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Abstract This paper proposes a constrained nonpara-

metric method of estimating an input distance function. A

regression function is estimated via kernel methods without

functional form assumptions. To guarantee that the esti-

mated input distance function satisfies its properties,

monotonicity constraints are imposed on the regression

surface via the constraint weighted bootstrapping method

borrowed from statistics literature. The first, second, and

cross partial analytical derivatives of the estimated input

distance function are derived, and thus the elasticities

measuring input substitutability can be computed from

them. The method is then applied to a cross-section of

3,249 Norwegian timber producers.
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1 Introduction

One of the main objectives of productivity analysis is to

estimate a representation of technology using econometrics

or data envelopement analysis (DEA), among others. It is

well-known that DEA assumes no functional form of a

frontier, and linear programming allows one to impose

linear constraints on each observation. However, when it

comes to econometric methods, a functional form is usually

required, and information (e.g., marginal cost/product) can

be calculated after parameters are estimated. Researchers

should then check if the estimated information follows

theoretical properties of the technology. While using a

large micro-level data set, however, it may well be the case

that such properties are not satisfied for a subset of

observations. In order to address this issue, Terrell (1996),

Rambaldi and Doran (1997), Ryan and Wales (2000), and

Henningsen and Henning (2009), among others, proposed

methods of imposing various constraints on parametric

functions. However, it is still a problem to impose these

constraints on a nonparametric function.

In this paper, we provide solutions to the two above-

mentioned problems of econometric methods, i.e., func-

tional forms that are not flexible and theoretical constraints

that are difficult to impose. To address the first problem, we

propose estimating a technology without a parametric

functional form via nonparametric kernel econometric

methods. Thus, the functional form assumption is relaxed

and the technology is estimated in a fully flexible manner.

The price one has to pay for such flexibility, however, is

many observations may violate properties of the technol-

ogy. Therefore, it is desirable that constraints are imposed

on the nonparametric regression function such that the

properties are satisfied for each individual observation. To

do this, we apply the new approach of constraint weighted

bootstrapping (CWB) first introduced by Hall and Huang

(2001) and further studied by Du et al. (2013) and Parmeter

et al. (2013).

To explore the kernel and the CWB methods, we first need

to specify a technology as our main focus. In this paper, we

choose an input distance function (IDF) because although the

functional form of an IDF is generally unknown (Färe et al.

1994), many past and more recent studies have sought to

estimate parametric distance functions specifying a translog

functional form and using ordinary least squares (OLS) to

K. Sun (&)

Economics and Strategy Group, Aston Business School, Aston

University, Aston Triangle, Birmingham B4 7ET, UK

e-mail: k.sun@aston.ac.uk

123

J Prod Anal (2015) 43:85–97

DOI 10.1007/s11123-013-0372-9



estimate the unknown parameters (Lovell et al. 1994;

Grosskopf et al. 1997; Ray 2003; Cuesta et al. 2009, among

others). Färe et al. (1985, 1994) and Coelli and Perelman

(1999), among others, used DEA to estimate the distance

function without specifying any functional form. This paper

fills the gap by estimating the IDF using nonparametric

econometric methods without any functional form assump-

tion.1 Furthermore, monotonicity constraints based on the

properties of the IDF are imposed via CWB.2 Our method-

ology extends to other representations of technology in a

straightforward manner. As a by-product of the econometric

estimation, the first and second order analytical derivatives

of the nonparametric IDF are derived, and thus the elastici-

ties measuring input substitutability/complementarity can be

calculated from them.

As an empirical example, we apply the proposed

methodology to a Norwegian forestry data set from Lien

et al. (2007) compiled by Statistics Norway. Both the

unconstrained and constrained nonparametric IDFs as well

as the implied elasticities are estimated and results are

compared. We find that without imposing constraints,

18.25 % observations violate one of the theoretical prop-

erties of the IDF. The Kolmogorov–Smirnov test shows

that the gradients and the elasticities calculated from the

constrained IDF significantly differs from those calculated

from the unconstrained counterpart. Finally, we reported

density plots of the estimated Antonelli, Morishima, and

Symmetric elasticities of complementarity.

The rest of the paper is organized as follows. Section 2

describes the methodology of the constrained nonpara-

metric econometric estimation methodology. Section 3

applies the methodology to a real data set. Section 4 dis-

cusses limitations and possible extensions of the current

method, and Sect. 5 concludes the paper.

2 Methodology

2.1 Nonparametric estimation of a distance function

via kernel methods

The distance function representation of a production tech-

nology, proposed by Shephard (1953, 1970) does not

require any aggregation, prices, or behaviorial assump-

tions. Following Färe and Primont (1995), we first define

the production technology of the firm using the input set,

L(Y), which represents the set of all K inputs, X 2 R
K
þ,

which can produce the vector of Q outputs, Y 2 R
Q
þ. That

is:

LðYÞ ¼ fX 2 R
K
þ : X can produce Yg: ð1Þ

We assume that the technology satisfies the standard axiom

of strong disposability. The IDF is then defined on the input

set, L(Y), as:

DðX; YÞ ¼ maxfq : ðX=qÞ 2 LðYÞg; ð2Þ

where q is the scalar distance by which the input vector can

be deflated. D(X, Y) satisfies the following properties: (1) it

is non-increasing in each output level; (2) it is non-

decreasing in each input level; (3) it is homogeneous of

degree 1 in X.3 It is based on an input-saving approach and

gives the maximum amount by which an input vector can

be radially contracted while still being able to produce the

same output vector. The IDF, D(X, Y), will take a value

which is greater than or equal to one if the input vector, X,

is an element of the feasible input set, L(Y). That is,

D(X,Y) C 1 if X 2 LðYÞ. The distance function will take a

value of unity if X is located on the inner boundary of the

input set.

To empirically estimate the distance function, we first

define:

D � A � DðX; YÞ; ð3Þ

where A is the productivity parameter, and X and Y are the

input and output vectors, respectively. Using property (3)

of the IDF, viz., homogenous of degree 1 in X, we can write

(3) as:

D=X1 ¼ A � Dð ~X; YÞ; ð4Þ

where X1 is the numeraire input, and ~X is a vector of input

ratios, with elements ~Xk ¼ Xk=X1; 8k ¼ 2; . . .;K. Taking

the natural logarithm for both sides gives:

ln D� ln X1 ¼ ln Aþ ln Dð ~X; YÞ: ð5Þ

Letting D = 1 would give:4

1 Another primal representation of technology is a production

function. A nonparametric production function via kernel regression

has been studied by Henderson (2009), Du et al. (2013), among

others. Furthermore, the estimation of the production function may

require fewer regularities as it is arguable that the marginal product of

labor can be negative because of labor hoarding or regulation

(Heshmati et al. 2013).
2 An IDF is dual to a cost function, and therefore, it must satisfy

conditions similar to those of the cost function. However, estimation

of the IDF does not require input price data.

3 An input distance function is concave in inputs if the input

requirement set, L(Y), is convex (Kumbhakar and Lovell 2000, p. 30).

However, in this paper, we do not assume that L(Y) is convex, since

‘‘a convexity property is occasionally added to the list of properties

satisfied by the input sets L(Y).’’ (Kumbhakar and Lovell 2000, p. 22).
4 Alternatively, the estimating equation can be derived by defining

D(X,Y): 1/A, and then imposing the homogeneity restriction and

taking the natural logarithm. We would like to thank an anonymous

referee for the suggestion.
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� ln X1 ¼ ln Dð ~X; YÞ þ ln A

¼ ln Dðexpðln ~XÞ; expðln YÞÞ þ ln A

� mðln ~X; ln YÞ þ v;

ð6Þ

where v ¼ ln A is the noise term, interpreted as the natural

logarithm of the productivity parameter.5 Using general

notation, (6) can be written as:

Y ¼ mðzÞ þ v; ð7Þ

where Y ¼ � ln X1, mð�Þ is the unknown smooth distance

function, z is the vector of continuous variables (i.e.,

ln ~Xk; 8k ¼ 2; . . .;K; ln Yq; 8q ¼ 1; . . .;Q), and v is the

random error uncorrelated with any element of z.

To estimate the unknown function, one can use the

local-constant least-squares estimator of m(z) (see Li and

Racine 2006 for more details), given by:

m̂ðzÞ ¼
Pn

i¼1 Kðzi�z
h
ÞYi

Pn
i¼1 Kðzi�z

h
Þ ; ð8Þ

where Kð�Þ is a (scalar) Gaussian product kernel weighting

function for the continuous variables (see ‘‘Appendix 2’’

for an explicit expression); n denotes the sample size; h is a

vector of bandwidth, with each element for a particular

variable in the z vector.

Estimation of the bandwidths, h, is typically the most

salient factor when performing nonparametric estimation.

Although many selection methods exist, we utilize the

data-driven least-squares cross validation (LSCV) method.

Specifically, the bandwidths are chosen to minimize

n�1
Xn

i¼1

½Yi � m̂�iðziÞ�2; ð9Þ

where m̂�ið�Þ ¼
Pn

j 6¼i
Kðzj�zi

h
ÞYjPn

j 6¼i
Kðzj�zi

h
Þ

is the leave-one-out local-

constant kernel estimator of mð�Þ. We use the npregbw

function from the np package (Hayfield and Racine 2008)

in R (R Development Core Team 2011) to estimate the

bandwidth vector. This bandwidth vector is then plugged

into (8) to estimate the IDF.

To calculate the derivatives of the distance function with

respect to each input and output, (6) can be re-written as:

lnD¼ lnX1þmðln ~X2; . . .; ln ~XK ; lnY1; . . .; lnYQÞþ v: ð10Þ

For example, the first partial derivatives of interest, that

should be investigated to guarantee the monotonicity

properties of the IDF, are:

o ln D

o ln X1

¼ 1�
XK

k¼2

om

o ln ~Xk

; ð11Þ

o ln D

o ln Xk

¼ o ln D

o ln ~Xk

¼ om

o ln ~Xk

; 8k ¼ 2; . . .;K; ð12Þ

and6

o ln D

o ln Yq

¼ om

o ln Yq

; 8q ¼ 1; . . .;Q; ð13Þ

where the first partial derivative of mð�Þ with respect to a

particular argument, say, zl 2 fln ~X2; . . .; ln ~XK ; ln Y1; . . .;
ln YQg, is

om

ozl

¼
Xn

i¼1

zli�zl

h2
l

� �
Kð�Þ

P
i Kð�Þ � Kð�Þ

P
i

zli�zl

h2
l

� �
Kð�Þ

h i

ð
P

i Kð�ÞÞ2
� ð� ln X1iÞ:

ð14Þ

See ‘‘Appendix 2’’ for detailed derivation of the first and

the second partial derivatives of mð�Þ with respect to zl, and

the cross partial derivatives with respect to zl and

zk, Vl = k.

2.2 Imposition of regularity constraints

Recall that the IDF has the following theoretical

properties:7

o ln D

o ln Xk

� 0; 8k ¼ 1; . . .;K ð15Þ

and

o ln D

o ln Yq

� 0; 8q ¼ 1; . . .;Q: ð16Þ

However, when it comes to empirical estimation, it is very

likely for one to obtain violations of these properties for

some individual observation. Most empirical researchers

check these regularity conditions at the mean of the data

instead of every data point, and report results evaluated at

the mean. This practice defeats the purpose of using micro

data. Results may not be of much use for policy analysis if

the theoretical restrictions are violated for many individual

producers. Instead of ignoring results that violate ratio-

nality, we use a new statistical method that imposes these

economic constraints. We then calculate the gradients of
5 In fact, the translog specification of mð�Þ in (6) can be derived from

a second-order Taylor expansion of mð�Þ, whose gradients are viewed

as unknown parameters (Berndt and Christensen 1973). But we do not

have to rely on the Taylor approximation, since we can estimate (6)

using kernel-based nonparametric methods without specifying any

parametric functional form.

6 By chain-rule, o ln D=o ln Xk ¼ o ln D=o ln ~Xk , 8k ¼ 2; . . .;K.
7 Since D, Xk, and Yq are all non-negative, o ln D

o ln Xk
� 0 implies oD

oXk
� 0,

and o ln D
o ln Yq
� 0 implies oD

oYq
� 0.
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the IDF and the elasticities based on that all these joint

constraints are satisfied.

In order to impose such observation-specific inequality

constraints, we follow the constraint weighted bootstrap-

ping (CWB) method first proposed by Hall and Huang

(2001) and further studied by Du et al. (2013) and Parmeter

et al. (2013), whose idea is to transform the response

variable by assigning observation-specific weights such

that certain constraints in the model are satisfied. To

illustrate this methodology, let fYi; zign
i¼1 denote sample

pairs of response and explanatory variables, where Yi is a

scalar,8 zi is of dimension (K ? Q - 1), and n denotes the

sample size. The goal is to estimate the conditional mean

model Y ¼ mðzÞ þ v, subject to constraints on the first

order gradient of the l-th element in z, ml(z) = qm(z)/qzl,

where zl is the l-th element of the vector z, or on a linear

combination of any of the first order gradients.

We can express the local-constant estimator as:

m̂ðzÞ ¼ n �
Xn

i¼1

AiðzÞn�1Yi; ð17Þ

where AiðzÞ ¼ Kðzi�z

h
ÞPn

i¼1
Kðzi�z

h
Þ
;Kð�Þ and h are defined the same

as in (8).9 The first order gradient of the local-constant

estimator, m̂lðzÞ, can be expressed as:

m̂lðzÞ ¼ n �
Xn

i¼1

Ai;lðzÞn�1Yi; ð18Þ

where Ai;lðzÞ ¼ oAiðzÞ
ozl

(see ‘‘Appendix 2’’ for an explicit

expression of the derivative of Ai(z) with respect to zl).

Therefore, a particular linear combination of these first

order gradients is:

1�
XK�1

l¼1

m̂lðzÞ ¼ 1�
XK�1

l¼1

n �
Xn

i¼1

Ai;lðzÞn�1Yi

 !

; ð19Þ

which is used to impose constraints in the form of (11).

To impose the monotonicity constraints, re-write (18)

and (19) as:

m̂lðzjpÞ ¼ n �
Xn

i¼1

Ai;lðzÞpiYi; 8l ¼ 1; . . .;K þ Q� 1; and

ð20Þ

1�
XK�1

l¼1

m̂lðzjpÞ ¼ 1�
XK�1

l¼1

n �
Xn

i¼1

Ai;lðzÞpiYi

 !

; ð21Þ

where pi is the weight for the ith observation of the

response Y, and
P

i=1
n pi = 1.10 If pi = 1/n (i.e., uniform

weights), then the constrained estimator will reduce to the

unconstrained estimator.

The goal is to transform the response as little as possible

through the weights such that the constraints are satisfied.

The following is the weight selection criterion proposed by

Du et al. (2013) and Parmeter et al. (2013):

p� ¼ argminDðpÞ ¼ ðpu � pÞ0ðpu � pÞ
st: lðzÞ� m̂lðz j pÞ� uðzÞ; 8l ¼ 1; . . .;K þ Q� 1; and

lðzÞ� 1�
XK�1

l¼1

m̂lðz j pÞ� uðzÞ;

ð22Þ

where p* is a vector of optimal weight for each response

observation, DðpÞ is an L2 metric, pu is a vector of uniform

weights (i.e., 1/n), which can also be viewed as an initial

search condition, l(z) and u(z) represent observation-specific

lower and upper bounds for m̂lðz j pÞ, respectively. If

l(z) = 0 and uðzÞ ¼ þ1, then we can impose monotoni-

cally increasing constraints; if u(z) = 0 and lðzÞ ¼ �1,

then we can impose monotonically decreasing constraints.

The optimization problem (22) is a standard quadratic pro-

gramming problem that can be numerically solved using the

quadprog package (Berwin and Weingessel 2011) in R. The

constrained estimator m̂ðz j p�Þ ¼ n
Pn

i¼1 AiðzÞp�i Yi can

then be calculated using the optimal weight for each

observation, pi
*. Following Du et al. (2013) and Parmeter

et al. (2013), the same bandwidth vector estimated from the

unconstrained IDF are used to estimate the constrained IDF,

as the same Ai(z) appears in both the unconstrained and the

constrained estimator. The codes for estimating the con-

strained model are available from the author upon request.

2.3 Elasticities from the distance function

After the first, second, and cross partial derivatives of the

IDF satisfying theoretical restrictions are estimated, three

8 Yi ¼ � ln X1i in this paper.
9 The CWB method is also applicable to the local-linear kernel

estimator. This is because (17) becomes the local-linear estimator (Li

and Racine 2004) if we write

AiðzÞ ¼
Xn

i¼1

K
zi � z

h

� � 1 zi � z

zi � z ðzi � zÞðzi � zÞ0
� �( )�1

K
zi � z

h

� � 1

zi � z

� �

Note that the Ai(z) in the local-linear case is a 2 9 1 block vector. The

first element of it is the conditional mean, and the second element

gives the gradient vector.

10 Du et al. (2013) showed that pi can be either positive or negative

for the purpose of imposing generalized constraints. In contrast, Hall

and Huang (2001) used the power divergence metric which restricts

0 B pi B 1.
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types of elasticities measuring input substitutability/com-

plementarity can be computed without any additional

information (Stern 2011), viz., the Antonelli elasticity of

complementarity (AEC), the Morishima elasticity of

complementarity (MEC), and the Symmetric elasticity of

complementarity (SEC). The formulas are provided here

for convenience:

AECkl ¼
D � Dkl

Dk � Dl

; ð23Þ

MECkl ¼
Dkl � Xl

Dk

� Dll � Xl

Dl

; ð24Þ

and

SECkl ¼
�Dkk

DkDk
þ 2 Dkl

DkDl
� Dll

DlDl

1
DkXk
þ 1

DlXl

; ð25Þ

8k; l ¼ 1; . . .;K. Dk (Dkk) and Dl (Dll) are the first (second)

partial derivatives of the IDF with respect to the kth and lth

input, respectively; and Dkl are the cross partial derivatives

with respect to the kth and lth input. Here both the AEC

and the SEC are symmetric: they give the same elasticity

estimate no matter what input causes a change. The MEC is

not symmetric for the arguments made in Blackorby and

Table 1 Summary statistics of the variables

Symbol Variable name Variable description Mean SD Min. Max.

Y Output (m3) Harvesting level 997.4 2,621.2 2 46,070

X1 Labor (h) Working hours 58.04 141.2 0.126 2,632

X2 Land (ha) Forest area cut 5.97 14.8 0.012 229

X3 Capital (NOK) Timber stock 313,740 821,481 1,476 16,190,000

Table 2 Bandwidths and percentages of violations

Bandwidths – ln ~X2 ln ~X3 ln Y

– 0.2869 0.5608 0.1473

Violations o ln D=o ln X1\0 o ln D=o ln X2\0 o ln D=o ln X3\0 o ln D=o ln Y [ 0

Percentages 0.12 18.25 7.08 0.31

The subscript indices are: 1 = labor, 2 = land, and 3 = capital

Table 3 Testing for equality of distributions from the unconstrained and constrained models

Gradients o ln D=o ln X1 o ln D=o ln X2 o ln D=o ln X3 o ln D=o ln Y – –

p values 0.0000 0.0000 0.0000 0.0221 – –

Elasticities

MEC12 MEC13 MEC23 MEC21 MEC31 MEC32

p values 0.0000 0.0163 0.0002 0.0000 0.0129 0.0000

AEC12 AEC13 AEC23 SEC12 SEC13 SEC23

p values 0.0000 0.0552 0.0044 0.0000 0.0102 0.0000

The subscript indices are: 1 = labor, 2 = land, and 3 = capital

The p values are obtained from the Kolmogorov–Smirnov test for equality of distributions against the two-sided alternatives
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Fig. 1 Observation-specific weights
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Russell (1981). If the MEC [ 0, then the two inputs are

complements in the Morishima sense. Similar interpreta-

tion applies to the AEC and the SEC. For comparison

purposes, in the application section, the elasticities are

calculated from the IDF both with and without the theo-

retical restrictions.

3 Application

As an empirical illustration of the proposed methodology,

we use a cross-sectional data set of 3,249 active forest

owners (i.e., owners who harvest trees) for the year 2003

compiled by Statistics Norway. According to Statistics

Norway,11 the value added in Norwegian forestry was

estimated at Norwegian Krone (NOK) 5.4 billion in 2011.

Timber sale is the largest component in Norwegian for-

estry. From 2001 to 2011, 36 % of the forest properties

sold timber. In addition, forest owners can also earn

income from selling hunting and fishing rights, leasing out

sites and renting out cabins. The Ministry of Agriculture

and Food of Norway (2007) reported that approximately

88 % of the forest area is privately owned, and the majority

of the forest holdings are farm and family forests. During

the last 80 years, timber stock increased because the annual

timber growth has been considerably faster than the annual

harvest.

Since this data set has been used in Lien et al. (2007)

in which a detailed description of the sampling method is

available, a brief description of the data is given as fol-

lows. The output variable (Y) consists of annual timber

sales from the forest, measured in cubic meters. The labor

input variable (X1) is the sum of hours worked by con-

tractors and hours worked by the owner, his family or

hired labor. The land input variable (X2) measures the

forest area to be cut in hectares. The capital input variable

(X3) is the amount of timber stock that can be cut without

affecting future harvesting. Table 1 presents summary

statistics in the sample.

The estimation results are given in Tables 2, 3 and

Figs. 1, 2, 3, 4. Table 2 reports the estimated bandwidth

vector and shows percentages of violations of the mono-

tonicity properties of the IDF. Table 3 presents the Kol-

mogorov–Smirnov testing results for equality of

distributions between the information estimated from the

unconstrained and the constrained models. Figure 1 reports

the histogram of observation-specific weights for imposing

Gradient for lnX1(Labor)

D
en

si
ty

Gradient for lnX2(Land)

D
en

si
ty

Gradient for lnX3(Capital)

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6

−0.3 −0.1 0.1 0.3

0
2

4
6

8
10

−0.10 0.00 0.10 0.20

0
5

10
15

−1.5 −1.0 −0.5 0.0

0.
0

1.
0

2.
0

3.
0

Gradient for lnY

D
en

si
ty

Unconstrained Constrained

Fig. 2 Kernel density plots of

the gradients of the IDF:

unconstrained versus

constrained

11 See http://www.ssb.no/english/subjects/10/04/20/.

90 J Prod Anal (2015) 43:85–97

123

http://www.ssb.no/english/subjects/10/04/20/


the monotonicity constraints. Figures 2, 3, 4 plot the kernel

densities of the gradient and elasticity estimates under the

unconstrained and the constrained models.

It can be seen from Table 2 that, the bandwidth estimate

for each regressor is small enough (i.e., less than twice the

standard deviation of the corresponding regressor) to

indicate nonlinearity of the regression function, hence the

appropriateness of the nonparametric approach. Using

these bandwidth estimates, although nearly no violation of

economic theory occurs for the gradients of ln X1 and ln Y ,

there are 18.25 and 7.08 % of violations for the gradients

of ln X2 and ln X3, respectively.12 This suggests that it

should not be trivial to impose the economic constraints of

(15) and (16).

The constraint weighted bootstrapping (CWB) method

is then used to impose these constraints. Figure 1 plots the

distribution of pi
*, the optimal weight for each observation

suggested by CWB. It can be seen that most observations

share similar weights, and these optimal weights are quite

close to the uniform weights, 1/n = 1/3,249 & 3 9 10-4.

After the dependent variable is transformed by these
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Fig. 3 Kernel density plots of

the nonparametric MEC:

unconstrained versus

constrained

12 We also checked whether the estimated IDF is concave in all the

inputs: before the monotonicity constraints are imposed, there are

Footnote 12 continued

2,080 out of the 3,249 observations, or about 64.02 % of the obser-

vations that satisfy the input concavity condition, and after the

monotonicity constraints are imposed, there are 2,137, or about

65.77 % of the observations that satisfy the input concavity condition.
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weights, we can then use them to estimate the gradients and

the elasticities under the constraints.

Figure 2 shows the kernel density estimates for the

unconstrained and constrained distributions of the

four gradients, i.e., o ln D=o ln Xk; 8k ¼ 1; 2; 3, and

o ln D=o ln Y , on which for each observation, a non-nega-

tivity constraint is imposed on the first three gradients, and

a non-positivity constraint is imposed on the last one. A

vertical line is drawn at zero and the shaded area highlights

where the violations occur. The densities for the con-

strained gradients are plotted using the Silverman reflection

method for boundary correction such that the estimated

densities integrate to one. It can be seen that there are

masses near zero with the constrained model for the gra-

dients with many violations. Although very few violations

are observed for the gradient of ln X1, the unconstrained

and constrained distributions of it are not close to each

other. This is because the gradient of the first input is

essentially a linear combination of the gradients of the

other two inputs, whose non-trivial amount of violations

affect the constrained gradient of the first input.

We also plot the kernel density estimates of the elas-

ticities under the unconstrained and constrained models,

as Figs. 3 and 4 illustrate. It can be seen that, in most

cases, the constrained elasticities have smaller variation

than their unconstrained counterparts. This suggests that
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Fig. 4 Kernel density plots of

the nonparametric AEC and

SEC: unconstrained versus

constrained
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estimating an IDF satisfying its properties may improve

the efficiency of the elasticity estimates from the IDF. A

vertical line is drawn at zero for a better view of the

percentage of observations whose inputs are substitutes/

complements. For example, if the MEC between any two

inputs is greater (less) than zero, then these inputs are

Morishima complements (substitutes). However, for both

Figures, the elasticity estimates from the unconstrained

and constrained models seem to be quite close to each

other. To convince the reader that significant differences

exist between the distributions, Table 3 reports the p val-

ues from the Kolmogorov–Smirnov test for equality of

distributions for the gradients and the elasticities esti-

mated from the unconstrained and constrained models. It

can be seen that the null of equality of distributions is

rejected at the 5 % level in all cases except the AEC

estimates between labor and capital.

4 Discussion

4.1 Choice of numeraire input

When it comes to estimating the IDF with some parametric

functional form, e.g., Cobb–Douglas or Translog, the

choice of the normalizing input does not affect the results.

However, this is generally not the case for nonparametric

estimation of the IDF.13 The empirical example chooses

labor input as the numeraire input when estimating the

IDF. This assumes that the labor input is endogenous. In

order to see how the results change when other inputs (i.e.,

land or capital) are used for normalization, we simply

report the unconstrained and the constrained gradient

estimates in Figs. 5 and 6 in ‘‘Appendix 3’’, which uses

land and capital input as the numeraire, respectively. The

elasticity plots are omitted to save space. Although it is

recommended that researchers choose an input that is

endogenous a priori, the question of how to find the most

appropriate numeraire may be answered in future research.

4.2 Extensions to other representations of technology

The estimation procedure in Sect. 2 can be easily extended

to other specifications of technology. We provide two

examples here: a production and a cost function.

The production function can be written as y ¼ B � FðXÞ,
where y is a scalar output, B is the productivity parameter,
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Fig. 5 Kernel density plots of

the gradients of the IDF:

unconstrained versus

constrained. Land input is

chosen as the numeraire input

13 The author would like to thank an anonymous referee for this

observation.
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Fð�Þ is an unknown function, and X is an input vector.

Applying log transformation similar to (6) gives an esti-

mable production function: ln y ¼ f ðln XÞ þ u, where u ¼
ln B is the error term. The unknown function f ð�Þ can be

estimated nonparametrically via kernel methods. One can

also impose some desirable constraints on f ð�Þ, e.g.,

o ln y=o ln X� 0 as a non-negative marginal product

constraint.

For the cost function, it can be written as C = kC(W, Y),

where C is the total cost, k is the productivity parameter,

Cð�Þ is an unknown function, and W and Y are input price

and output vectors, respectively. Applying the log trans-

formation and imposing the homogeneity of degree one

restriction in input price gives an estimable cost function:

ln ~C ¼ cðln ~W ; ln YÞ þ u, where ~C is the total cost divided

by a numeraire input price, ~W is the input price vector

divided by the numeraire input price, and u ¼ ln k is the

error term. The cost function cð�Þ can be estimated using

kernel methods, and some necessary regularity constraints

can be imposed on it such that (1) cost shares are con-

strained between zero and one: 0� o ln ~C=o ln ~W � 1, and

(2) marginal cost is non-negative: o ln ~C=o ln Y � 0.

After the regression functions are estimated under the

constraints, different elasticities can then be calculated

subject to the specification of choice and data availability.

See Stern (2011) for a classification scheme of different

definitions of elasticities based on primal and dual repre-

sentations of technology.

4.3 Possibly endogenous regressors

It is well known that estimation of production/cost/distance

functions may subject to the endogeneity problem that

causes estimation results to be biased and inconsistent.

Unfortunately, the nonparametric instrumental variable

(IV) estimation is a quite young field—see Su and Ullah

(2008) for a three-step estimation procedure for nonpara-

metric simultaneous equations models via kernel methods,

and Newey and Powell (2003) for IV estimation via series

approximation, among others. It is unclear whether the

CWB procedure can be seamlessly applied to the non-

parametric structural models, which may be saved for

future research.
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Fig. 6 Kernel density plots of

the gradients of the IDF:

unconstrained versus

constrained. Capital input is

chosen as the numeraire input
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5 Conclusion

This paper uses econometric methods to estimate an input

distance function (IDF) without functional form assump-

tions, and imposes economic properties of the IDF on the

estimated regression function via constraint weighted

bootstrapping (CWB). As a by-product, the first, second,

and cross partial analytical derivatives of the estimated IDF

are derived, and thus various elasticities can be computed.

Applying the proposed method to a cross-section of Nor-

wegian forest owners, we find that imposing the constraints

eliminates the problem of economic violations in empirical

work, and therefore policy implications may be more

reliable. The proposed method can be extended to other

representations of technology in a straightforward manner,

and this opens the door for further empirical work to

estimate models subject to economic theory. As a future

research topic, more work should be done on the unifica-

tion of CWB and the nonparametric structural modeling

approach.
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Appendix 1

In order to obtain the derivative of the distance function

with respect to each input in level form, we start from the

equation in log form:

ln DðX; YÞ ¼ ln X1 þ mðln ~X2; . . .; ln ~XK ; ln Y1; . . .; ln YQÞ

where ln ~Xk ¼ ln Xk � ln X1; 8k ¼ 2; . . .;K.

o ln D

o ln X1

¼ 1�
XK

k¼2

om

o ln ~Xk

o ln D

o ln Xk

¼ om

o ln ~Xk

; 8k ¼ 2; . . .;K

o2 ln D

o ln X2
1

¼ �
XK

k¼2

o2m

o ln ~X2
k

� o ln ~Xk

o ln X1

¼
XK

k¼2

o2m

o ln ~X2
k

o2 ln D

o ln X2
k

¼ o2m

o ln ~X2
k

; 8k ¼ 2; . . .;K

o2 ln D

o ln X1o ln Xk

¼ � o2m

o ln ~X2
k

; 8k ¼ 2; . . .;K

o2 ln D

o ln Xko ln Xl

¼ o2m

o ln ~Xko ln ~Xl

; 8k; l ¼ 2; . . .;K and k 6¼ l

Once we obtain the derivatives in log form, it

would be straightforward to recover the derivatives in

level form.

Dk ¼
oD

oXk

¼ o ln D

o ln Xk

� D

Xk

; 8k ¼ 1; . . .;K

Dkk ¼
o2D

oX2
k

¼ o2 ln D

o ln X2
k

� D

X2
k

þ 1

Xk

Dk �
1

Xk

D

� �
o ln D

o ln Xk

;

8k ¼ 1; . . .;K

Dkl ¼
o2D

oXkoXl

¼ o2 ln D

o ln Xko ln Xl

� D

XkXl

þ Dl �
1

Xk

� o ln D

o ln Xk

;

8k; l ¼ 1; . . .;K and k 6¼ l

Appendix 2

This appendix derives the first, second, and cross partial

analytical derivatives of m̂ðzÞ with respect to the lth con-

tinuous variable zl.

m̂ðzÞ ¼
Xn

i¼1

AiðzÞYi

where

AiðzÞ ¼
K zi�z

h

� 	

Pn
i¼1 K zi�z

h

� 	

where Yi ¼ � ln X1i, and Kð�Þ is a product kernel function:

Kð�Þ ¼
Yq

s¼1

K
zsi � zs

hs

� �

For the lth continuous variable zl,

K
zli � zl

hl

� �

¼ 1
ffiffiffiffiffiffi
2p
p exp �1

2

zli � zl

hl

� �2
 !

where hl denotes the bandwidth for zl.

orm̂ðzÞ
ozr

l

¼
Xn

i¼1

orAiðzÞ
ozr

l

Yi; 8r ¼ 1; 2

o2m̂ðzÞ
ozlozk

¼
Xn

i¼1

o2AiðzÞ
ozlozk

Yi; 8l 6¼ k:

Therefore, the derivatives of m̂ðzÞ with respect to

continuous z variables can be expressed in terms of the

derivatives of Ai(z) with respect to these variables.

Specifically,
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oAiðzÞ
ozl

¼ Tð�Þ
Pn

i¼1 Kð�Þ
� 	2

o2AiðzÞ
oz2

l

¼
oTð�Þ
ozl

Pn
i¼1 Kð�Þ

� 	2�2Tð�Þ
Pn

i¼1 Kð�Þ
� 	 Pn

i¼1
oKð�Þ
ozl

� �

Pn
i¼1 Kð�Þ

� 	4

o2AiðzÞ
ozlozk

¼
oTð�Þ
ozk

Pn
i¼1 Kð�Þ

� 	2�2Tð�Þ
Pn

i¼1 Kð�Þ
� 	 Pn

i¼1
oKð�Þ
ozk

� �

Pn
i¼1 Kð�Þ

� 	4

where

Tð�Þ ¼ oKð�Þ
ozl

Xn

i¼1

Kð�Þ � Kð�Þ
Xn

i¼1

oKð�Þ
ozl

oTð�Þ
ozl

¼ o2Kð�Þ
oz2

l

Xn

i¼1

Kð�Þ � Kð�Þ
Xn

i¼1

o2Kð�Þ
oz2

l

oTð�Þ
ozk

¼ o2Kð�Þ
ozlozk

Xn

i¼1

Kð�Þ � Kð�Þ
Xn

i¼1

o2Kð�Þ
ozlozk

þ oKð�Þ
ozl

Xn

i¼1

oKð�Þ
ozk

� oKð�Þ
ozk

Xn

i¼1

oKð�Þ
ozl

We can see the derivatives of Ai(z) are functions of Tð�Þ
and its derivatives. In order to calculate Tð�Þ and its

derivatives, we need to calculate the first, second, and cross

partial derivatives of Kð�Þ with respect to the continuous

variables:

oKð�Þ
ozl

¼ zli � zl

h2
l

� �

Kð�Þ

o2Kð�Þ
oz2

l

¼ ðzli � zlÞ2 � h2
l

h4
l

" #

Kð�Þ

o2Kð�Þ
ozlozk

¼ zli � zl

h2
l

� �
zki � zk

h2
k

� �

Kð�Þ; 8l 6¼ k:

Appendix 3

This appendix contains kernel density plots of the gradients

of the IDF when alternative inputs are chosen as the

numeraire input. (Figs. 5, 6)
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