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Abstract In this paper, we propose the copula-based

maximum likelihood (ML) approach to estimate the mul-

tiple stochastic frontier (SF) models with correlated com-

posite errors. The motivation behind the extension to

system of SF regressions is analogous to the classical

generalization to system of seemingly unrelated regres-

sions (Zellner in J Am Statist Assoc 57:348–368, 1962). A

demonstration of the copula approach is provided via the

analysis of a system of two SF regressions. The conse-

quences of ignoring the correlation between the composite

errors are examined by a Monte Carlo experiment. Our

findings suggest that the stronger the correlation between

the two SF regressions, the more estimation efficiency is

lost in separate estimations. Estimation without considering

the correlated composite errors may cause significantly

efficiency loss in terms of mean squared errors in estima-

tion of the SF technical efficiency. Finally, we also conduct

an empirical study based on Taiwan hotel industry data,

focusing on the SF regressions for the accommodation and

restaurant divisions. Our results, which are consistent with

the findings in simulation, show that joint estimation is

significantly different from separate estimation without

considering the correlated composite errors in the two

divisions.

Keywords Maximum likelihood estimation � Copula �
Seemingly unrelated stochastic frontier regressions

JEL Classification C3 � C5 � R3

1 Introduction

Since the pioneering work of Aigner et al. (1977), sto-

chastic frontier (SF) analysis has been widely used in

productivity and efficiency studies to describe and estimate

production, cost, and profit frontier models. Such analysis

typically assumes that a decision-making unit (DMU)

employs a single production process or technology in a

production of an output using multi-inputs. Most of the

econometric techniques have focused on the estimation and

interpretation of a single stochastic frontier regression with

the composite error on inefficiency and statistical noise.

There has been, however, very little discussion in the sto-

chastic frontier literature to extend the single SF regression

to multiple SF regressions settings, which would allow for

the possibility of correlation among composite errors

across SF regressions. The motivation behind the extension

to system of SF regressions is analogous to the classical

generalization to system of seemingly unrelated regres-

sions (Zellner 1962).

Organizations or DMUs often operate multiple produc-

tion divisions or sub-DMUs, with each division supported

by its own set of resource inputs. A tourist hotel, for

example, may provide services of accommodation and

restaurants under separate divisions within the same DMU

hotel management. Given that these divisions would still

belong to the same DMU, they may be subject to the same

random shocks as the parent DMU; and given that these

divisions would share some commonly observed or unob-

served characteristics of the parent DMU, the divisions’

technical efficiencies may well be correlated. In this

circumstance, a system of multiple stochastic frontier
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regressions on the sub-DMUs is a more appropriate rep-

resentation of a DMU’s operation and performance.

In this paper, the stochastic frontier model under con-

sideration focuses on the correlation among a set of indi-

vidual SF regressions, and still assumes independence

between the error components: the statistical noise and the

inefficiency component. The correlation may come from

the correlated statistical noises or the correlated ineffi-

ciency components, or both. This pattern would therefore

seem to suggest that the estimation of these stochastic

frontier regressions should take into account the level of

mutual dependency among them, as opposed to the

regression-by-regression estimation.

Lately, several studies have used the copula method in

studying of stochastic frontier models. Amsler et al. (2011)

use copulas to model time dependence in stochastic frontier

models. Shi and Zhang (2011) consider a copula regression

model for dependence in long-tail distributions. Carta and

Steel (2010) suggest using copulas in modeling multi-

output stochastic frontiers. Various types of dependence of

SF models are investigated with utilizing the copula

method. Smith (2008), on the other hand, proposes a copula

function to link the marginal distributions of correlated

components v and u in order to construct the distribution of

the composite error e.
Copulas, originally introduced by Sklar (1959), pro-

vide a useful method of deriving joint distribution of a

set of random variables given the univariate margins,

especially in the case of nonnormal margins of the SF

composite errors. However, the copula-based likelihood

function of the joint SF regressions requires the compu-

tation of the cumulative distribution function (CDF) of

the composite error. Such computation typically requires

numerical integration procedures, which proves to be

onerous. To facilitate the computation of the copula-

based maximum likelihood estimation, we follow Tsay

et al. (2012) in deriving an easy to implement and

accurate closed-form formula for computing the CDF of

the composite error.

A demonstration of our approach is provided through

the analysis of a set of two SF regressions. The conse-

quences of ignoring the dependence between the two SF

regressions are examined via a Monte Carlo simulation,

where both efficiency and bias in estimation are investi-

gated under various degrees of correlation. The findings of

the simulated experiment suggest that the efficiency gain in

estimation from the system of SF regressions over the

regression-by-regression increases significantly as the

correlated composite errors become stronger. The effi-

ciency gain is particularly significant in estimating the

variances of the symmetric and one-sided errors, which is

crucial in predicting the measures of the technical

efficiency.

Finally, a two-SF regressions model is applied to an

empirical study of the hotel industry in Taiwan, focusing

on the production efficiency in accommodation and res-

taurant divisions. Our results show that both the estimated

production frontiers and technical efficiencies differ sig-

nificantly between the system estimation and the regres-

sion-by-regression estimations. They suggest that ignoring

the interdependence in operations of the two divisions may

cause a downward biased estimator of the technical

efficiency.

While we apply a set of SF regressions to the divisions

or sub-DMUs within a DMU, the accommodation and

restaurant divisions of 50 international grand hotels, we

recognize that the procedure is more generally applicable.

For example, it can be applied to the SF analysis of tem-

poral cross-section data where the ‘‘sub-DMUs’’ are the

departments of a bank, or an efficiency study of the airline

industry where the ‘‘sub-DMUs’’ are firms with correlated

composite errors. The application may extend to macro-

economic settings where the ‘‘sub-DMUs’’ are countries

within the same economic region or block.

The plan of the paper is as follows. In Sect. 2 we

describe a multiple stochastic frontier regressions model

with correlated composite errors. Section 3 proposes a

copula-based joint maximum likelihood estimation of the

frontier regressions. We then turn to the computation issue

of evaluating the Gaussian copula-based likelihood func-

tion in Sect. 4. The comparison of the proposed joint

multiple regressions estimation versus the separated

regression-by-regression is studied via a Monte Carlo

simulation in Sect. 5. An empirical study of the hotel

industry in Taiwan is given in Sect. 6. Lastly, a summary

conclusion is given in Sect. 7.

2 A multiple stochastic frontier regressions model

Suppose the production operations of a DMU consist of

J sub-DMUs (divisions), each of which produces a single

output under the Cobb-Douglas type of production tech-

nology. The production frontiers of the J sub-DMUs are

represented by a set of SF regressions,

y1i ¼ xT
1ib1 þ v1i � u1i;

y2i ¼ xT
2ib2 þ v2i � u2i; i ¼ 1; 2; . . .;N

..

.

yJi ¼ xT
JibJ þ vJi � uJi;

ð1Þ

where yji and xji respectively denote the log output and the

log inputs of the jth sub-DMU (j = 1, 2, …, J) of the DMU

i; vji�Nð0; r2
vj
Þ and uji�Nþð0; r2

uj
Þ respectively represent

the noise component and the non-negative inefficiency
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component. For a given j, the sub-DMU’s vji and uji are

assumed to be mutually independent. Thus, for any given

SF regression, the noise component is uncorrelated with the

inefficiency component, which is a standard assumption in

a single stochastic frontier modeling.1

When the composite error is defined as eji ¼ vji � uji, the

correlations among the composite errors eji are the conse-

quence of the correlation in vji and the correlation in uji.

Across the SF regressions in (1), uji and usi are correlated

due to the sharing of the same common characteristics

among the J sub-DMUs within a DMU. Similarly, across

the SF regressions, vji and vsi are allowed to be correlated

for j = s, possibly due to common stochastic shocks to the

DMU and its sub-DMUs. Conversely, however, in our

model, the correlation of the composite errors is not

decomposable to the correlation in vji or to the correlation

in uji. Nevertheless, we should be able to show that the SF

regression-by-regression estimation of (1) is less efficient

than the system estimation, especially for r2
vj

and r2
uj

.

In estimating a standard single sector’s stochastic fron-

tier (SF) regression model using the maximum likelihood

(ML) approach, it is often assumed that the noise compo-

nent vji follows a normal distribution, and that the ineffi-

ciency component uji follows a half-normal (or truncated-

normal) distribution. In this case, the derivations of the

probability density function (PDF) of the composite error

eji and the ML estimator of a single SF regression are

relatively straightforward. However, computation of the

likelihood function in the joint estimation of (1) with cor-

related composite errors is sometimes tedious in the ana-

lytic form if no further simplified assumptions are imposed.

For instance, Wang and Ho (2010) assume the scaling

property in the distribution of u to simplify the model. Pitt

and Lee (1981) use a multivariate truncated normal dis-

tribution but the computation of likelihood function

involves T-dimensional integrals, which requires numerical

approximation and the precision of the approximation may

be an issue. We therefore propose the copula approach as

the means of constructing the joint probability of e1i; . . .; eJi

in (1). In Sect. 3 we begin with some basics on the copula,

and then construct the likelihood function of the system of

SF model by the copula approach.

3 Copula and the ML estimator

Let hj ¼ ðbT
j ; rvj; rujÞT be a vector of parameters in the jth

SF regression, and FjðejiÞ ¼ Fðeji; hjÞ be the cumulative

distribution function (CDF) of the composite error of the

jth SF regression with the vector of parameters hj. In order

to simplify the notation in our following analysis, we

suppress hj in the marginal CDF Fðeji; hjÞ and use the

subscript j to indicate the jth SF regression, so FjðejiÞ will

be used instead in our following analysis.

In deriving the joint CDF of J random variables, we rely

on the results of Sklar’s theorem (1959), and Schweizer

and Sklar (1983), in which the joint CDF can be expressed

as a function of its own one-dimensional margins. The

function is the copula. More specifically, the joint CDF of

the composite errors ei ¼ e1i; . . .; eJið Þ from the J SF

regressions can be represented by a J-copula function C(�),
F e1i; . . .; eJið Þ ¼ C F1ðe1iÞ; . . .;FJðeJiÞ; qð Þ ð2Þ

where q is a vector of parameters of the copula called the

dependence parameter, which measures dependence

between the marginal CDFs. Thus, the joint distribution of

the composite errors ei ¼ e1i; . . .; eJið Þ is expressed in terms

of the marginal distributions, and the copula function binds

them together. The advantage of copula function repre-

sentation in (2) is that, while each SF regression in (1)

corresponds to a separate FjðejiÞ, it allows us to identify the

dependence among the multiple SF regressions through the

dependence in their marginal CDFs. Therefore, the copula

approach is an appropriate technique of studying the cor-

related stochastic frontier regressions. It has been shown

that the copula function C(�) is unique if F1ð�Þ; . . .;FJð�Þ are

all continuous.2 Furthermore, since 0�FjðejiÞ� 1, the

copula function can be viewed as multivariate distribution

of uniform U[0, 1] variables with the dependence param-

eter q.

In general, different copula functions capture different

dependence structures. One special case is the product

copula where C F1ðe1iÞ; . . .;FJðeJiÞ; qð Þ ¼
QJ

j¼1 FjðejiÞ. It

follows then, from (2), that F e1i; . . .; eJið Þ ¼
QJ

j¼1 Fj eji

� �
.

Hence, the product copula implies the mutual indepen-

dence among e1i, …, eJi, or the independence among the

J SF regressions.

For the maximum likelihood estimation, the joint PDF,

f(e1i, …, eJi), instead of the joint CDF, F(e1i, …, eJi), is

required. By taking the derivatives of (2) with respect to

e1i, …, eJi, the corresponding joint PDF is obtained,

1 This independence assumption of the error components in a single

SF regression setting has been relaxed in the studies by Pal and

Sengupta (1999), Pal (2004), Bandyopadhyay and Das (2006), and

Smith (2008). However, these studies are all confined to a single

regression case. 2 See section 2.2.2 of Trivedi and Zimmer (2005).
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f e1i; . . .; eJið Þ ¼ c F1 e1ið Þ; . . .;FJ eJið Þ; qð Þ � P
J

j¼1
fj eji

� �
; ð3Þ

where c F1 e1ið Þ; . . .;FJ eJið Þ; qð Þ ¼ oJ C F1 e1ið Þ;...;FJ eJið Þ;qð Þ
oF1 e1ið Þ;...;oFJ eJið Þ is the

copula density and fj(eji) is the marginal PDF. In the case of

product copula, we have c(�) = 1, and it follows from (3)

that the joint PDF is the product of the marginal PDFs.

Several multivariate copulas can be used in (2) under

this framework. Further extensions of the proposed

approach to other copula functions should be able to follow

the same procedure with a similar calculation. For instance,

the multivariate Student’s t copula, Archimedean copula,

Gumble n-coplua, and Clayton n-copula, see Cherubini

et al. (2004) for a systematic review of the copula

functions.

For the joint estimation of the multiple SF regressions in

(1), we use the Gaussian copula to derive the J-dimensional

distribution function F(e1i, …, eJi) in (2). The Gaussian

copula takes the form3

C c1i; . . .; cJi; Xð Þ ¼UJ U�1ðc1iÞ; . . .;U�1ðcJiÞ; X
� �

;

¼
ZU�1ðc1iÞ

�1

. . .

ZU
�1ðcJiÞ

�1

� 1

2pð ÞJ=2jXj1=2
e�

1
2
zT X�1ð Þzdz1. . .dzJ ;

ð4Þ

where U(�) is the CDF of the standard normal distribution,

and UJ(�) is the CDF of a standard J-variate normal

distribution of the random variables with the J 9 J

correlation matrix X = [Xjs], i.e., the diagonal elements

are Xjj = 1, and the off-diagonal elements Xjs are the

correlation coefficients between two variables, U-1(cji) and

U-1(csi). The corresponding Gaussian copula density of (4)

is

c c1i; . . .; cJi; Xð Þ ¼ 1

jXj1=2
e�

1
2f

T
i X�1�IJð Þfi ; ð5Þ

where fi ¼ U�1ðc1iÞ; . . .;U�1ðcJiÞ
� �T

and IJ is a J 9 J

identity matrix.

Replacing cji = Fj(eji) in (4), the joint CDF of the

composite errors in (2) becomes,

F e1i; . . .; eJið Þ ¼ UJ U�1 F1ðe1iÞð Þ; . . .;U�1 FJðeJiÞð Þ; X
� �

:

ð6Þ

The corresponding joint PDF of the composite errors in

(3) becomes,

f e1i; . . .; eJið Þ ¼c F1 e1ið Þ; . . .;FJ eJið Þ; Xð Þ � P
J

j¼1
fj eji

� �

¼ 1

jXj1=2
e�

1
2
fT

i X�1�IJð Þfi � P
J

j¼1
fj eji

� � ð7Þ

where fi ¼ U�1 F1ðe1iÞð Þ; . . .;U�1 FJðeJiÞð Þ
� �T

. Note that

the off-diagonal elements of X measure the correlation

coefficients between two variables, U�1 FjðejiÞ
� �

and

U�1 FsðesiÞð Þ. Thus, if the off-diagonal elements of X are all

zeros, X becomes a J 9 J identity matrix, i.e., X = IJ. In

this case, the Gaussian copula density c(�) = 1 and

f e1i; . . .; eJið Þ ¼ P
J

j¼1
fj eji

� �
, which implies the mutual inde-

pendence of the composite errors ei = (e1i, …, eJi), and

hence the mutual independence of the SF regressions in (1).

Here, the dependence parameter q in (2) is defined as the

column vector obtained by stacking the column vectors of

the off-diagonal lower triangular matrix of X in (4).

Therefore, based on (7) we may write the log-likelihood

function of the J multiple SF regressions of (1) as

ln LðhÞ ¼
XN

i¼1

ln f e1i; . . .; eJið Þ;

¼
XN

i¼1

ln c F1 e1ið Þ; . . .;FJ eJið Þ; Xð Þ þ
XN

i¼1

XJ

j¼1

ln fj eji

� �

ð8aÞ

¼ �N

2
ln jXj � 1

2

XN

i¼1

fT
i X�1 � IJ

� �
fi

þ
XN

i¼1

XJ

j¼1

ln fj eji

� �
; ; ð8bÞ

where h ¼ hT
1 ; . . .; hT

J ; q
T

� �T
and hj’s are vectors of

parameters of the jth SF regression. Therefore, the ML

estimator of h is defined as

ĥ ¼ arg max
h2H

ln LðhÞ;

where H denotes the parameter space of h. Under the

regularity conditions for the asymptotic maximum

likelihood theory, the ML estimator can be shown to be

consistent, asymptotic efficient and asymptotic normal,4

that is,

ffiffiffiffi
N
p

ĥ� h0

� �
! N 0; I�1ðh0Þ

� �
;

where I(h0) is the usual Fisher’s information matrix and h0 ¼
h1;0; . . .; hJ;0; q
� �

denotes the vector of true parameters.

The objective function in (8a) and (8b) give us further

insight on the difference in the estimators by separate

3 See Proposition 4.1 of Cherubini et al. (2004). 4 See Serfling (1980).
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estimation and joint estimation. The first term in (8a)

captures the correlations between the equations; while the

second term is the log-likelihood function obtained by

separate regression. Although the separate regression may

still give consistent estimates and also valid standard errors

under correctly specified marginal densities; however, the

standard errors are inefficient. Given the marginal specifi-

cation, maximizing (8a) gives consistent and more efficient

ML estimator if the correct copula density is included.

Empirically, we never know if the copula density is true;

therefore, the log-likelihood function may be referred as

the log quasi-likelihood function. The derived quasi-max-

imum likelihood (QML) estimator, which is still consistent

(in the sense of the best approximation) but has an invalid

standard error. Compared with the separate regression, we

still have efficiency gain. However, in this case it is nec-

essary to compute the ‘‘sandwich’’ estimator in order to

obtain the correct standard errors.

Some existing tools are helpful in choosing a correctly

specified copula. For instance, the goodness of fit tests

reviewed in Genest et al. (2009) or the moment test sug-

gested by Amsler et al. (2011). Alternatively, if there are

many candidate copula functions, the commonly used

model selection criteria, such the Akaike information cri-

terion (AIC) or Bayesian information criterion (BIC) can

be also used in deciding the proper copula. See Trivedi and

Zimmer (2005) for more discussion on the model selection

criteria. For a further consideration, it seems that we are

able to implement the Hausman test by comparing the

difference in the estimators of separate and joint estima-

tion.5 If the copula function is misspecified, the two esti-

mators will have different probability limits.

The model specification test devised by Hausman (1987) can

be applied to test for the specification of copulas. The essential

idea of Hausman (1987) is that the covariance of an efficient

estimator with its difference from an inefficient estimator is

zero, i.e., Cov ĥS � ĥJ ; ĥJ

� �
¼ 0, which suggests that

Var ĥS � ĥJ

� �
¼ Var ĥS

� �
� Var ĥJ

� �
;

where the subscript S and J denote separate and joint

estimation, respectively. Therefore, the Hausman’s Chi-

squared test statistics is

W ¼ ĥS � ĥJ

� �T

Var ĥS � ĥJ

� ��1

ĥS � ĥJ

� �
� v2ðkÞ;

where k is the number of common parameters in the sep-

arate and joint estimation.

Finally, some measures of the dependence structure

between the two SF regressions can be obtained by the

transformations from the Gaussian copula parameter

matrix X = [Xjs]. Taking the transformation according to

the distribution function,6 one can show that the linear

correlation between Fj(eji) and Fs(esi) is

qFj;Fs
¼ 6

p
arcsin

Xjs

2

� �

;

which measures the correlation of the two SF regressions

(j and s) in terms of the CDF of eji and esi and is also called

the Spearman’s rank correlation coefficient of eji and esi.

Alternatively, another dependence measure is concor-

dance. For example, two observations ðe1i1 ; e2i1Þ and

ðe1i2 ; e2i2Þ of a pair ðe1i; e2iÞ of composite errors are con-

cordant if both values of one pair are greater than the

corresponding values of the other pair, that is if e1i1 [ e1i2

and e2i1 [ e2i2 , or e1i1\e1i2 and e2i1\e2i2 . The discordance

is defined in the opposite way; in other words, e1i and e2i

are said to be discordant if e1i1 [ e1i2 and e2i1\e2i2 , or

e1i1\e1i2 and e2i1 [ e2i2 . The measure of the concordance is

also called the Kendall’s coefficient, which is defined as

s12 ¼ Pr e1i1 � e1i2ð Þ e2i1 � e2i2ð Þ[ 0ð Þ
� Pr e1i1 � e1i2ð Þ e2i1 � e2i2ð Þ\0ð Þ:

Intuitively, Kendall s measures the difference between the

probability of concordance and that of discordance for two

composite errors. It can be shown that Kendall s can also

be transformed from the Gaussian copula parameter X. The

concordance between eji and esi of the two SF regressions

(j and s) is

sjs ¼
2

p
arcsin Xjs

� �
:

Although we may obtain certain dependence measures

of the SF regressions through the direct transformation of

the copula parameter X, the interpretation of the measure is

limited to the composite errors. How much correlation

between eji and esi is attributed to (vji, vsi) or (uji, usi) cannot

be further identified.

4 Computation issue

The maximum likelihood estimation in (8) requires the

evaluation of the PDF fj eji

� �
and the inverse (quantile) of

the distribution function Fj(eji) in the vector

fi ¼ U�1 F1ðe1iÞð Þ; . . .;U�1 FJðeJiÞð Þ
� �T

. As shown by

Aigner et al. (1977), the PDF of the composite error eji is

fj eji

� �
¼ 2

rj

/
eji

rj

� �

U � ejikj

rj

� �

; ð9Þ

where rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

vj þ r2
uj

q
, kj ¼ ruj

rvj
, and /(.) and U(.) are the

standard normal PDF and CDF, respectively. The

5 We thank the associate editor for this suggestion. 6 See Cherubini et al. (2004) for the details.
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computation of the PDF fj(eji) is relatively easy and routine.

However, the computation of CDF Fj(eji) is not trivial.

Since the closed form evaluation of CDF does not exist, it

typically requires some numerical integration procedures

or the use of simulation to approximate the integration

(Greene 2003, 2010) in computing Fj(eji). Recently Tsay

et al. (2012) have suggested a method utilizing some

mathematical approximation functions to obtain the closed

form of the CDF of eji = vji ? uji, and shown that the

approximation error is less than 10-5. Here, we follow a

similar computation procedure and derive the closed form

for the case of eji = vji - uji.

For simplicity of presentation, the subscripts of variables

and function are omitted. Given the PDF f(e) in (9), the

corresponding CDF F(Q) of e at point Q is

Pr e�Qð Þ ¼ FðQÞ ¼ 2

r
IðQÞ; ð10Þ

where

IðQÞ ¼
ZQ

�1

Z�ek
r

�1

/ nð Þdn

0

B
@

1

C
A/

e
r

� �
de:

It follows that the evaluation of the CDF of e requires the

computation of I(Q).Define a sign function

signðnÞ ¼
1; if n[ 0;
0; if n ¼ 0;
�1; if n\0:

8
<

:

and an error function

erf nð Þ ¼ 2

Z
ffiffiffiffi
2p
p

0

/ðtÞdt ¼ 2Uð
ffiffiffi
2
p

nÞ � 1:

Let a ¼ �k
r;, b ¼ 1

r. Following the approach of Tsay et al.

(2009), we may show that the function I(Q) can be

approximated by

IðQÞ � 1

2b
1þ

erf bQffiffi
2
p

� �

2b
� 1� sign Qð Þ

2

� �
2

4

3

5

� 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2c2

p exp
a2c2

1

4 b2 � a2c2ð Þ

� �

� 1þ erf
�ac1 �

ffiffiffi
2
p

Q b2 � a2c2ð ÞsignðQÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2c2

p
� �	 


;

where c1 and c2 are known constants.7 Further details about

the derivation of (11) can be found in Tsay et al. (2012).

5 A Monte Carlo simulation

In this section we conduct a Monte Carlo simulation based

on a two SF regressions model. The data-generating pro-

cess (DGP) is set as the following

Regression 1 ðF1Þ : y1 ¼ b10 þ b11x1 þ e1;

Regression 2 ðF2Þ : y2 ¼ b20 þ b21x2 þ e2;
ð12Þ

where ej ¼ vj � uj; j ¼ 1; 2. The parameters are set as

b10 ¼ 1; b11 = 1, b20 = 0.5, and b21 = 1.5. The distribu-

tions of the symmetric stochastic errors are assumed to be

normal with unequal variances, i.e., vj�Nð0; r2
vjÞ, the one-

sided errors are assumed to follow the half normal distri-

butions, i.e., uj�Nþð0; r2
ujÞ, and the corresponding trans-

formed parameters specified in (12) are rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

vj þ r2
uj

q

and kj ¼ ruj

rvj
. In our following simulations, three different

settings of the parameters about r2
uj and r2

vj are specified

and summarized below:

Case 1 r2
v1 ¼ 1:6; r2

u1 ¼ 0:4,r2
v2 ¼ 5:55 andr2

u2 ¼ 0:5.

The transformed parameters are r1 = 1.4142, r2 = 2.4597,

and k1 = 0.5, k2 = 0.3.

Case 2 rv1
2 = 0.15, ru1

2 = 0.4,rv2
2 = 0.2 and ru2

2 = 0.5.

The transformed parameters are r1 = 0.7416, r2 = 0.8367,

and k1 = 1.63, k2 = 1.58.

Case 3 rv1
2 = 0.025, ru1

2 = 0.4, rv2
2 = 0.056 and

ru2
2 = 0.5. The transformed parameters are r1 = 0.6519,

r2 = 0.7457, and k1 = 4, k2 = 2.99.

Among these cases, we have set, kj, the ratios of

rujandrvj, increasing from Case 1 to Case 3 in order to

demonstrate the effect of k on the estimates of separate and

joint estimation. With known r1, r2, k1, and k2, we are able

to find F1(e1) and F2(e2) for any given e1 and e2.

We assume that the dependence between the com-

posite errors, e1 and e2, and hence the dependence

between the dependent variables, y1 and y2, is captured

by the Gaussian copula with the copula parameter q.

Thus the Gaussian copula representation of the joint

CDF of e1 and e2 is

F e1; e2ð Þ ¼C F1ðe1Þ;F2ðe2Þ; qð Þ
¼U2ðf1; f2; qÞ

where fj = U-1(Fj(ej)). As shown in (4), f1 and f2 follow a

standard bivariate normal distribution with the correlation

coefficient q. With the copula representation in place, the

steps of generating the composite errors e1 and e2 for the

simulation are stated as follows:

Step 1 Draw two independent random variables, z1 and

z2, from N(0, 1).

7 Tsay et al. (2012) have shown that c1 = -1.0950081470333 and

c2 = -0.75651138383854.
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Step 2 Compute f1 = z1 and f2 ¼ z1qþ z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
such

that f1 and f2 follow a standard bivariate normal distribu-

tion with correlation coefficient q.

Step 3 Compute c1 = U(f1) and c2 ¼ Uðf2Þ from normal

distribution CDF. c1 and c2 are the probability integral

transformations of f1 and f2.

Step 4 Finally, the composite errors, e1 and e2, are gen-

erated by the inverse CDF, e1 ¼ F�1
1 ðc1Þ and e2 ¼

F�1
2 ðc2Þ.8

Step 5 Given the parameters b10, b11, b20, and b21 and

also the exogenous variables x1 and x2, the dependent

variables y1 and y2 are generated from the SF regressions in

(12).

It is worth emphasizing that the composite errors e1 and

e2 generated in Step 4 are correlated, and the dependence

may implicitly come from either the correlation between

v1 and v2, or between u1 and u2, or both.

In our simulation, the number of replications is set to be

1,000 and the small sample performance is investigated

with the sample sizes N = 200, 500. Various degrees of

dependence structure are tried experimentally with the

dependence parameter q = 0.1, 0.3, 0.5, 0.7, 0.9 consid-

ered. Both of the exogenous variables x1 and x2 are inde-

pendently drawn from uniform distributions over the range

[1, 2] and have been kept fixed over the replications, only

e1 and e2 are redrawn in each replication.

The performance comparisons of the separate and joint

estimators are based on the relative mean squared errors

(RMSE). Two sets of estimators are evaluated: the coeffi-

cients of the frontier part, (b10, b11, b20, b21), and the

variances of error components, (rv1
2 , ru1

2 , rv2
2 , ru2

2 ). The

relative performance of the estimators are investigated by

the RMSEs, which are defined as

RMSE(kÞ ¼ MSESðkÞ
MSEJðkÞ

;

where k stands for the regression coefficients or the

variances of error components. The subscript ‘S’ denotes

separate estimation and ‘J’ denote joint estimation,

respectively. Therefore, RMSE(k) [ 1 is equivalent to

that MSES(k) [ MSEJ(k). Similarly, we also use the

relative efficiency (RE), defined as the relative variance

of the estimators,

RE(kÞ ¼ VarSðkÞ
VarJðkÞ

;

to investigate the efficiency gain. The simulated results of

RMSE and RE under Cases 1–3 are summarized in

Tables 1 and 2, respectively.

A few findings from Table 1 are worthy of mention.

First, Table 1 shows that almost all RMSEs are greater than

1, except for few cases having RMSEs equal to 0.99 when

q = 0.1 and N = 200. The joint estimation shows signifi-

cantly better in the mean squared errors performance than

the separate estimation when there is some dependence

between the two regressions. The superiority of the joint

estimation over the separate estimation shows even more

clearly in the estimation of variances of the SF error

components, rvj
2 and ruj

2 because of the relatively high

values of RMSEs. This finding suggests that incorporating

the correlation between the SF regressions may signifi-

cantly increase the efficiency in estimating the variances,

and thus the efficiency in predicting the technical

efficiency.

Second, for a fixed n and k, the RMSEs tend to increase

as the dependence of the two regressions gets stronger,

which suggests that the loss of estimation efficiency will

worsen when the dependence between the two sectors

increases in strength.

Third, for each fixed q and k, the RMSEs for the b
coefficients as well as rvj

2 and ruj
2 increase when the sample

size increases from 200 to 500, which is consistent with the

implications of the large sample theory. Therefore, we may

conclude that the overall performance of the estimators

under joint estimation is in general better than that under

separate estimation. In other words, if the dependence

structure is ignored in the estimation process, the loss of

estimation efficiency will, as expected, worsen as the

dependence between the two sectors becomes stronger or

as the sample size increases. Cases 2 and 3 also suggest

similar findings as k, the ratio of ru and rv, becomes larger

in the two regressions.

Finally, by comparing Cases 1–3 we also find that the

RMSEs of ru and rv for all q’s significantly increase, which

indicates that as k increases the joint estimation also

become significantly better in the mean squared errors

performance than the separate estimation even for fixed N

and q.

Similar findings are also found in the REs. Most REs are

greater than 1, except for ru1
2 , ru2

2 and few cases when

n = 200 and q = 0.1. The joint estimation indeed shows

higher efficiency gain than the separate estimation, espe-

cially when the dependence of the two regressions gets

stronger or the sample size increases.

In addition to RMSEs and REs, we also investigate the

bias of the estimators obtained by separate and joint esti-

mations. The estimated biases of the parameters, b10; b11;

r2
v1; and r2

u1 in Regression 1 and b20; b21; r
2
v2; and r2

u2 in

8 Since the close form of the inverse CDF is not available, we first

compute, via (10), the numerical CDF at 10,000 points, and then

apply the inverse of this numerical CDF at given c to obtain e.
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Regression 2, under Cases 1–3 with sample size N = 200,

500 are summarized in Tables 3 and 4.

Tables 3 and 4 do not provide significant evidence

showing that estimators of the frontier coefficients under

joint estimation are definitely better or worse than those

under separate estimation. However, the estimated biases

of the variance estimators, rvj
2 and ruj

2 , under the joint

estimation are much smaller than those under separate

estimation for all q’s. It seems that estimation without

considering the correlation between the SF regressions

cause a lot of loss in efficiency in the variance estimators

and thus in the prediction of technical efficiencies, but

not necessarily for the prediction of the SF frontiers.

Furthermore, by definition k represents the relative con-

tribution of u and v to e. A larger k implies that the

statistical noise plays a relative small role in the com-

posite error. By comparing Cases 1–3 in Tables 3 and 4,

both tables suggest that the degree of estimation bias for

rvj
2 and ruj

2 is alleviated as k increases in both separate

and joint estimation. In summary, it is of fundamen-

tal importance to take into account the interdependence

of the SF regressions from the point of view in reduc-

ing estimation bias and improving the estimation

efficiency.

Table 1 RMSEs of Cases 1–3 when the sample sizes are 200 and 500

q 0.1 0.3 0.5 0.7 0.9

n 200 500 200 500 200 500 200 500 200 500

Regression 1

Case 1: (k1 = 0.5)

b10 1.119 1.190 1.148 1.268 1.309 1.379 1.554 1.544 2.440 2.152

b11 0.995 1.006 1.059 1.096 1.258 1.326 1.809 1.911 4.822 4.985

rv1
2 11.832 24.215 12.116 24.864 12.623 25.397 13.683 26.804 15.992 32.533

ru1
2 1.509 3.396 1.537 3.517 1.610 3.629 1.765 3.863 2.238 5.016

Case 2: (k1 = 1.63)

b10 0.996 1.005 1.027 1.081 1.159 1.267 1.515 1.721 3.034 3.356

b11 0.991 1.001 1.053 1.089 1.247 1.313 1.796 1.901 4.776 4.942

rv1
2 31.978 71.305 32.679 73.877 34.496 79.995 38.548 93.639 49.149 126.459

ru1
2 2.276 6.276 2.309 6.474 2.418 6.955 2.685 8.040 3.388 10.656

Case 3: (k1 = 4)

b10 0.993 1.002 1.044 1.075 1.199 1.256 1.629 1.703 3.617 3.558

b11 0.992 1.003 1.051 1.089 1.230 1.299 1.735 1.844 4.495 4.638

rv1
2 1,254.80 3,143.32 1,292.51 3,237.64 1,385.15 3,486.19 1,599.57 4,053.26 2,176.97 5,609.69

ru1
2 29.613 79.433 29.883 80.750 30.654 83.820 32.457 90.095 36.640 103.400

Regression 2

Case 1: (k2 = 0.3)

b20 1.160 1.243 1.281 1.359 1.412 1.466 1.730 1.579 2.330 2.054

b21 1.002 1.014 1.072 1.100 1.291 1.327 1.919 1.883 5.317 4.800

rv2
2 1.431 1.547 1.434 1.552 1.438 1.554 1.439 1.554 1.444 1.557

ru2
2 1.351 3.037 1.374 3.124 1.439 3.220 1.589 3.444 2.051 4.538

Case 2: (k2 = 1.58)

b20 1.015 1.016 1.084 1.097 1.247 1.272 1.700 1.657 3.244 3.119

b21 0.993 1.011 1.064 1.103 1.282 1.324 1.902 1.884 5.305 4.718

rv2
2 13.127 14.494 13.278 14.662 13.621 14.990 14.258 15.567 15.466 16.514

ru2
2 3.039 5.859 3.076 5.947 3.194 6.168 3.475 6.621 4.173 7.482

Case 3: (k2 = 2.99)

b20 0.996 1.015 1.057 1.101 1.231 1.289 1.720 1.732 3.980 3.552

b21 0.994 1.012 1.056 1.101 1.251 1.317 1.840 1.863 5.195 4.579

rv2
2 111.879 119.977 112.379 120.300 113.216 120.732 114.347 121.284 115.548 122.167

ru2
2 15.631 19.132 15.695 19.171 15.907 19.326 16.400 19.648 17.446 20.206
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6 An empirical example

An empirical application of a model with two related sto-

chastic frontier regressions is applied to a study of the hotel

industry in Taiwan, focusing on production efficiency in

the accommodation and restaurant divisions. The data

come from the annual report of the Taiwan Tourism

Bureau at the Ministry of Transportations and Communi-

cations. Pooled observations of 50 international grand

hotels from 2001 to 2005 has been obtained, providing a

total of 250 sample points for the empirical study. The two

SF regressions, with each representing the operation of the

sub-DMU in the accommodation and in the restaurant

divisions of an international hotel, are specified. Although

the data under consideration is balanced panel, at the cur-

rent stage we do not take into account the firm-specific

effect, such as the fixed effect, in our following analysis

due to the complexity of the panel likelihood function in

this current SF model under consideration. We leave it to

our future study

The output for the accommodation division is measured

in total revenue (y1), while the inputs include the total

number of workers (x11), the total number of rooms (x12),

and other expenses (x13), which includes utilities, materi-

als, maintenance fees, and so on. The output and inputs are

allocable within the accommodation division. The output

for the restaurant division is also measured by the total

revenue (y2) while the corresponding inputs are the total

Table 2 REs of Cases 1–3 when the sample sizes are 200 and 500

q 0.1 0.3 0.5 0.7 0.9

n 200 500 200 500 200 500 200 500 200 500

Regression 1

Case 1: (k1 = 0.5)

b10 1.118 1.187 1.147 1.265 1.308 1.378 1.554 1.542 2.458 2.145

b11 0.995 1.006 1.059 1.094 1.258 1.324 1.810 1.906 4.824 4.969

rv1
2 6.760 6.965 6.891 7.060 7.125 7.183 7.794 7.603 9.194 9.285

ru1
2 0.154 0.153 0.156 0.156 0.163 0.161 0.181 0.172 0.237 0.227

Case 2: (k1 = 1.63)

b10 1.118 1.005 1.023 1.081 1.153 1.268 1.506 1.723 3.008 3.363

b11 0.995 1.001 1.053 1.088 1.247 1.312 1.796 1.897 4.779 4.928

rv1
2 6.760 10.157 10.858 10.526 11.459 11.400 12.794 13.346 16.277 18.028

ru1
2 0.154 0.099 0.096 0.102 0.101 0.109 0.112 0.127 0.140 0.168

Case 3: (k1 = 4)

b10 0.993 1.002 1.043 1.075 1.199 1.256 1.628 1.702 3.618 3.555

b11 0.992 1.003 1.051 1.088 1.230 1.298 1.735 1.841 4.497 4.630

rv1
2 40.924 39.149 42.148 40.328 45.171 43.426 52.211 50.487 71.413 69.863

ru1
2 0.025 0.026 0.025 0.026 0.025 0.027 0.027 0.029 0.031 0.033

Regression 2

Case 1: (k2 = 0.3)

b20 1.160 1.243 1.273 1.345 1.419 1.459 1.790 1.573 2.623 2.107

b21 1.002 1.015 1.072 1.103 1.292 1.332 1.925 1.890 5.339 4.814

rv2
2 6.531 7.086 6.752 7.064 6.603 7.398 7.023 7.798 8.547 9.713

ru2
2 0.161 0.163 0.169 0.172 0.175 0.187 0.200 0.206 0.278 0.278

Case 2: (k2 = 1.58)

b20 1.160 1.017 1.084 1.100 1.246 1.277 1.696 1.667 3.223 3.142

b21 1.002 1.012 1.065 1.104 1.284 1.327 1.909 1.888 5.335 4.726

rv2
2 6.531 10.002 9.863 10.289 10.134 10.951 11.203 12.363 14.382 16.834

ru2
2 0.161 0.100 0.106 0.104 0.116 0.114 0.134 0.131 0.161 0.174

Case 3: (k2 = 2.99)

b20 0.996 1.016 1.058 1.102 1.233 1.292 1.726 1.735 4.009 3.554

b21 0.994 1.012 1.056 1.102 1.254 1.319 1.847 1.866 5.226 4.581

rv2
2 22.774 23.550 22.523 23.803 23.131 24.695 25.683 27.911 37.647 39.691

ru2
2 0.044 0.042 0.047 0.044 0.051 0.046 0.057 0.050 0.069 0.060
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number of workers (x21), the floor area of the restaurant

(x22), and other expenses (x23), including utilities, materi-

als, and so on. Again, these output and inputs are attrib-

utable and accountable within the restaurant division. All

revenues and other expenses are measured in New Taiwan

dollars (NT$). Since these two divisions of a hotel share

certain common characteristics, such as the same DMU,

brand, location… etc.; the outputs y1 and y2 should be

correlated and so are the composite errors. The stochastic

frontier regressions in accommodation and restaurant of a

hotel operation are specified as:

Accommodation: y1i¼b10þb11x11iþb12x12iþb13x13iþ e1i;

Restaurant: y2i¼b20þb21x21iþb22x22iþb23x23iþe2i;

where eji ¼ vji � uji with the assumption of normal-half

normal distribution specification, vji�Nð0; r2
vjÞ and

uji�Nþð0; r2
ujÞ.

The ML estimates of the two SF regression models,

using both separate and joint estimations, are summarized

in Table 5. The separate estimation results are obtained by

estimating the frontier regression in isolation without

consideration of the potential dependence between the two

divisions. The joint ML estimation is conducted with the

dependence of the two regressions specified as the

Gaussian copula with the PDF f e1i; e2ið Þ shown in (4).

The estimated model, either by the separate or the joint

ML estimation shown in Table 5, gives no surprising

results. All estimates have expected signs and, with the

exception of the coefficient of the floor area of restaurant

(x22), are statistically significant at the 5 % level or better.

It is observed in Table 5 that the point estimates yielded by

the separate and joint methods differ. This outcome is to be

expected since different likelihood functions in (8) are

maximized in two methods, unless the dependence

parameter q = 0. The estimated dependence in the

Table 3 Bias of Regression 1 of Cases 1–3 when the sample sizes are 200 and 500

q 0.1 0.3 0.5 0.7 0.9

n 200 500 200 500 200 500 200 500 200 500

Case 1: (k1 = 0.5)

b10(S) -0.0189 -0.0290 -0.0189 -0.0290 -0.0189 -0.0290 -0.0189 -0.0290 -0.0189 -0.0290

b10(J) 0.0005 -0.0059 0.0000 -0.0160 0.0003 -0.0194 0.0166 -0.0178 0.0384 -0.0062

b11(S) 0.0002 -0.0108 0.0002 -0.0108 0.0002 -0.0108 0.0002 -0.0108 0.0002 -0.0108

b11(J) -0.0006 -0.0100 -0.0020 -0.0082 -0.0033 -0.0061 -0.0041 -0.0034 -0.0034 -0.0004

rv1
2 (S) -0.8637 -1.0150 -0.8637 -1.0150 -0.8637 -1.0150 -0.8637 -1.0150 -0.8637 -1.0150

rv1
2 (J) -0.1250 -0.0654 -0.1215 -0.0590 -0.1156 -0.0566 -0.1150 -0.0564 -0.1098 -0.0535

ru1
2 (S) 1.0673 1.1306 1.0673 1.1306 1.0673 1.1306 1.0673 1.1306 1.0673 1.1306

ru1
2 (J) 0.3157 0.1742 0.3081 0.1571 0.2952 0.1523 0.2988 0.1540 0.2905 0.1482

Case 2: (k1 = 1.63)

b10(S) -0.0286 -0.0014 -0.0286 -0.0014 -0.0286 -0.0014 -0.0286 -0.0014 -0.0286 -0.0014

b10(J) -0.0272 -0.0015 -0.0251 -0.0020 -0.0223 -0.0026 -0.0182 -0.0031 -0.0110 -0.0034

b11(S) 0.0005 -0.0042 0.0005 -0.0042 0.0005 -0.0042 0.0005 -0.0042 0.0005 -0.0042

b11(J) 0.0002 -0.0040 -0.0007 -0.0035 -0.0014 -0.0026 -0.0017 -0.0015 -0.0014 -0.0002

rv1
2 (S) 0.2370 0.2456 0.2370 0.2456 0.2370 0.2456 0.2370 0.2456 0.2370 0.2456

rv1
2 (J) 0.0035 0.0016 0.0035 0.0016 0.0033 0.0016 0.0028 0.0015 0.0015 0.0014

ru1
2 (S) -0.2464 -0.2484 -0.2464 -0.2484 -0.2464 -0.2484 -0.2464 -0.2484 -0.2464 -0.2484

ru1
2 (J) -0.0126 -0.0045 -0.0122 -0.0045 -0.0110 -0.0041 -0.0085 -0.0034 -0.0035 -0.0024

Case 3: (k1 = 4)

b10(S) -0.0027 0.0023 -0.0027 0.0023 -0.0027 0.0023 -0.0027 0.0023 -0.0027 0.0023

b10(J) -0.0023 0.0022 -0.0016 0.0018 -0.0007 0.0013 0.0004 0.0007 0.0018 0.0001

b11(S) 0.0006 -0.0021 0.0006 -0.0021 0.0006 -0.0021 0.0006 -0.0021 0.0006 -0.0021

b11(J) 0.0004 -0.0020 0.0000 -0.0018 -0.0004 -0.0013 -0.0007 -0.0007 -0.0007 1.0000

rv1
2 (S) 0.3764 0.3749 0.3764 0.3749 0.3764 0.3749 0.3764 0.3749 0.3764 0.3749

rv1
2 (J) -0.0005 0.0001 -0.0005 0.0001 -0.0005 0.0001 -0.0005 0.0001 -0.0007 0.0001

ru1
2 (S) -0.3755 -0.3749 -0.3755 -0.3749 -0.3755 -0.3749 -0.3755 -0.3749 -0.3755 -0.3749

ru1
2 (J) 0.0015 -0.0001 0.0016 -0.0001 0.0019 2*E-5 0.0028 0.0004 0.0044 0.0010

S and J in the parentheses denote separate and joint estimation, respectively
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Gaussian copula q̂ ¼ 0:6318 is statistically significant at

the 1 % level. The corresponding Spearman’s rank corre-

lation coefficient is 0.7284, which provides evidence of a

significant positive rank correlation between e1 and e2. The

estimated Kendall’s s is about 0.5345.

For the current case, the separate estimation is equiva-

lent to joint estimation with the restriction q = 0 or using

the product copula. Therefore, we adapt the likelihood ratio

(LR) statistics for testing the hypothesis H0: q = 0. The

value of the LR statistics is 103.83 so the Gaussian copula

is suggested. Moreover, both model selection criteria AIC

and BIC consistently suggest the Gaussian copula.

It is also seen from the results in Table 5 that the

application of the joint estimation has resulted in a sig-

nificant reduction (about 12 %) in the standard errors of the

estimated frontier coefficients b̂ as compared with those of

a separate regression-by-regression estimation. Even if the

separate ML estimation provides a consistent estimator of

the parameter, it does not fully incorporate all the infor-

mation relating to the correlation between the two divi-

sions; and thus, the estimates are not as efficient as those

obtained under the joint estimation method. More evidence

is provided through a comparison of the estimated coeffi-

cient of x22, which is insignificant in the separate estima-

tion, and yet significant in the joint estimation at less than

the 1 percent significance level.

For rigorousness, we further conduct the Hausman test

to test for the specification of copula function. Unfortu-

nately, the test statistics is 11.518787, the Gaussian copula

is rejected. Together with the previous LR test result, it

seems that the two divisions have significant dependence;

and the Gaussian copula can give a better approximation of

the true joint density than the product copula (or separate

estimation) but may not represent the true one. Therefore,

the QML standard errors should be considered for further

statistical inferences.

Table 4 Bias of Regression 2 of Cases 1–3 when the sample sizes are 200 and 500

q 0.1 0.3 0.5 0.7 0.9

n 200 500 200 500 200 500 200 500 200 500

Case 1: (k2 = 0.3)

b20(S) 0.3351 0.1296 0.3467 0.1403 0.3438 0.1380 0.3339 0.1564 0.2808 0.1921

b20(J) 0.3111 0.1174 0.2953 0.0866 0.2969 0.1016 0.3040 0.1149 0.3250 0.1669

b21(S) -0.0417 0.0161 -0.0412 0.0117 -0.0378 0.0062 -0.0304 -0.0009 -0.0151 -0.0105

b21(J) -0.0391 0.0209 -0.0383 0.0216 -0.0368 0.0202 -0.0303 0.0167 -0.0168 0.0103

rv2
2 (S) -3.3230 -3.9268 -3.2984 -3.9277 -3.2906 -3.9516 -3.2868 -3.9495 -3.3468 -3.9040

rv2
2 (J) -0.5811 -0.3865 -0.5639 -0.3468 -0.5651 -0.3480 -0.5568 -0.3357 -0.5417 -0.3306

ru2
2 (S) 4.3946 4.6013 4.3785 4.6008 4.3683 4.6116 4.3602 4.6166 4.3808 4.6103

ru2
2 (J) 1.5238 0.9517 1.4615 0.8422 1.4579 0.8566 1.4353 0.8455 1.4113 0.8663

Case 2: (k2 = 1.58)

b20(S) -0.0136 -0.0159 -0.0122 -0.0149 -0.0120 -0.0132 -0.0154 -0.0100 -0.0233 -0.0050

b20(J) -0.0119 -0.0167 -0.0104 -0.0164 -0.0081 -0.0152 -0.0062 -0.0127 -0.0052 -0.0082

b21(S) -0.0109 0.0035 -0.0109 0.0024 -0.0101 0.0010 -0.0079 -0.0006 -0.0038 -0.0029

b21(J) -0.0112 0.0042 -0.0111 0.0041 -0.0104 0.0038 -0.0086 0.0033 -0.0049 0.0021

rv2
2 (S) 0.2898 0.2912 0.2914 0.2905 0.2925 0.2902 0.2915 0.2912 0.2885 0.2930

rv2
2 (J) 0.0032 0.0011 0.0025 0.0012 0.0016 0.0013 0.0009 0.0014 0.0002 0.0014

ru2
2 (S) -0.2968 -0.2988 -0.2978 -0.2986 -0.2986 -0.2984 -0.2987 -0.2984 -0.2979 -0.2983

ru2
2 (J) -0.0100 -0.0086 -0.0087 -0.0088 -0.0067 -0.0084 -0.0044 -0.0069 -0.0012 -0.0042

Case 3: (k2 = 2.99)

b10(S) 0.0095 -0.0044 0.0094 -0.0033 0.0083 -0.0018 0.0060 0.0002 0.0014 0.0030

b10(J) 0.0098 -0.0050 0.0100 -0.0049 0.0095 -0.0045 0.0087 -0.0037 0.0070 -0.0021

b11(S) -0.0085 0.0018 -0.0084 0.0010 -0.0074 0.0001 -0.0060 -0.0010 -0.0033 -0.0027

b11(J) -0.0087 0.0022 -0.0086 0.0022 -0.0077 0.0022 -0.0063 0.0020 -0.0038 0.0014

rv1
2 (S) 0.4458 0.4423 0.4459 0.4422 0.4464 0.4424 0.4459 0.4429 0.4451 0.4435

rv1
2 (J) -0.0003 -0.0004 -0.0006 -0.0004 -0.0009 -0.0004 -0.0013 -0.0003 -0.0017 -0.0001

ru1
2 (S) -0.4444 -0.4444 -0.4446 -0.4444 -0.4449 -0.4444 -0.4450 -0.4443 -0.4449 -0.4441

ru1
2 (J) 0.0018 -0.0016 0.0022 -0.0016 0.0031 -0.0011 0.0048 -0.0002 0.0074 0.0011

S and J in the parentheses denote separate and joint estimation, respectively
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With the ML estimates of the stochastic frontier

regressions, we further compare the estimates of the indi-

vidual hotel’s technical efficiency based on the separated

and joint methods. Following Battese and Coelli (1988),

we define the technical efficiency of the jth division of ith

hotel as the conditional expectation, TEji ¼ E e�uji jeji

� �
.

Under the normal-half normal distribution assumption, the

estimated technical efficiency is

cTEji ¼
1� U r̂�j � l̂�ji=r̂�j

� �

1� U �l̂�ji=r̂�j
� � e�l̂�jiþ1

2
r̂2
�j ;

where l̂�ji ¼ �êjir̂2
uj=r̂

2
j and r̂2

�j ¼ r̂2
ujr̂

2
vj=r̂

2
j . We empha-

size that, in the joint estimation, the prediction êji ¼
yji � xT

ji b̂j should represent the predicted composite errors

calculated from the joint estimates of b; and in the sep-

arated estimation, the predicted composite errors should

be those calculated from the regression-by-regression

estimates of b. Obviously, these two predicted composite

errors calculated from the joint and separated estimations

are not the same unless the estimated dependence q̂ is

zero.

The summary statistics of the technical efficiency levels

of the two divisions are given in Table 5, which shows that,

under the separate estimation method, the sample mean

predicted technical efficiencies in both divisions are con-

sistently smaller than those obtained under the joint esti-

mation method. This result seems to suggest that the

efficiency levels are underestimated in the separate esti-

mation method as a result of the failure to consider the

Table 5 The separate and joint ML estimation results

Regression Variables Coefficients

Separate estimation Joint estimation

Accommodation: y1 x11 0.4139 (0.0458)*** 0.2750 (0.0400)*** [0.0532]***

x12 0.1002 (0.0501)** 0.1842 (0.0386)*** [0.0483]***

x13 0.6034 (0.0271)*** 0.6311 (0.0230)*** [0.0338]***

Constant 6.1910 (0.4091)*** 5.7665 (0.3593)*** [0.5131]***

rv
2 0.0309 (0.0124)*** 0.0440 (0.0154)*** [0.0153]***

ru
2 0.0507 (0.0360)*** 0.0189 (0.0413)*** [0.0398]***

Estimated TE Mean 0.84252 0.89942

s.d. 0.06702 0.02670

min 0.62137 0.79716

max 0.94887 0.94951

Restaurant: y2 x21 0.3129 (0.0308)*** 0.2574 (0.0302)*** [0.0403]***

x22 0.0313 (0.0216) 0.0696 (0.0191)*** [0.0154]***

x23 0.7755 (0.0335)*** 0.7575 (0.0300)*** [0.0409]***

Constant 3.1455 (0.4452)*** 3.4775 (0.4043)*** [0. 5306]***

rv
2 0.0059 (0.0018)*** 0.0083 (0.0022)*** [0.0023]***

ru
2 0.0836 (0.0112)*** 0.0800 (0.0114)*** [0.0119]***

Estimated TE Mean 0.80813 0.81200

s.d. 0.12038 0.11335

min 0.43599 0.43755

max 0.97263 0.96527

Copula parameter q – 0.6318 (0.0089)*** [0.0138]***

Log-likelihood Accommodation 22.347

Restaurant 74.115

Total 96.462 148.379

# of parameters 12 13

Model selection AIC -168.924 -270.7582

BIC -126.667 -224.9793

Correlation qF1 ;F2
– 0.7284 (0.0647)*** [0.1004]***

s12 – 0.5345 (0.0310)*** [0.0482]***

The Chi-squared test statistic W = 11.52 [ v0.05
2 (12) = 5.23. LR test statistics = 103.83426 [ v0.05

2 (1) = 0.00393

*, **, and *** represent p-values less than 0.1, 0.05, and 0.01, respectively

Numbers in the parentheses and brackets are the ML and QML (using the ‘‘sandwich’’ formula) standard errors, respectively
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potential dependency between the two divisions within the

same hotel management.

Table 6 shows the sample correlation coefficients to

technical efficiency between the two divisions from the

joint and separated methods. The joint method shows a

much higher correlation coefficient between the two divi-

sions than the counterpart under the separate method,

0.6158 versus 0.5417. Although the magnitude of technical

efficiency measures varies by method, the ordering of the

estimated individual technical efficiency, as indicated by

the correlation between two methods, is fairly high, 0.9751

in the accommodation division and 0.9810 in the restaurant

division. However, it seems that the separate regression-by-

regression method is likely to underestimate the joint-

interrelated hotel operations. What it is important to realize

is that it makes good sense to use the joint method in

estimating the seemingly unrelated stochastic frontier

regressions.

7 Conclusions

In this paper, we have presented a copula-based maximum

likelihood approach to estimate the multiple stochastic

frontier regressions with correlated composite errors. The

joint estimation of the multiple SF regressions is more

efficient than the separate regression-by-regression esti-

mation, as the joint approach takes into consideration the

correlation among composite errors. The rationale behind

the joint estimation of SF regressions is analogous to the

classical generalization to system of seemingly unrelated

regressions.

Our simulation of a model with two related stochastic

frontier regressions demonstrates that joint estimation

provides relatively more efficient estimators for parameters

than those in the separate estimation. Moreover, we also

found that ignoring the dependence between regressions

will also cause severe bias in estimating the technical

efficiencies; however, it may not have similar effects on the

frontier prediction or parameters in the frontier part. In

those cases where there are correlations between the dif-

ferent stochastic frontier regressions, it is of fundamental

importance for the dependence structure to be taken into

consideration in the model estimation. Finally, we conduct

an empirical study of the hotel management in accommo-

dation and in restaurant division in Taiwan. Our results

show that both the frontier estimates and predicted tech-

nical efficiencies differ significantly if the dependence

structure is ignored. In particular, the predicted individual

technical efficiencies may be underestimated for both

regressions in separate estimation.

Following a similar procedure, the multiple stochastic

frontier regressions of microeconomic temporal cross-sec-

tion data can be extended to macroeconomic settings where

the individual regressions are countries within the same

economic region or block. The Gaussian copula-based

approach of estimating a system of stochastic frontier

regressions proposed in this paper can also be further

modified to various measures of dependence structures

among the regressions by incorporating different copula

functions. We leave such analysis to future study.
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