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Abstract In most empirical studies, once the best model

has been selected according to a certain criterion, subsequent

analysis is conducted conditionally on the chosen model. In

other words, the uncertainty of model selection is ignored

once the best model has been chosen. However, the true data-

generating process is in general unknown and may not be

consistent with the chosen model. In the analysis of pro-

ductivity and technical efficiencies in the stochastic frontier

settings, if the estimated parameters or the predicted effi-

ciencies differ across competing models, then it is risky to

base the prediction on the selected model. Buckland et al.

(Biometrics 53:603–618, 1997) have shown that if model

selection uncertainty is ignored, the precision of the estimate

is likely to be overestimated, the estimated confidence

intervals of the parameters are often below the nominal level,

and consequently, the prediction may be less accurate than

expected. In this paper, we suggest using the model-averaged

estimator based on the multimodel inference to estimate

stochastic frontier models. The potential advantages of the

proposed approach are twofold: incorporating the model

selection uncertainty into statistical inference; reducing the

model selection bias and variance of the frontier and tech-

nical efficiency estimators. The approach is demonstrated

empirically via the estimation of an Indian farm data set.
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1 Introduction

Model selection is commonly used in empirical studies and

serves as a tool to select the best model among the competing

ones. Once a model has been chosen, subsequent analyses are

conditional on the selected model without considering the

uncertainty regarding model selection. However, model

selection can be highly variable and the selected model is not

necessarily true by definition.1 Even if the data-generating-

process (DGP) is fixed, different model selection criteria

may result in different choices of models. It is often the case

that no single model is clearly superior to the other models.

Therefore, it may be risky to base the empirical analysis or

prediction on a single model. In this paper, we propose using

model averaging to analyze stochastic frontier (SF) models

as an alternative to a single model inference.

Since the pioneered works of Aigner et al. (1977), SF

analysis has been widely used in productivity and effi-

ciency studies to describe and estimate models of the

production frontier. However, there are only limited sys-

tematic treatments of tests or model selection criteria in the

existing SF literatures. Most empirical applications of SF

analysis apply some off-the-shelf model selection scheme

of ‘‘goodness-of-fit’’ checking of residuals, or ‘‘significant

test’’ of coefficients to arrive at some ‘‘best model’’ that

is thought to adequately approximate the true model.

An earlier version of this paper was presented at the Asia–Pacific

Productivity Conference 2010 in Taipei, Taiwan.
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In studying the household maize production in Kenya, Liu

and Myers (2009) propose an R2 type measure to assess a

model’s overall explanatory power of SF regression set-

ting. In model selection, Schmidt and Lin (1984) and

Alvarez et al. (2006) propose the use of the likelihood ratio

(LR) test, the Lagrange multiplier (LM) test, and the Wald

test on zero coefficient restrictions for SF model selection.

Lai and Huang (2010), on the other hand, apply the Akaike

(1973, 1974) and Takeuchi (1976) information criteria to

model selection. However, regardless what method of

model selection is used, the model selection uncertainty is

always present, as the same data are used for both model

selection and the associated parameter estimation and

inference. If model selection uncertainty is ignored, the

subsequent productivity and efficiency analyses of the

selected ‘‘best model’’ would be invalid. In the estimation

of the labor input coefficient b̂, for example, the sampling

variance of the estimator, given the selected best model,

should have two components, the conditional variance

given the selection mode, varðb̂jselected model), and the

variance of the selected model itself as it is an estimator of

the true. Pötscher (1991) has shown that the distribution of

estimators and test statistics are dramatically affected by

the act of model selection. Lee and Pötscher (2005) also

pointed out that ignoring the variance of the model selec-

tion component may lead to invalid inference. On most

empirical studies, the reported confidence intervals tend to

be too short, and a hypothesis rejected at an announced 5%

significance level might actually have been tested at a

rather higher level. It is, therefore, sometimes advanta-

geous, as proposed in this paper, for the SF analysis to

average estimators across several competing models, rather

than relying on only the single ‘‘best model’’.

A model-averaged estimator is a weighted average of

estimators obtained from competing models. Model averag-

ing has several practical and theoretical advantages: it incor-

porates model selection uncertainty into statistical inference;

it reduces the model selection bias effects in parameter esti-

mation; it lessens the estimated variance while controlling the

omitted variable bias (see Hansen 2005). The subsequent

statistical inferences on the model-averaged estimator are

conducted based on the entire set of competing models.

In this paper, we propose using the model-averaged

estimator to analyze the SF models. The basic framework

of SF model selection and the model-averaged estimator is

described in Sect. 2. Three model selection criteria, the

Akaike information criterion (AIC, Akaike 1973),

Takeuchi’s information criterion (TIC, Takeuchi 1976), and

the Bayesian information criterion (BIC, Schwarz 1978),

are used in constructing the weights of the competing

models. A comparison of the model-averaged estimators

based on the AIC, BIC, and TIC weights are examined by

the bootstrap method. The implementation of the model-

averaged estimator, the frontier regression and the technical

inefficiencies, are discussed in Sect. 3. A demonstration and

application to the Indian farm data set used by Battese and

Coelli (1992, 1995), Wang and Schmidt (2002), Alvarez

et al. (2006), and Lai and Huang (2010) are given in Sect. 4.

A conclusion is given in Sect. 5.

2 Model-averaged estimator

Let fyi; xi; zign
i¼1 be an independent data set on n firms. A

general form of the SF model can be written as

yi ¼ gðxi; bÞ þ vi � ui; ð1Þ

where yi denotes the logarithm of output, and the

production frontier g(xi; b) is a function of logged input

vector xi 2 RP with the parameter vector b. Following

standard SF modeling, the random error vi represents

statistical noise and is assumed to be independent to the

non-negative random error ui representing the production

inefficiency. The other variables zi denote the exogenous

factors that may affect ui. In the case of Cobb-Douglas

production frontier, the function g(xi; b) is specified as

linear in xi; in the case of translog production frontier, g(xi;

b) is both linear and quadratic in xi. Following Battese and

Coelli (1988), the technical efficiency (TE) of the ith firm

can be defined as the conditional expectation,

TEi ¼ E(e�ui jeiÞ; ð2Þ

where ei = vi - ui is the composite error.

Let f ðyijxi; zi; hÞ be the conditional probability density

function (PDF) of yijðxi; ziÞ where h ¼ bT; hT
v ; h

T
u

� �T

denotes the vector of parameters in model (1), hv and hu

represent the vectors of parameters in the conditional PDFs

of v and u, respectively. Therefore, the maximum likeli-

hood (ML) estimator of h can be defined as

ĥ ¼ arg max
h2H

lnLnðhÞ

¼ arg max
h2H

Xn

i¼1

lnf ðyijxi; zi; hÞ:
ð3Þ

Once the ML estimator ĥ ¼ b̂T; ĥT
v ; ĥ

T
u

� �T

is obtained, the

production frontier g(xi; b) of the ith firm is predicted by

ĝðxi; bÞ ¼ gðxi; b̂Þ; ð4Þ

and the TE is estimated by

cTEi ¼ E e�ui ĵei; ĥ
� �

; ð5Þ

where êi ¼ yi � xT
i b̂ is the predicted value of the composite

error ei.
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Now, suppose there are J competing SF models under

consideration,

yi ¼ g jðxi; b
jÞ þ v j

i � u j
i ; j ¼ 1; 2; . . .; J: ð6Þ

For example, g1ðx1i; x2i; b
1Þ is a Cobb-Douglas function

with two inputs, labor and capital inputs, while

g2ðx1i; x2i; b
2Þ is a translog function, and g3ðx1i; x2i; b

3Þ is

a Fourier flexible function. The distributions of the noise

component vi
j and the inefficiency component ui

j may differ

from model to model with the associated parameter vectors

denoted as hv
j and hu

j respectively.2 The parameter vector of

the Cobb-Douglas specification b1 ¼ b1
0; b

1
1; b

1
2

� �
consists

of an intercept and the two coefficients associated with x1i

and x2i. For the translog specification, the parameter vector

b2 ¼ b2
0; b

2
1; b

2
2; b

2
11; b

2
22; b

2
12

� �
consists of three additional

coefficients associated with the squared and cross-product

of x1i and x2i; and for the Fourier flexible specification,

b3 ¼ b3
0; b

3
1; b

3
2; b

3
11; b

3
22; b

3
12; others

� �
includes additional

coefficients associated with the Fourier series in x1i and

x2i.
3 In the following analysis, we use Mj to denote the jth

competing model and ĥ j ¼ b̂jT; ĥjT
v ; ĥ

jT
u

� �T

to denote the

ML estimator of hj defined in (3) under model Mj. Given the

predicted composite error ê j
i ¼ ðyi � xT

i b̂ jÞ; the estimated

TE of the ith firm under Mj is cTE
j
i ¼ E(e�ui ĵe j

i ; ĥ
jÞ; and the

predicted frontier is ĝðxi; b
jÞ ¼ gðxi; b̂

jÞ:
Suppose that we are interested in a certain parameter of

the SF model in (1), for example, the coefficient b1 of x1i,

the labor input. In a typical model selection procedure,

once the jth model has been selected, the estimator b̂ j
1 of

the coefficient associated with x1i of the selected model is

considered as the ‘‘best’’ estimator of b1. The estimator b̂ j
1

is called the estimator-post-selection. An alternative to

selecting one ‘‘best’’ model and the best estimator involves

forming a weighted average of the J estimators b̂ j
1 from all

competing models Mj (j = 1, 2, … , J), i.e., b̂1 ¼
PJ

j¼1 pjb̂
j
1 with the scaled weights pj assigned to model Mj

such that
P

j pj ¼ 1: The estimator b̂1 is called the model-

averaged estimator. Other than in parameter estimation, the

model averaging is also applicable to other predictions of

the SF model, such as the firm-specific frontier g(xi; b) or

the firm-specific technical efficiency TEi. The estimator-

post-selection of g(xi; b) is gðxi; b̂
jÞ; while the model-

averaged estimator is ĝðxi; bÞ ¼
PJ

j¼1 pjgðxi; b̂
jÞ: Similarly,

the estimator-post-selection of TEi is cTE
j
i ; while the

model-averaged estimator is cTEi ¼
PJ

j¼1 pj
cTE

j
i :

In general, let /i ¼ /ðxi; zi; hÞ be a parameter of interest

in a SF model. Here the parameter is defined more broadly

as it may be a coefficient b which is constant, or it may be a

firm-specific frontier g(xi; b) or a firm-specific TE

E(e�ui jeiÞ which is a function of the exogenous variables zi

that affect the inefficiency component ui. If we follow

Buckland et al. (1997), the model-averaged estimator of the

parameter /i is

/̂i ¼
XJ

j¼1

pj/̂
j
i ; ð7Þ

where /̂ j
i is the jth model estimator of /i with the assigned

weight pj such that
P

j pj ¼ 1: The weight pj is interpreted

as the weight of evidence in favor of model Mj.

We like to emphasize that the above proposed model-

average estimator can only be constructed when the param-

eter of interest /i are comparable in all J competing models.

If the J competing models are nested and /i is missing from

the model j, say the coefficient of the variable xi with coef-

ficient / j
i is missing, then the comparability implies that

/ j
i ¼ 0 is specified, and hence we set /̂ j

i ¼ 0 in (7) when

computing the averaged estimator.4 In general, the J com-

peting models may be non-nested in the model’s coefficient

vector hj, or the parameter of interest / j
i is a function of

model’s coefficients, say, / j
i ¼ /ðxi; zi; h

jÞ: In this case, the

model-average estimator is applicable to the comparable

parameters / j
i and is not applicable to the non-comparability

of hj. One example is the model-average estimator of the

firm-specific TE,5 cTEi ¼
PJ

j¼1 pjE(e�ui ĵe j
i ; ĥ

jÞ:
Some commonly used weights are based on the Kull-

back–Leibler (K–L) information criterion of model selec-

tion. The Akaike information criterion of Akaike (1973) for

model Mj is defined as

AICj ¼ �2 ln Lnðĥ jÞ þ 2kj; ð8Þ

where kj is the number of parameters in Mj. This equation

suggests that the AIC model-averaged weights are
2 For example, among the relevant discussions on SF models, the

distribution of the inefficiency component is specified either as

Nþðd0 þ dTzi; e2ðc0þcTziÞÞ or as Nþðed0þdT zi ; e2ðc0þcT ziÞÞ: The former

specification is called the generalized linear mean (GLM) model and

the latter specification is called the generalized exponential mean

(GEM) model (Lai and Huang 2010). As detailed in Sect. 4, various

settings of the distributional parameters generate most commonly

specified SF models.
3 See Gallant (1982) for the specification of the Fourier flexible

function.

4 This is exactly the case we confront when we estimate the marginal

effect of the inefficiency determinants on the mean of the technical

efficiency in our empirical example in Sect. 4. Model M2 does not

specify any inefficiency determinants and thus the all marginal effects

are set as zeros. Please see Table 1.
5 In our empirical, eight models are estimated but model 1 (M1) and

model 8 (M8) are not nested to each other.
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pAIC
j ¼

exp � 1
2

AICj

� �

PJ
k¼1 exp � 1

2
AICk

� � ¼
exp � 1

2
DAIC

j

� �

PJ
k¼1 exp � 1

2
DAIC

k

� � ; ð9Þ

where DAIC
j ¼ AICj � AICmin measures the relative AIC

differences between model Mj and the best model among

the J competing models.6 A smaller value of DAIC
j corre-

sponds to a better model, and the best competing models

has DAIC
j ¼ 0: Therefore, DAIC

j serves as a relevant measure

of ranking the competing models. Furthermore, since the

likelihood value Lnðĥ jÞ is proportional to exp � 1
2
Dj

� �
,

Akaike (1983) called the term exp � 1
2
Dj

� �
the relative

likelihood of model, and the Akaike weight pAIC
j measures

the relative importance of model Mj among all J competing

models.

Alternatively, the Bayesian information criterion (BIC)

of Schwarz (1978) for model Mj is defined as

BICj ¼ �2 ln Lnðĥ jÞ þ kj ln n; ð10Þ

where DBIC
j ¼ BICj � BICmin: The corresponding BIC

model-averaged weights are

pBIC
j ¼

exp � 1
2

BICj

� �

PJ
k¼1 exp � 1

2
BICk

� � ¼
exp � 1

2
DBIC

j

� �

PJ
k¼1 exp � 1

2
DBIC

k

� � :

ð11Þ

The third model-averaged weights are defined in terms of

the Takeuchi information criterion (TIC) of Takeuchi

(1976),

TICj ¼ �2 ln Lnðĥ jÞ þ 2tr Hðĥ jÞIðĥ jÞ�1
h i

; ð12Þ

where

Iðĥ jÞ ¼ 1

n

Xn

i¼1

�
o2 ln f yijxi; zi; ĥ

j
� �

oh johjT

is the Fisher information matrix and

Hðĥ jÞ ¼ 1

n

Xn

i¼1

o ln f yijxi; zi; ĥ
j

� �

oh j

o ln f yijxi; zi; ĥ
j

� �

ohjT

2

4

3

5

is the Hessian matrix. The TIC model-averaged weights are

pTIC
j ¼

exp � 1
2

TICj

� �

PJ
k¼1 exp � 1

2
TICk

� � ¼
exp � 1

2
DTIC

j

� �

PJ
k¼1 exp � 1

2
DTIC

k

� � :

ð13Þ

and DTIC
j ¼ TICj � TICmin:

Results when comparing AIC, BIC, and TIC perfor-

mance depend on the nature of the DGP, on whether the

competing models contains the truth, on the sample sizes,

and also on the objective of the researcher—select the

true model or select the K–L best approximating model.

The model selection criteria of AIC, TIC, and BIC, take

the form of a penalized log-likelihood function with

various penalty functions. By comparing the penalty

terms in (8), (10) and (12), AIC and TIC may perform

poorly in model selection if there are too many param-

eters in relation to the sample size in the competing

models. The BIC of (10) is quite similar to the AIC of

(8) with a strong penalty for a more complex competing

model with more parameters. Furthermore, if the candi-

date models contain the truth, BIC selection is consistent

in the sense that it detects ‘‘the true model’’ with prob-

ability tending to 1 when the sample size increases, but

AIC and TIC are not consistent. On the other hand, the

selection criteria of AIC and TIC are efficient in the

sense that the criteria reach the minimum of mean

squared prediction errors as the sample size tends to

infinity. Accordingly, when the true model exists and it is

one of the candidate models under consideration, BIC is

suggested. However, if the true model is complicated or

is not one of the candidate models under consideration,

then one can only approximate the truth by a set of

candidate models. In this case, one may estimate the K-L

distance by AIC and TIC and determine which approxi-

mating model is best. Both AIC and BIC are more

suitable for model selection among nested models, but

TIC is not restricted to the nested cases. More specifi-

cally, AIC can be treated as an approximation to TIC

since tr½Hðĥ jÞIðĥ jÞ�1� ¼ kj if the ‘‘information equality’’

holds. See Takeuchi (1976) for further details. Conse-

quently, the choice of criteria may depend on the

empirical economist’s belief or objective. Applications of

AIC and TIC on selection and test of SF models are

examined in Lai and Huang (2010).

Once the model-averaged estimator defined in (7) is

obtained, it remains to find the estimator for the var-

iance of the model-averaged estimator. Suppose that the

weights pj are given by either pAIC
j ; pBIC

j ; or pTIC
j ; and

the parameter estimators /̂ j
i and /̂k

i under models Mj and

Mk are correlated with the correlation coefficient qjk.

By decomposing the mean squares of the model-

averaged estimator /̂i; the variance of /̂i can be shown

to be7

6 It is merely for the computational purpose of subtracting the

minimum AICmin to avoid numerical problems with very large or very

small arguments inside the exponential function. 7 See Buckland et al. (1997) for the derivation.
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where var /̂ j
i jMj

� �
is the variance under Mj and / j

i � /i

� �

denotes the model misspecification bias. In practice, how-

ever, both qjk and var /̂ j
i jMj

� �
are unknown and need to be

estimated. Suppose cvar /̂
j

i jMj

� �
and q̂jk are the sample

estimates of var /̂
j

i jMj

� �
and the sample correlation coef-

ficient of /̂ j
i and /̂k

i ; respectively. The corresponding esti-

mate of the variance of the average estimator is then

Empirically, it is likely that the estimates /̂ j
i and /̂k

i

under models Mj and Mk are highly correlated as the same

data are used in the estimation. By setting q̂jk ¼ 1; we have

the upper bound of cvarð/̂iÞ;

cvar /̂i

� �
�
XJ

j¼1

pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cvar /̂ j
i jMj

� �
þ /̂ j

i � /̂i

� �2
r" #2

: ð16Þ

3 Stochastic frontier model-averaged estimator

Two set of parameters are important in the estimation of SF

model in (1). One is the frontier g(xi; b), which requires the

estimation of the parameters b, and the other is the TE

TEi ¼ E(e�ui jeiÞ; which requires the estimation of the

parameters h ¼ bT; hT
v ; h

T
u

� �T
: In this section, we separately

propose the model-averaged estimation of b and TEi.

Suppose bt 2 b is the tth parameter of the frontier

function in g(xi; b). By (7) the model-averaged estimator is

b̂t ¼
XJ

j¼1

pjb̂
j
t ð17Þ

where b̂ j
t is the estimator under model Mj. However, the

computation of the variance of b̂t requires the estimate of

the sample correlation coefficient q̂jkðbtÞ of b̂ j
t and b̂k

t

between model Mj and model Mk.

In the previous works of Buckland et al. (1997) and

Burnham and Anderson (1998), they suggest simplifying

(15) by assuming q̂jkðbtÞ ¼ 1 to obtain the upper bound as

in (16), or setting q̂jkðbtÞ ¼ q for all t, j and k. Estimation

of q̂jkðbtÞ is clearly infeasible in the ML approach as for

each data set there is only one ML estimate b̂ j
t for a model.

Burnham and Anderson (1998) have suggested using the

bootstrap approach as an alternative method to obtain the

distribution of the averaged estimator b̂t and the variance

cvarðb̂tÞ from the bootstrap samples. This approach

requires first estimating the J competing models and then

averaging over those bootstrap estimators in order to

obtain the averaged estimator and its distribution. A large

number of bootstrapped samples is obviously needed to

obtain a good approximation.8 It is a computation-

intensive approach.

To lessen the computation time, we propose an alter-

native bootstrap approach to estimating the standard error

of the averaged estimator. To compute the variance of the

averaged estimator cvarðb̂tÞ in (15), only the estimation of

the correlation coefficients q̂jkðbtÞ between the competing

models is required. We therefore propose bootstrapping

only the correlation coefficients between the frontier

coefficients. The main difference between our bootstrap

approach and that of Burnham and Anderson (1998) is

that model averaging is not required in our bootstrap

procedure because we do not intend to obtain the distri-

bution of the averaged estimator. But the question of how

many bootstrap samples are required to obtain a good

result will be examined later on by a Monte Carlo

simulation.

The proposed bootstrap procedure is stated as follows. A

bootstrapped sample is generated by independently

var /̂i

� �
¼
XJ

j¼1

p2
j var /̂ j

i jMj

� �
þ / j

i �/i

� �2
h i

þR
J

R
J

j6¼k
pjpkqjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var /̂ j

i jMj

� �
þ / j

i �/i

� �2
h i

var /̂k
i jMk

� �
þ /k

i �/i

� �2
h ir

;

ð14Þ

cvar /̂i

� �
¼
XJ

j¼1

p2
j cvar /̂j

i jMj

� �
þ /̂j

i� /̂i

� �2
� �

þR
J

R
J

j6¼k
pjpk q̂jk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cvar /̂ j
i jMj

� �
þ /̂j

i� /̂i

� �2
� �

cvar /̂k
i jMj

0

� �
þ /̂k

i � /̂i

� �2
� �s

:

ð15Þ

8 Burnham and Anderson (1998) recommend 10,000 bootstrap

samples and at least 1,000 are required.
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drawing from the original data with a replacement, and

then using the bootstrapped data to estimate the J com-

peting models. Denote b̂ j
t ðbÞ as the estimates of b j

t from the

bth bootstrapped sample. By repeating the same procedure

for B times, the estimator of the sample correlation coef-

ficient of b̂ j
t and b̂k

t can be computed,

q̂jkðbtÞ ¼
PB

b¼1 b̂ j
t ðbÞ �

�̂b
j

t

� �
b̂k

t ðbÞ �
�̂b

k

t

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PB

b¼1 b̂ j
t ðbÞ �

�̂b
j

t

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PB
b¼1 b̂k

t ðbÞ �
�̂b

k

t

� �2
r ;

ð18Þ

where
�̂b

j

t is the sample mean of b̂ j
t ðbÞ; b = 1, … , B.

Equations (15) and (18) together suggest that the variance

of the averaged estimator for b j
t can be estimated by

Similarly, we may define the model-averaged TE esti-

mator of the ith firm to be the weighted average of the J

competing estimators,

cTEi ¼
XJ

j¼1

pj
cTE

j
i ; ð20Þ

where cTE
j
i defined in (5) is the estimator for firm i’s TE under

Model Mj. Following standard SF modeling, the distribution

of the symmetric error vi
j is assumed to be Nð0; rj2

v Þ and is

independent of the nonnegative error ui
j which follows the

truncated-normal distribution as Nþðl j; rj2
u Þ; i.e., truncated

from below at zero and with the mode at lj. Given the ML

estimators ĥ j ¼ b̂ j; r̂j2
v ; l̂

j; r̂j2
u

� �
; we have

cTE
j
i ¼

1� U r̂ j
� � l̂ j

�i=r̂
j
�

� �

1� U �l̂ j
�i=r̂

j
�

� � e�l̂ j
�iþ1

2
r̂j2
� ; ð21Þ

where l̂ j
�i ¼ �r̂j2

u ê j
i þ l̂ jr̂j2

v

� �
=r̂j2; r̂j2

� ¼ r̂j2
v r̂j2

u =r̂
j2; r̂j2 ¼

r̂j2
v þ r̂j2

u

� �
; and ê j

i ¼ yi � xT
i b̂ j is the predicted value of the

composite error e j
i :

Following (15), the variance of the model-averaged TE

estimator is

Obviously, the estimation of the variance of cTEi in (22)

requires the estimation of the conditional variances,

cvar cTE
j
i jMj

� �
; and the cross-model correlation coefficient

q̂jk TEið Þ between cTE
j
i and cTEk

i : Since the TE is highly

nonlinear in ĥ j ¼ b̂ j; r̂j2
v ; l̂

j; r̂j2
u

� �
; the computation of the

conditional variance, cvar cTE
j
i jMj

� �
; may have to resort to

some numerical approximations. However, we have no

basis for estimating the cross-model correlation coefficient

q̂jk TEið Þ other than the bootstrap. Because of the compu-

tational intensity required in the computation of individual

firm-specific variances cvar cTEi

� �
; only the sample esti-

mate of the model-averaged TE is illustrated without the

evaluation of the variances.9

cvar b̂t

� �
¼
XJ

j¼1

p2
j cvar b̂ j

t jMj

� �
þ b̂ j

t � b̂t

� �2
� �

þ R
J

R
J

j6¼k
pj pk q̂jkðbtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cvar b̂ j
t jMj

� �
þ b̂ j

t � b̂t

� �2
� �

cvar b̂k
t jMk

� �
þ b̂k

t � b̂t

� �2
� �s

:

ð19Þ

cvar cTEi

� �
¼
XJ

j¼1

p2
j cvar cTE

j
i jMj

� �
þ cTE

j
i � cTEi

� �2
� �

þ
XJ XJ

j 6¼k

pj pk q̂jkðTEiÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cvar cTE
j
i jMj

� �
þ cTE

j
i � cTEi

� �2
� �

cvar cTEk
i jMk

� �
þ cTEk

i � cTEi

� �2
� �s

:

ð22Þ

9 Alternatively, we could assume that the correlation between the two

models’ prediction on efficiency is independent of firms, i.e.,

qjkðTEiÞ ¼ qjkðTEtÞ ¼ qjkðTEÞ; for all firms, i, t = 1, … , n. Thus,

we suggest the estimation of qjkðTEÞbased on the estimates

of the n firm-specific technical efficiencies, q̂jkðTEÞ ¼
Pn

i¼1
bTE

j
i� bTE j

� �
bTEk

i� bTEk

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

cTE j

i�
cTE j

	 
2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1

cTEk

i�
cTEk

	 
2
s ; where cTE j is the sample

mean of cTE
j
i ; for I = 1, … , n.
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4 An empirical illustration

In this section, the proposed model-averaged estimation is

applied to a SF production function using Indian farm data.

The same data has been used by Battese and Coelli (1992,

1995), Wang (2002), Alvarez et al. (2006), and Lai and

Huang (2010). The farm’s output variable Y is the total

value of output. The other variables, Land, PILand, Labor,

Bullock, Cost, Age, School, and Year, are either the input

variable or the exogenous variable that might affect the TE.

Land is the total area of irrigated and unirrigated land under

operation; PILand is the proportion of operated land that is

irrigated; Labor is the total hours of family and hired labor;

Bullock is the hours of bullock labor; Cost is the value of

other inputs, including fertilizer, manure, pesticides,

machinery, etc.; Age is the age of the primary decision-

maker in the farming operation; School is the years of

formal schooling of the primary decision maker; and Year

is the year of the observations involved. The following

empirical analysis is programmed in Stata 10.0 software.

Among the relevant discussions on SF models with

truncated-normal distributions, various assumptions are

imposed on the distributions of the one-sided error. In the

previous study of Lai and Huang (2010), they consider the

following eight types of settings of ui in the SF models,

including:

M1: The generalized exponential mean (GEM) model

(Alvarez et al. 2006)

ui�Nþðed0þdTzi ; e2ðc0þcTziÞÞ:

M2: The Stevenson Model (Stevenson 1980)

ui�Nþ l; r2
u

� �
:

M3: The scaled Stevenson model (Wang and Schmidt

2002)

ui ¼ ezT
i d � xi with xi �

i:i:d:
Nþ l; r2

u

� �
:

M4: The KGMHLBC model (Kumbhakar et al. 1991;

Huang and Liu 1994; Battese and Coelli 1995)

ui�Nþ ledTzi ; r2
u

� �
:

M5: The RSCFG-l model

ui�Nþ d0; r
2
ue2cTzi

� �
:

M6: The RSCFG model (Reifschneider and Stevenson

1991; Caudill and Ford 1993; Caudill et al. 1995)

ui�Nþ 0; e2ðc0þcTziÞ
� �

:

M7: The HL model (Huang and Liu 1994)

ui�Nþ d0 þ dTzi; e
2c0

� �
:

M8: The generalized linear mean (GLM) model (Lai and

Huang 2010)

ui�Nþðd0 þ dTzi; e2ðc0þcTziÞÞ:

The specifications of the frontier function g jðxi; b
jÞ are

identical for all eight models except that distributions of u j
i

are different as indicated in Mj, j = 1, … , 8.

The input variables x in our empirical model include:

ln(Land), PILAND, ln(Labor), ln(Bullock), ln(Cost), Year,

ln(Labor) 9 Year, School; and the exogenous variables z

used in the inefficiency term include: Age, School, and

Year. This set of variables has been selected by Lai and

Huang (2010) after conducting the AIC and TIC model

selection criterion, and also Voung’s LR test. Therefore,

we concentrate only on the analyses of SF models with

different distribution assumptions on the one-sided error u,

while keeping the input variables fixed. The estimated

parameters of models M1–M8 are summarized in Table 1.

The descriptive statistics of the technical efficiencies and

the sample average of the marginal effect of the ineffi-

ciency determinants on the TE, oTE
j
i =ozi; are also reported

in the bottom of Table 1. Since TE
j
i is a complicated

function of the parameters, the close form of oTE
j
i =ozi is

almost intractable. We, therefore, use the numerical

method to compute the derivative and obtain these

estimates.

The correlation coefficients of the estimated technical

efficiencies under models M1–M8 are summarized in

Table 2. All values are close to one indicates that the

predictions of technical efficiencies do not vary much

under the eight models.

Three different weights based on AIC, BIC, and TIC are

considered in the model-averaged estimators. Table 3

shows the values of AICj, BICj, and TICj under models

M1–M8 and their respective weights, pAIC
j ; pBIC

j ; and pTIC
j :

Both AIC and TIC select M8 as the best model while BIC

selects M2 as the best model. However, if M8 is dropped,

then both AIC and BIC choose M6 as the best model while

TIC suggests M1 as the best model. It seems that different

model selection criteria may suggest different models, and

rank the competing models in different order. In other

words, different model selection criteria may select dif-

ferent best empirical models for inference and thus have

inconsistent conclusions. Although both AIC and TIC

choose the same best model, the relative importance of

J Prod Anal (2012) 38:273–284 279

123



Table 1 The estimates of models M1–M8

Variable M1 M2 M3 M4 M5 M6 M7 M8

Frontier

ln(Land) 0.2546***a

(0.0760)b

0.2954***

(0.0677)

0.2972***

(0.0700)

0.2988***

(0.0709)

0.2962***

(0.0704)

0.2909***

(0.0729)

0.3005***

(0.0701)

0.2547***

(0.0736)

PILand 0.1900

(0.1793)

0.2458

(0.1736)

0.2361

(0.1755)

0.2307

(0.1769)

0.2360

(0.1754)

0.2316

(0.1779)

0.2386

(0.1754)

0.1764

(0.1762)

ln(Labor) 1.1601***

(0.0808)

1.1103***

(0.0812)

1.1193***

(0.0818)

1.1014***

(0.0785)

1.1205***

(0.0821)

1.1300***

(0.0809)

1.1102***

(0.0813)

1.1553***

(0.0826)

ln(Bullock) -0.4258***

(0.0614)

-0.4103***

(0.0586)

-0.4129***

(0.0603)

-0.3942***

(0.0604)

-0.4129***

(0.0604)

-0.4186***

(0.0616)

-0.4035***

(0.0595)

-0.4234***

(0.0598)

ln(Cost) 0.0167

(0.0128)

0.0094

(0.0125)

0.0141

(0.0126)

0.0148

(0.0128)

0.0141

(0.0126)

0.0154

(0.0127)

0.0142

(0.0125)

0.0155

(0.0126)

ln(Labor) 9 Year 0.0029*

(0.0013)

0.0049***

(0.0011)

0.0028*

(0.0013)

0.0031*

(0.0016)

0.0026*

(0.0013)

0.0026*

(0.0013)

0.0026

(0.0014)

0.0028*

(0.0013)

School -0.0070

(0.0096)

-0.0021

(0.0090)

-0.0020

(0.0097)

0.0027

(0.0097)

-0.0019

(0.0099)

-0.0031

(0.0096)

0.0012

(0.0101)

-0.0060

(0.0098)

Constant 1.6759***

(0.3452)

1.7353***

(0.3368)

1.7657***

(0.3397)

1.8409***

(0.3332)

1.7650***

(0.3402)

1.7969***

(0.3429)

1.7601***

(0.3366)

1.6319***

(0.3414)

l

Age -0.0755

(0.0412)

– – 0.0288

(0.0301)

– – -0.0058

(0.0163)

-0.0449

(0.0278)

School -0.2736

(0.2013)

– – 0.1828

(0.1303)

– – 0.0272

(0.0831)

-0.1974

(0.1505)

Year 0.2392

(0.1896)

– – -0.5036

(0.2633)

– – -0.2261

(0.2510)

0.1304

(0.1103)

Constant 0.2891

(1.2579)

-2.8040

(6.2633)

-1.7263

(3.4535)

-2.4782

(2.2780)

-0.9399

(1.6886)

– -0.3258

(1.7290)

1.0991

(0.6654)

r2
u

c

Age 0.0049

(0.0107)

– – – -0.0063

(0.0072)

-0.0076

(0.0084)

– 0.0266**

(0.0097)

School 0.0074

(0.0514)

– – – -0.0130

(0.0411)

-0.0165

(0.0473)

– 0.1026

(0.0586)

Year -0.1990***

(0.0521)

– – – -0.1126*

(0.0482)

-0.1433**

(0.0475)

– -0.2230***

(0.0508)

Constant -0.8158

(0.6797)

0.0623

(1.7281)

0.6029

(1.2908)

-1.4952***

(0.1792)

0.2760

(0.8771)

-0.2152

(0.5384)

-0.3150

(1.0928)

-1.2733

(0.8728)

r2
v

d

cv -3.5094***

(0.3194)

-3.1637***

(0.2680)

-3.2728***

(0.3039)

-3.5524***

(0.3304)

-3.2737***

(0.2981)

-3.4817***

(0.3003)

-3.2219***

(0.2873)

-3.2717***

(0.2649)

Scale

Age – – -0.0043

(0.0051)

– – – – –

School – – -0.0084

(0.0284)

– – – – –

Year – – -0.0778**

(0.0293)

– – – – –
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models are evaluated differently. For instance, the ranking

of the relative importance among the top four models from

the highest to the lowest are:

AIC ranking: (M8, M6, M5, M1);

BIC ranking: (M2, M6, M5, M3);

TIC ranking: (M8, M1, M5, M3).

Table 4 gives the relative frequencies of models selected

by AIC, BIC, and TIC under various replications of the

bootstrapped sample. Each bootstrapped sample is obtained

by sampling from the original data with replacement until

Table 2 The correlation coefficients of the predicted TEs of models M1–M8

M1 M2 M3 M4 M5 M6 M7 M8

M1 1

M2 0.9735 1

M3 0.9892 0.9834 1

M4 0.99 0.9753 0.987 1

M5 0.9886 0.9802 0.9998 0.9856 1

M6 0.9964 0.9752 0.995 0.9948 0.9946 1

M7 0.9818 0.9782 0.9983 0.9838 0.9985 0.9905 1

M8 0.9913 0.9757 0.9926 0.9751 0.9928 0.988 0.9876 1

Table 3 The estimated values of AIC, BIC, and TIC of models M1–M8 and the corresponding weights

Model AIC BIC TIC pAIC
j

a pBIC
j pTIC

j

M1 200.053*,b 261.289 166.161*** 0.0883 0.0001 0.1431***

M2 202.775 242.398**** 180.850 0.0226 0.8254**** 0.0001

M3 200.134 250.564* 172.231* 0.0848* 0.0139* 0.0069*

M4 204.791 255.220 176.881 0.0083 0.0014 0.0007

M5 199.937** 250.367** 172.034** 0.0936** 0.0154** 0.0076**

M6 199.193*** 246.021*** 173.288 0.1358*** 0.1349*** 0.0041

M7 201.097 251.527 173.194 0.0524 0.0086 0.0042

M8 196.530**** 257.766 162.637**** 0.5141**** 0.0004 0.8333****

a pAIC
j ; pBIC

j ; pTIC
j Represent the weights assigned to jth model

b ****, ***, **, * The best, second best, third, and fourth among the top four best models

Table 1 continued

Number of parameters 17 11 14 14 14 13 14 17

Estimated TEs

Mean 0.6955 0.7581 0.7439 0.6891 0.7446 0.7037 0.7530 0.7449

SD 0.1636 0.1494 0.1581 0.1647 0.1589 0.1639 0.1571 0.1595

Min. 0.2090 0.2617 0.2299 0.2214 0.2296 0.2131 0.2345 0.2279

Max. 0.9322 0.9412 0.9374 0.9356 0.9381 0.9352 0.9400 0.9332

Marginal effectse

Age 0.0005579 0 0.0000715 -0.0001693 0.0002566 0.0001834 0.0001192 0.0007775

School 0.0022343 0 0.0001381 -0.0010758 0.0005284 0.0003964 -0.0005589 0.0039937

Year 0.0020867 0 0.0012805 0.0029641 0.0045615 0.0034490 0.0046471 0.0036095

a *, **, and *** Represent the p-values that are less than 0.1, 0.05, and 0.01, respectively
b Numbers in parentheses are the standard errors

c r2
u ¼ e2ðc0þcTziÞ

d r2
v ¼ ecv

e The sample means of the marginal effects are reported
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the bootstrapped sample size is the same as that of the

original. The number of replications denoted by B, is 150,

300, 500, and 1,000, respectively. Several findings are

observed. First, the order of these models is quite stable

under different sizes of B for the three criteria. Second, the

ranking of the top four best models are:

Table 4 The relative frequencies of models selected by AIC, BIC, and TIC

AIC BIC TIC

150 300 500 1,000 150 300 500 1,000 150 300 500 1,000

M1 17.33 18.67 19.8 18.5 1.33 1 1.8 1.8 25.33 27.67 29 28

M2 0.67 2.33 2.6 2.5 52 51.67 50.2 47.4 0 0 0 0

M3 6 4.67 4.8 5.2 6 5.33 4.2 4.5 6 4.67 4.6 5.1

M4 10 9.33 10 9.6 10 9 9.2 8.7 2.67 5 4.8 4.3

M5 6 7.67 7 8.6 4 4.33 4.6 5.6 4.67 5.67 5 6.1

M6 8.67 10 9.8 10 22 23.33 24.2 26 0 0.67 0.4 0.3

M7 4 3.33 3.8 4.8 1.33 2 2.8 2.5 2.67 2.33 2.2 2.4

M8 47.33 44 42.2 40.8 3.33 3.33 3 3.5 58.67 54 54 53.8

Table 5 The averaged estimates of the coefficients in the frontier equation and descriptive statistics of the averaged technical inefficiencies

Variable/criterion AIC BIC TIC

Estimated coefficients in the frontier part: b̂ ¼
PJ

j¼1 pjb̂
j

ln(Land) 0.2708 (0.0545)a 0.2949 (0.0669) 0.2557 (0.0643)

(0.0755)b (0.0685) (0.0741)

PILand 0.2010 (0.1324) 0.2435 (0.1716) 0.1798 (0.1545)

(0.1787) (0.1744) (0.1769)

ln(Labor) 1.1422 (0.0610) 1.1133 (0.0797) 1.1552 (0.0721)

(0.0838) (0.0815) (0.0825)

ln(Bullock) -0.4195 (0.0447) -0.4114 (0.0579) -0.4235 (0.0524)

(0.0605) (0.0591) (0.0600)

ln(Cost) 0.0151 (0.0095) 0.0104 (0.0125) 0.0156 (0.0111)

(0.0127) (0.0127) (0.0126)

ln(Labor) 9 year 0.0028 (0.0009) 0.0045 (0.0012) 0.0028 (0.0011)

(0.0013) (0.0014) (0.0013)

School -0.0044 (0.0065) -0.0022 (0.0089) -0.0060 (0.0083)

(0.0100) (0.0092) (0.0098)

Constant 1.6928 (0.0470) 1.7448 (0.1053) 1.6415 (0.0838)

(0.3482) (0.3384) (0.3428)

Estimated technical efficiencies: cTEi ¼
PJ

j¼1 pj
cTE

j
i

Mean 0.7351 0.7502 0.7377

SD 0.1594 0.1512 0.1599

Min. 0.2256 0.2539 0.2252

Max. 0.9326 0.9395 0.9325

Estimated marginal effects of the inefficiency determinants on the mean of TEc

Age 0.0005089 0.00003080 0.00073136

School 0.0023275 0.00005892 0.00365145

Year 0.0033120 0.00059873 0.00338582

a Numbers in parentheses are the estimated standard errors, which are obtained based on the matrix of correlation coefficients calculated by

1,000 bootstrapped data sets
b Numbers in parentheses are the upper bound of the estimated standard errors
c The averaged sample means of the marginal effects are reported
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AIC ranking: (M8, M1, M6, M4);

BIC ranking: (M2, M6, M4, M5);

TIC ranking: (M8, M1, M5, M3).

Among these three criteria, the order of the eight models

under consideration obtained by TIC in Table 4 is virtually

consistent with the order of weights calculated according to

TIC in Table 3. However, the orders of models based AIC

and BIC in Tables 3 and 4 are not consistent. Furthermore,

the top two models suggested by AIC weight are M8 and

M6, with M8 and M1 for the bootstrapped data. Therefore, it

seems that TIC is a relative stable criterion compared with

the other two criteria. Third, BIC tends to select a model

with fewer parameters such as M2 with 11 parameters, and

rank lower the model with more parameters, such as, M1

and M8 with 17 parameters each.

The model-averaged estimates of the coefficients in the

frontier equation from models M1–M8, and the descriptive

statistics of the model-averaged technical efficiencies

computed via (17) and (20) are given in Table 5, where the

standard errors of the model-averaged estimates in the

frontier function are estimated on the basis of 1,000

bootstrapped data sets. The corresponding upper bounds of

these averaged estimates are also obtained according to

(16) by setting q̂jkðbtÞ ¼ 1 for all j, k, and t.

If the number of competing models is large, it may

require much computation time when one conducts the

bootstrap procedure. In order to examine whether the

number of bootstrapped data sets significantly changes the

estimated standard errors, we calculated the standard errors

for the number of bootstrapped data sets B = 150, 300,

500, and 1,000. The estimated results are summarized in

Table 6. It seems that when B = 300, we already have

quite good results, which are very close to what we

obtained when B = 1,000. Since our objective of using

bootstrapped data is not to obtain the distribution, but to

compute the correlation coefficient between the coefficient

estimates, computation of (18) does not actually require a

large bootstrapped number.

5 Conclusion

In this paper, we suggest using the model-averaged esti-

mator based on the multimodel inference in estimating the

SF model. The potential advantages of the proposed

approach include: (1) the incorporation of the model

selection uncertainty into statistical inference; (2) averag-

ing across the frontier coefficients and the predicted tech-

nical efficiencies can reduce the model selection bias

effects and thus reduce estimated variance.

We demonstrate our approach by utilizing Indian farm

data. Three model selection criteria, AIC, BIC, and TIC,

are considered in our empirical example. Our results show

that among these criteria, TIC seems to be relatively stable

in ordering the competing models. Moreover, the main

advantage of TIC is that it does not require the true model

to be among the competing models, but AIC and BIC do.

BIC intends to select as the best model the one that con-

tains the fewest parameters. Finally, we also suggest using

the bootstrapped data to estimate the correlation coefficient

between the estimated coefficients over the competing

models, and show that the estimation does not require a

large bootstrapped number.
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