes. The problem is worst for the Robust

form and least serious for the OPG form, but there are

serious size distortions in all three cases. Based on these

results, the Wald test is not recommended.

Table 7 Wald test, n = 200

OPG Hessian Robust

Mean Rejection Total Mean Rejection Total Mean Rejection Total

k = 1

p = 0 5.92 128 (0.17) 773* 57.97 189 (0.24) 776 143.75 546 (0.70) 776

p = 0.25 4.42 147 (0.18) 838* 36.90 215 (0.26) 842 104.61 592 (0.70) 842

p = 0.5 6.98 179 (0.21) 873* 40.61 270 (0.31) 878 135.57 629 (0.72) 878

p = 0.75 9.74 247 (0.29) 849* 63.53 334 (0.39) 850 146.11 607 (0.71) 850

k = 2

p = 0 6.18 215 (0.22) 994 21.23 290 (0.29) 994 45.46 620 (0.62) 994

p = 0.25 4.26 264 (0.26) 999 10.21 320 (0.32) 997	 19.28 618 (0.62) 999

p = 0.5 10.91 580 (0.58) 1,000 14.37 639 (0.64) 1,000 19.46 735 (0.73) 1,000

p = 0.75 45.72 856 (0.86) 999 61.79 883 (0.88) 998	 80.71 906 (0.91) 999

k = 5

p = 0 3.25 266 (0.27) 999? 3.58 315 (0.32) 996	? 5.03 490 (0.49) 999?

p = 0.25 8.63 696 (0.70) 998? 9.16 725 (0.73) 997	 ? 9.90 727 (0.73) 998?

p = 0.5 59.73 997 (1.00) 998? 60.75 997 (1.00) 998? 61.12 996 (1.00) 998?

p = 0.75 247.62 1,000 (1.00) 1,000 254.99 1,000 (1.00) 1,000 257.77 1,000 (1.00) 1,000

* Some iterations are dropped due to a singular OPG variance matrix
	 Some of the iterations where MLE is at the boundary (p̂ ¼ 0) are dropped due to not negative definite Hessian

? Some iterations dropped due to r̂v being too small such that k̂ is not well defined

Table 8 Wald test, n = 500

OPG Hessian Robust

Mean Rejection Total Mean Rejection Total Mean Rejection Total

k = 1

p = 0 12.05 201 (0.23) 878* 112.28 250 (0.29) 877	 286.90 620 (0.71) 878�
p = 0.25 10.34 203 (0.22) 921 94.59 264 (0.29) 921 215.21 639 (0.69) 921

p = 0.5 12.69 275 (0.29) 963* 47.99 347 (0.36) 964 121.96 661 (0.69) 964

p = 0.75 24.74 368 (0.39) 938* 120.86 447 (0.48) 937	 258.85 678 (0.72) 939

k = 2

p = 0 5.32 262 (0.26) 1,000 26.94 310 (0.31) 1,000 47.13 618 (0.62) 1,000

p = 0.25 3.94 306 (0.31) 1,000 0.47 373 (0.37) 999	 8.46 642 (0.64) 1,000

p = 0.5 17.10 800 (0.80) 1,000 19.10 831 (0.83) 1,000 22.49 837 (0.84) 1,000

p = 0.75 93.38 988 (0.99) 1,000 105.45 987 (0.99) 1,000 121.46 983 (0.98) 1,000

k = 5

p = 0 3.02 282 (0.28) 1,000 3.24 311 (0.31) 1,000 4.79 496 (0.50) 1,000

p = 0.25 17.87 890 (0.89) 1,000 18.79 894 (0.89) 1,000 20.02 893 (0.89) 1,000

p = 0.5 142.55 1,000 (1.00) 1,000 143.99 1,000 (1.00) 1,000 144.73 1,000 (1.00) 1,000

p = 0.75 609.81 1,000 (1.00) 1,000 618.15 1,000 (1.00) 1,000 621.49 1,000 (1.00) 1,000

* Some iterations are dropped due to a singular OPG variance matrix
	 Some of the iterations where MLE is at the boundary (p̂ ¼ 0 or p̂ ¼ 1) are dropped due to not negative definite Hessian

� One iteration dropped due to p̂ ¼ 1
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In Tables 9 and 10, we give the results for the score-

based tests (LM, modified LM, and KT). Once again the

tests are undefined for wrong-skew cases so we report

results only for the correct-skew cases. The (two-sided)

LM test is the best of the three. It shows moderate size

distortions and no power when k = 1, but only modest size

distortions when k = 2 or 5. The modified LM test has

bigger size distortions and less power when k = 2 or 5.

The KT test has the largest size distortions and is therefore

not recommended.

Our results are easy to summarize. The likelihood ratio

test is the best of the five tests we have considered, at least

for these parameter values. It is the only one of the tests

that does not over-reject the true null that p = 0. However,

Table 9 Score-based tests, n = 200

LM Modified LM KT

Mean Rejection Total Mean Rejection Total Mean Rejection Total

k = 1

p = 0 1.83 99 (0.13) 776 1.47 122 (0.16) 776 1.82 146 (0.19) 776

p = 0.25 1.83 101 (0.12) 840* 1.48 135 (0.16) 840* 1.83 160 (0.19) 840*

p = 0.5 1.74 112 (0.13) 878 1.24 116 (0.13) 878 1.74 161 (0.18) 878

p = 0.75 1.74 100 (0.12) 849* 1.07 88 (0.10) 849* 1.74 152 (0.18) 849*

k = 2

p = 0 1.30 73 (0.07) 994 0.94 105 (0.11) 994 1.29 135 (0.14) 994

p = 0.25 1.20 75 (0.08) 999 0.77 96 (0.10) 999 1.19 130 (0.13) 999

p = 0.5 1.69 140 (0.14) 1,000 0.18 16 (0.02) 1,000 1.68 222 (0.22) 1,000

p = 0.75 3.82 422 (0.42) 999 0.04 3 (0.00) 999 3.82 531 (0.53) 999

k = 5

p = 0 1.16 58 (0.06) 999? 0.71 79 (0.08) 999? 1.11 113 (0.11) 999?

p = 0.25 1.78 139 (0.14) 996? 0.12 7 (0.01) 996? 1.73 216 (0.22) 996?

p = 0.5 13.10 961 (0.96) 997? 0.00 0 (0.00) 997? 13.10 978 (0.98) 997?

p = 0.75 29.46 996 (1.00) 997? 0.00 0 (0.00) 997? 29.46 996 (1.00) 997?

* Some iterations are dropped due to a singular OPG variance matrix

? Some iterations dropped due to r̂v being too small such that k̂ is not well defined

Table 10 Score-based tests, n = 500

LM Modified LM KT

Mean Rejection Total Mean Rejection Total Mean Rejection Total

k = 1

p = 0 1.39 84 (0.10) 878* 0.99 104 (0.12) 878* 1.39 130 (0.15) 878*

p = 0.25 1.36 81 (0.09) 921 0.98 100 (0.11) 921 1.36 127 (0.14) 921

p = 0.5 1.26 73 (0.08) 964 0.70 79 (0.08) 964 1.26 125 (0.13) 964

p = 0.75 1.37 86 (0.09) 939 0.45 50 (0.05) 939 1.37 151 (0.16) 939

k = 2

p = 0 1.21 76 (0.08) 1,000 0.79 89 (0.09) 1,000 1.20 127 (0.13) 1,000

p = 0.25 1.07 48 (0.05) 1,000 0.62 68 (0.07) 1,000 1.06 107 (0.11) 1,000

p = 0.5 2.59 249 (0.25) 1,000 0.03 2 (0.00) 1,000 2.57 370 (0.37) 1,000

p = 0.75 8.14 795 (0.80) 1,000 0.00 0 (0.00) 1,000 8.14 887 (0.89) 1,000

k = 5

p = 0 1.06 56 (0.06) 1,000 0.62 69 (0.07) 1,000 0.97 109 (0.11) 1,000

p = 0.25 2.97 280 (0.28) 1,000 0.03 1 (0.00) 1,000 2.92 415 (0.41) 1,000

p = 0.5 30.94 1,000 (1.00) 1,000 0.00 0 (0.00) 1,000 30.94 1,000 (1.00) 1,000

p = 0.75 69.77 1,000 (1.00) 1,000 0.00 0 (0.00) 1,000 69.77 1,000 (1.00) 1,000

* Some iterations are dropped due to a singular OPG variance matrix

342 J Prod Anal (2015) 43:327–349

123



it does not have much power. That is, we will have trouble

rejecting the hypothesis that the basic SF model is correctly

specified, even if the ZISF model is needed and p is not

close to zero. The exception to this pessimistic conclusion

is the case when both p and k are large, in which case the

power of the test is satisfactory.

5 Empirical example

We apply the models defined in Sects. 2 and 3 to the

Philippine rice data used in the empirical examples of

Coelli et al. (2005, chapters 8–9). The Philippine data are

composed of 43 farmers over 8 years and Coelli et al.

(2005) estimate the basic stochastic frontier model with a

trans-log production function, ignoring the panel nature of

the observations. Their output variable is tonnes of freshly

threshed rice, and the input variables are planted area (in

hectares), labor, and fertilizer used (in kilograms). These

variables are scaled to have unit means so the first-order

coefficients of the trans-log function can be interpreted as

elasticities of output with respect to inputs evaluated at the

variable means. We follow the basic setup of Coelli et al.

(2005) but estimate the extended models where some farms

are allowed to be efficient, and the probability of farm

i being efficient and/or the distribution of ui depend on

farm characteristics. Data on age of household head, edu-

cation of household head, household size, number of adults

in the household, and the percentage of area classified as

bantog (upland) fields are used as farm characteristics that

influence the probability of a farm begin fully efficient and/

or the distribution of the inefficiency. See Coelli et al.

(2005, Appendix 2) for a detailed description of the data.

5.1 Model

We consider models based on the following specification:

ln yi ¼ b0 þ ht þ b1 ln areai þ b2 ln labori þ b3 ln npki

þ b11
1

2
ðln areaiÞ2 þ b12 ln areai ln labori

þ b13 ln areai ln npki þ b22
1

2
ðln laboriÞ2

þ b23 ln labori ln npki þ b33
1

2
ðln npkiÞ2 þ vi � ui;

ð10Þ

ui 
Nþð0; r2i Þ;
r2i ¼ exp ðc0 þ ageic1 þ edyrsic2 þ hhsizeic3

þnadultic4 þ banratic5Þ;
ð11Þ

where areai is the size of planted area in hectares, labori is

a measure of labor, npki is fertilizer in kilograms, agei is

the age of household head, edyrsi is the years of education

of the household head, hhsizei is the household size, nadulti
is the number of adults in the household, and banrati is the

percentage of area classified as bantog (upland) fields.

We assume a trans-log production function with time

trend as in (10). We estimate the following models:

a. the basic stochastic frontier model, in which ri
2 is

constant (:ru
2) and Pðzi ¼ 1jwiÞ ¼ 0;

b. the ZISF model in which ru
2 is constant and Pðzi ¼

1jwiÞ is constant (: p) but not necessarily equal to

zero;

c. the ‘‘heteroskedasticity’’ model in which p = 0 but ri
2

is as given in (11);

d. the ‘‘logit’’ model in which ru
2 is constant but Pðzi ¼

1jwiÞ is as given in (12);

e. the ‘‘logit ? heteroskedasticity’’ model in which ri
2 is

as given in (11) and Pðzi ¼ 1jwiÞ is as given in (12).

5.2 The estimates

The MLEs and their OPG standard errors are reported in

Table 11.

Consider first the results for the basic stochastic frontier

model (first column of results in the table). The inputs are

productive and there are roughly constant returns to scale.

Average technical efficiency is about 70 %. The estimated

value of k is 2.75, and both that value and the sample size

(n = 344) are big enough to feel confident about pro-

ceeding to the ZISF model and its extensions.

The next block of column of results is for the ZISF

model. Here we have p̂ ¼ 0:58; so a substantial fraction of

the observations (farm-time period combinations) are

characterized by full efficiency. The technology (effect of

inputs on output) is not changed much from the basic SF

model, but the intercept is lower and the level of technical

Pðzi ¼ 1jwiÞ ¼
exp ðd0 þ ageid1 þ edyrsid2 þ hhsizeid3 þ nadultid4 þ banratid5Þ

1þ exp ðd0 þ ageid1 þ edyrsid2 þ hhsizeid3 þ nadultid4 þ banratid5Þ
ð12Þ
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efficiency is higher (between 85 and 90 %). Based on our

simulations, this is a predictable consequence of finding

that a substantial number of observations are fully efficient.

The next block of columns of results is for the heter-

oskedasticity model in which all farms are inefficient but

the level of inefficiency depends on farm characteristics. A

number of farm characteristics (age of the farmer, educa-

tion of the farmer and percentage of bantog fields) have

significant effects on the level of inefficiency. In this

parameterization, a positive coefficient indicates that an

increase in the corresponding variable makes a farm more

inefficient. The model implies that farms where the farmer

is older and more educated, and where the percentage of

bantog fields is lower, tend to be more inefficient (less

efficient). Or, saying the same thing the other way around,

farms are more efficient on average if the farmer is

younger and less educated and the percentage of bantog

fields is higher. The effect of education is perhaps sur-

prising. Because this model does not allow any farms to be

fully efficient, we once again have a low level of average

technical efficiency, about 72 %, which is similar to that

for the basic SF model.

Next we consider the logit model in which the distri-

bution of inefficiency is the same for all firms that are not

fully efficient, but the probability of being fully efficient

depends on farm characteristics according to a logit model.

Now age of the farmer and percentage of bantog fields have

significant effects on the probability of full efficiency, and

the coefficient of household size is almost significant at the

5 % level (t statistic = -1.93). The results indicate that

farms with younger farmers, smaller household size, and a

larger proportion of bantog fields are more likely to be fully

efficient. The results for age of the farmer and percentage of

bantog fields are similar in nature to those for the heter-

oskedasticity model. The average level of inefficiency is

once again higher, about 86 %, which is very similar to the

result for the ZISF model with constant p.

Finally, the last set of results are for the logit ? heter-

oskedasticity model in which farm characteristics influence

both the probability of being fully efficient and the distri-

bution of inefficiency for those farms that are not fully

efficient. Now none of the farm characteristics considered

have significant effects on the distribution of inefficiency

for the inefficient farms, but three of them (age of the

farmer, household size and proportion of bantog fields) do

have significant effects on the probability of being fully

efficient. The coefficients for these three variables have the

same signs as in the logit model without heteroskedasticity.

It is interesting that we can estimate a model this com-

plicated and still get significant results. Also, we note that,

because this model allows the probability of full efficiency,

we are back to a high average level of technical ineffi-

ciency, between 85 and 90 %.T
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5.3 Model comparison and selection

We will now test the restrictions that distinguish the vari-

ous models we have estimated. Based on the results of our

simulations, we will use the likelihood ratio (LR) test. We

immediately encounter some difficulties because, to use the

LR test (or the other tests we considered in Sect. 3.4), the

hypotheses should be nested, whereas not all of our models

are nested. There are two possible nested hierarchies of

models: (a) basic SF� ZISF�logit�logit-heteroskedastic-

ity, and (b) basic SF� heteroskedasticity.

We begin with hierarchy (a). When we test the

hypothesis that p = 0 in the ZISF model, we obtain

LR = 5.07, which exceeds the 5 % critical value of 2.71

for the distribution (1/2v1
2 ? 1/2v1

2). So we reject the basic

SF model in favor of the ZISF model. Next we test the

ZISF model against the logit model. This is a standard test

of the hypothesis that d1 = d2 = d3 = d4 = d5 = 0 in the

logit model. The LR statistic of 23.96 exceeds the 5 %

critical value for the v5
2 distribution (11.07), so we reject

the ZISF model in favor of the logit model. Finally, we test

the logit model against the logit-heteroskedasticity model.

This is a standard test of the hypothesis that

c1 = c2 = c3 = c4 = c5 = 0 in the logit-heteroskedastici-

ty model. The LR test statistic of 11.12 very marginally

exceeds the 5% critical value, so we reject the logit model

in favor of the logit-heteroskedasticity model, but not

overwhelmingly. Note that the logit model is rejected even

though, in the logit-heteroskedasticity model, none of the

individual cj in the heteroskedasticity portion of the model

is individually significant.

Now consider hierarchy (b). We test the basic SF model

against the heteroskedasticity model. This is a standard test

of the hypothesis that c1 = c2 = c3 = c4 = c5 = 0 in the

heteroskedasticity model. The LR statistic of 17.04 exceeds

the 5 % critical value, so we reject the basic SF model in

favor of the heteroskedasticity model.

We cannot test the heteroskedasticity model against the

logit-heteroskedasticity model, at least not by standard

methods, since the restriction that would convert the logit-

heteroskedasticity model into the heteroskedasticity model

is d0 ¼ �1 and under this null the other dj are unidenti-

fied. Still, the difference in log-likelihoods, which is 11.56,

would appear to argue in favor of the logit-heteroskedas-

ticity model.

In order to compare the models in a slightly different

way, and to amplify on the comment at the end of

the preceding paragraph, we will also consider some

standard model selection criteria. We consider AIC =

- 2LF ? 2d (Akaike 1974), BIC ¼ �2LF þ d ln n (Sch-

warz 1978) and HQIC ¼ �2LF þ 2d ln ðln nÞ (Hannan and

Quinn 1979), where d is the number of estimated

parameters, n is the number of observations, and LF is the

log-likelihood value. Smaller values of these criteria indi-

cate a ‘‘better’’ model. We note that all three criteria favor

the logit model over the heteroskedasticity model, two of

the three favor the logit-heteroskedasticity model over the

heteroskedasticity model, and two of the three favor the

logit model over the logit-heteroskedasticity model.

Based on the results of our hypothesis tests and the

comparison of the model selection procedures, we con-

clude that a case could be made for either the logit model

or the logit-heteroskedasticity model as the preferred

model. As we saw above, the substantive conclusions from

these two models were basically the same.

6 Concluding remarks

In this paper we considered a generalization of the usual

stochastic frontier model. In this new ‘‘ZISF’’ model, there

is a probability p that a firm is fully efficient. This model

was proposed by Kumbhakar et al. (2013), who showed

how to estimate the model by MLE, how to update the

probability of a firm being fully efficient on the basis of the

data, and how to estimate the inefficiency level of a specific

firm.

We extend their analysis in a number of ways. We show

that a result similar to that of Waldman (1982) holds in the

ZISF model, namely, that there is always a stationary point

of the likelihood at parameter values that indicate no

inefficiency, and that this point is a local maximum if the

OLS residuals are positively skewed. We show how to test

the hypothesis that p = 0. We also provide a more com-

prehensive set of simulations than Kumbhakar et al. (2013)

did.

Let k = ru/rv, a standard measure in the stochastic

frontier literature of the relative size of technical ineffi-

ciency and statistical noise. The main practical implication

of our simulations is that the ZISF model works well when

neither k nor p is small. However, we have trouble esti-

mating p reliably, or testing whether it equals zero, when k
is small. And if the true p equals zero, we have trouble

estimating it reliably unless k is larger than is empirically

plausible (e.g., k = 5). Larger sample size obviously helps,

but the above conclusions do not depend strongly on

sample size in our simulations. Situations where the ZISF

model may be useful therefore have the characteristics that

(1) it is reasonable to suppose that some firms are fully

efficient, and (2) the inefficiency levels of the inefficient

firms are not small relative to statistical noise. Such situ-

ations do not seem implausible, and it is an empirical

question as to how common they are.
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Appendix

We will use the following notation. Let fv eið Þ ¼
ffiffiffiffiffiffiffiffi
1þk2

r2

q
/

ei
ffiffiffiffiffiffiffiffi
1þk2

r2

q� �
; fe eið Þ ¼ 2

r/
ei
r

� �
1�U eik

r

� �� �
; fp eið Þ ¼ pfv eið Þþ

1� pð Þfe eið Þ; ln L ¼
P

ln f p eið Þ;mi ¼
/

eik
rð Þ

1�U
eik
rð Þ; h ¼ b0; k;ð

r2; pÞ0; b ¼ k � 1 vector; h�� ¼ b̂0; k̂; r̂2; p̂
� �0

; where b̂ ¼

OLS; k̂ ¼ 0; r̂2 ¼ 1
n

P
ê2i ; êi ¼ yi � x0ib̂; p̂ 2 ½0; 1�: _ indi-

cates maximum.

Result 1 h** is a stationary point of the log likelihood

function.

Proof The first derivative of ln L is:

SðhÞ ¼

o ln L
ob

o ln L
ok

o ln L
or2

o ln L
op

0

BBBB@

1

CCCCA

¼

Pn

i¼1

pfv eið Þ 1þk2

r2
eixi

� �
þ 1�pð Þfe eið Þ eixi

r2
þmixik

r

� �

fp eið Þ

Pn

i¼1

pfv eið Þ k
1þk2

� k
r2
e2i

� �
� 1�pð Þfe eið Þ 1

rmieið Þ
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Pn
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pfv eið Þ � 1

2r2
þ1þk2

2r4
e2i

� �
þ 1�pð Þfe eið Þ � 1

2r2
þ 1

2r4
e2i þ k

2r3
miei

� �

fp eið Þ

Pn

i¼1

fv eið Þ�fe eið Þ
fp eið Þ

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

:

When k = 0,

S hð Þjk¼0 ¼

1
r2
Pn

i¼1

eixi

� 1� pð Þ
ffiffi
2
p

q
1
r

Pn

i¼1

ei

� n
2r2 þ 1

2r4
Pn

i¼1

e2i

0

0

BBBBBBBB@

1

CCCCCCCCA

:

It is straightforward that S h��ð Þ ¼ 0; since, with ei ¼
êi;
Pn

i¼1 êi ¼ 0 and
Pn

i¼1 êixi ¼ 0: Therefore, h** is a sta-

tionary point. h

Result 2 Evaluated at the stationary point, h,** the

Hessian of the log likelihood is negative semi-definite with

two zero eigenvalues.

Proof The Hessian evaluated at the stationary point h** is

H h��ð Þ

¼

� 1
r̂2
Pn

i¼1 xix
0
i 1� p̂ð Þ

ffiffi
2
p

q
1
r̂

Pn
i¼1 xi 0 0

1� p̂ð Þ
ffiffi
2
p

q
1
r̂

Pn
i¼1 x

0
i � 1� p̂ð Þ22np 0 0

0 0 � n
2r̂4 0

0 0 0 0

0

BBBBB@

1

CCCCCA
:

When p̂¼ 1;

H h��ð Þ ¼
� 1

r̂2
Pn

i¼1 xix
0
i 0 0 0

0 0 0 0

0 0 � n
2r̂4 0

0 0 0 0

0

BB@

1

CCA:

Because � 1
r̂2
Pn

i¼1 xix
0
i is a negative definite matrix,

H h��ð Þ is a negative semi-definite matrix with two zero

eigenvalues.

Now suppose that p̂ 6¼ 1: Note that the first row of

H h��ð Þ; � 1
r̂2
Pn

i¼1 x
0
i; 1� p̂ð Þ

ffiffi
2
p

q
n
r̂; 0; 0

� �
; is linearly depen-

dent with the (k ? 1)th row of H h��ð Þ: Multiplying the first

row by 1� p̂ð Þ
ffiffi
2
p

q
r̂ and adding to the k þ 1ð Þth row results

in a row vector of zeros. Hence,

H h��ð Þ

� 1

r̂2
Pn

i¼1 xix
0
i 1� p̂ð Þ

ffiffi
2
p

q
1
r̂

Pn
i¼1 xi 0 0

0 0 0 0

0 0 � n
2r̂4 0

0 0 0 0

0

BBB@

1

CCCA
;

where * stands for an elementary row operation. Again,

the first column and the (k ? 1)th column of the transferred

matrix are linearly dependent. Similarly, multiplying the

first column by ð1� p̂Þ
ffiffi
2
p

q
r̂ and adding to the ðkþ 1Þth

column results in a column vector of zeros. In other

words,

H h��ð Þ


� 1
r̂2
Pn

i¼1 xix
0
i 1� p̂ð Þ

ffiffi
2
p

q
1
r̂

Pn
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0 0 0 0

0 0 � n
2r̂4 0

0 0 0 0

0
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0
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:
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Elementary operations preserve the rank of a matrix.

Hence, the rank of H h��ð Þ is k ? 1, i.e., H h��ð Þ has two

zero eigenvalues.

Now we will show that H(h**) is negative semi-definite.

Let a ¼ a01; a2; a3; a4
� �0

be an arbitrary non-zero k þ 3ð Þ �
1 vector, where a1 is a k 9 1 vector, and a2, a3, a4 are

scalars. Then,

a0H h��ð Þa ¼� 1

r̂
1
ffiffiffi
n

p a01
Xn

i¼1

xi � a2 1� pð Þ
ffiffiffi
2

p

r
ffiffiffi
n

p
 !2

� 1

r̂2
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0
i �

1

n
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i¼1

x0i
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2r̂4
a23

� 0;
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Xn
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xix
0
i �

1

n

Xn

i¼1

xi
Xn

i¼1

x0i

¼
Xn

i¼1

xi �
1

n

Xn

j¼1

xj

 !

xi �
1

n

Xn

j¼1

xj

 !0

is positive semi-definite.

Therefore H h��ð Þ is negative semi-definite. h

Result 3 h** with p̂ 2 ½0; 1Þ is a local maximizer of the

log likelihood function if and only if
Pn

i¼1 ê
3
i[ 0:

Proof From Result 2, we know that the Hessian evaluated

at h** is negative semi-definite. Therefore, if the log like-

lihood decreases in the direction of the two eigenvectors

associated with zero eigenvalues, h** is a local maximizer

of the log likelihood. The two eigenvectors that are asso-

ciated with the two zero eigenvalue are
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ffiffi
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Because k C 0, l[ 0. Dh has only three non-zero

arguments. Thus, relevant parameters would be b0,k, and
p. By Taylor’s expansion,

L h� þ Dhð Þ � L h�ð Þ ¼ 1

6
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ffiffiffi
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3

þ o l _ /ð Þ4
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:

The 1st order term is zero because h** is a stationary

point (Result 1). The 2nd order term is zero by the

definition of the eigenvector. Note that

�4p̂2 þ p̂ð8� 3pÞ þ p� 4ð Þ has its maximum, p -

4\ 0, when p̂ ¼ 0: Since l[ 0; L h� þ Dhð Þ � L h�ð Þ\0

if and only if
P

ê3i [ 0: Therefore, h** with p̂ 2 0; 1½ Þ is a
local maximizer if and only if

P
ê3i [ 0: When p̂ ¼ 0; the

expression goes back to the one in Waldman (1982). h

Result 4 h** with p̂ ¼ 1 is a local maximizer of the

likelihood function if
Pn

i¼1 ê
3
i[ 0:

Proof The two eigenvectors associated with the zero

eigenvalues are
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Because k C 0 and p B 1, l[ 0 and /\ 0. Dh has

only two non-zero arguments. Thus, the relevant

parameters would be k and p. By Taylor’s expansion,

L h� þ Dhð Þ � L h�ð Þ¼ 1

24
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The 1st order term is zero because h** is a stationary

point (Result 1). The 2nd order term is zero by the

definition of the eigenvector. The third order term is zero

because L h� þ Dhð Þ � L h�ð Þ in Result 3 is zero when p̂ ¼
1: Since /\ 0 and l[ 0; 1

3r̂3

ffiffi
2
p

q Pn
i¼1 ê

3
i l

3/\0 when
P

ê3i [ 0: Therefore, if
P

ê3i [ 0; L h� þ Dhð Þ � L h�ð Þ\0

and h** with p̂ ¼ 1 is a local maximizer. h
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