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Abstract This paper assesses the impact of Research and

Development (R&D) spillovers on production for a panel of

1,203 Italian manufacturing firms over the period

1998–2003.The estimations are based on a nonlinear translog

production function augmented by a measure of R&D spill-

overs which combines the geographical distance between

firms, the technological similarity within each pair of firms

and the technical efficiency of each firm. The estimation

method takes into account the endogeneity of regressors and

the potential sample selection issue regarding the decision by

firms to invest in R&D. Results show that the translog pro-

duction function is more suitable than the Cobb-Douglas for

modelling firm behaviour and that returns to scale are

increasing. Moreover, the internal and external stocks of

technology exert a significant impact on firms’ production.

Finally, it emerges that, for Italian manufacturing firms, R&D

capital and R&D spillovers are highly substitutes.

Keywords R&D spillovers � Translog � Technical

efficiency � Italian manufacturing firms

JEL Classification O33 � L29 � C23

1 Introduction

Since studies by Solow (1956, 1957), economists have

agreed on the importance of technological progress as a

source of growth and several analyses have been carried

out at different levels of data aggregation (firms, industries,

and countries) in order to empirically evaluate the role of

innovative efforts. The basic idea is that a higher level of

Research and Development (R&D) investments allows the

introduction of new processes and/or new products or the

improvement of the existing ones, so enhancing profits and/

or reducing costs and, as a consequence, increasing pro-

ductivity. With regards to the Italian case, technological

competitiveness is still quite a way from achieving the

Lisbon strategy objectives, according to which R&D

investments should reach the target level of 3% of GDP. In

2007, OECD countries invested 2.3% of GDP in R&D,

while the percentage was just 1.2 in Italy.

One of the main concerns in this field of research is the

determination of a good proxy for technological stock. It is

commonly argued that technology is a quasi-public good and

that innovative activities undertaken by a firm may generate

spillovers and benefit other firms. Therefore, the technology

available to each firm is a result not only of its own innovative

activities, but also of innovative activities undertaken by others.

If, on one hand, the relevance of R&D externalities has been

principally analysed in aggregate growth models (see, i.e.,

Romer 1990; Benhabib and Jovanovic 1991), on the other

hand, some micro-econometric studies have recently started to

deal with technological spillovers (Cincera 2005; Harhoff

2000; Jaffe 1988; Los and Verspagen 2000; Wakelin 2001;

Medda and Piga 2004; Adams and Jaffe 1996; Aiello and Pupo

2004; Aiello et al. 2005; Aiello and Cardamone 2005, 2008).

Results mainly show that R&D spillovers positively affect

firms’ output, although the magnitude of the impact varies from

one study to another.1
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1 In particular, the output elasticity to R&D spillovers ranges from 0.08

(385 Italian manufacturing firms over the period 1992–1997, Aiello et al.

2005; 573 U.S. firms over the period 1972–1977, Jaffe 1988) to 0.60 (680

U.S. firms over the period 1977–1991, Los and Verspagen 2000; 625 large

firms around the world over the period 1987–1994, Cincera 2005).
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All previous studies use the technological capital (or

R&D investments) of other firms to determine the stock of

R&D spillovers for each firm and mainly consider the

Cobb-Douglas production function. The only exception in

the use of the Cobb-Douglas specification is provided by

Aiello and Cardamone (2008), who consider a linear

translog production function on the basis of the assumption

of a technology with constant returns to scale.

The main advantage of using the translog production

function is that it does not impose the elasticity of substi-

tution among inputs to be constant. With respect to the

previous work which uses the translog specification (Aiello

and Cardamone 2008), this paper relaxes the strict

assumption of constant returns to scale. In fact, if R&D

spillovers work as a public good, then they introduce posi-

tive externalities on firms’ costs. From a methodological

perspective, the relaxing of the assumption of constant

returns to scale implies dealing with a nonlinear translog

production function in which the parameter relating to

returns to scale may be estimated directly. To the best of our

knowledge, this paper is the first attempt to estimate a

nonlinear translog specification in order to analyse the role

of technological spillovers.

Another relevant issue regards how R&D spillovers are

measured. Following the method adopted in related litera-

ture (Griliches 1979, 1991), we consider the technological

capital of other firms to be the subject of the technological

transfer; we further assume that firms are not able to absorb

all external technology and that absorptive capacity differs

from one firm to another (Cincera 2005; Harhoff 2000; Jaffe

1988; Los and Verspagen 2000).2 All this implies that

technological spillovers can be determined as a weighted

sum of other firms’ technological capital. The weighting

system used in this paper is based on a similarity index

which is computed on a set of firm specific variables, as was

carried out in Aiello and Cardamone (2008). However, in

this paper, the determination of the spillover indicator is

further improved by using an index of technical efficiency

computed through the Data Envelopment Analysis approach

(DEA):3 we assume that the transfer of technology across

firms is related to the technical efficiency of each firm and, in

so doing, we also address the issue of the relevance of

direction in technological diffusion. The assumption is that

the more technically efficient a firm is, the greater its

capacity to absorb external technology is. We also verify

whether R&D spillovers matter for firms’ production when

considering the opposite assumption, i.e. there are higher

R&D intensity flows between firms with lower technical

efficiencies. Finally, firms’ geographical proximity is

considered as another key-factor in the transmission of

technology.

Using a panel of 1,203 manufacturing firms over the

period 1998–2003, a system of equations, given by the

nonlinear translog specification and cost shares equations,

is adopted since it allows multicollinearity among regres-

sors to be reduced and the efficiency of estimators to be

improved. The equation system is estimated through the

nonlinear three stage least square estimator (N3SLS) in

order to take into account the endogeneity of regressors.

Moreover, a two step instrumental method (IV) is used in

order to correct for sample selection bias (Wooldridge

2002): in the first step a probit model which describes the

firm’s decision to invest in R&D is estimated; in the second

step the fitted probabilities obtained in the first step are

used as instrumental variables in the translog estimation.

Overall, empirical results show that returns to scale are

increasing and output elasticity with respect to R&D spillovers

is always positive and significant. Furthermore, it mainly

emerges that, for Italian manufacturing firms, the internal and

external stocks of R&D capital are highly substitutes.

The paper is organised as follows. Section 2 introduces

the procedures used to determine the different R&D spill-

over indicators. Section 3 discusses the production func-

tion specification and the estimation method used.

Section 4 describes data. Section 5 presents the econo-

metric results of output elasticities and elasticities of sub-

stitution between inputs. Finally, Sect. 6 concludes.

2 The determination of R&D spillovers

From an empirical perspective, one of the main problems

in the analysis of the role of R&D spillovers regards the

determination of technological flows between firms.

The most common approach used to determine R&D

spillovers is to consider a weighted sum of other firms’ R&D

capital stock. This approach requires the determination of

a weighting system X in which each element xij indicates

the proportion of technology produced by firm j and used by

firm i. Two assumptions are made (Griliches 1979, 1991):

(a) it is likely that xij increases when the technological

distance between i and j decreases, and (b) technological

distance does not depend on economic transactions.

2 It is worth noting that scholars disagree about how to weight

innovation flows. The most commonly used weights are based either

on input–output (I/O) matrices (Wakelin 2001; Medda and Piga 2004;

Aiello and Pupo 2004; Aiello et al. 2005; Aiello and Cardamone

2005) or similarity indices computed considering patent data or R&D

investments (Adams and Jaffe 1996; Jaffe 1986, 1988; Los and

Verspagen 2000; Cincera 2005; Harhoff 2000; Aldieri and Cincera

2009).
3 The DEA was first proposed by Charnes et al. (1978). It consists of

a non-parametric approach which is used to estimate a production

function in order to determine the maximum amount of output which

can be produced with a given amount of inputs. Unlike stochastic

frontiers, this method does not require the specification of a functional

form of the production process.
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An initial attempt to determine a weighting system using

a measure of technological distance is provided by Jaffe

(1986, 1988), who considers the firm’s position in a tech-

nological space. This space is divided into k technological

sectors regarding patent classifications. Using the patent

distribution, one way to determine the weighting system is

to consider the uncentered correlation metric (see Eq. 1)

assuming that the more similar the patent distribution of

two firms is, the higher the technological flow between

them will be. The effectively absorption of external tech-

nology for each firm depends on its capacity to identify the

new available technology and to assimilate and use it in

the production process, that is on the absorptive capacity.

The technological absorptive capacity is the capacity of

each firm to absorb new external technology and to use it in

order to introduce new products and/or processes or

improving the existing ones. It may depend on the set of

technological opportunities, i.e. the amount of technologi-

cal resources, available to each firm (Cohen and Levinthal

1989, 1990).

Many authors (Jaffe 1986, 1988; Griliches 1979, 1991;

Cincera 2005; Harhoff 2000; Kaiser 2002; Aldieri and

Cincera 2009) agree that absorptive capacity depends on

technological proximity: the closer two firms are in tech-

nological space, the more they benefit from each other’s

research efforts. The technological proximity of each pair

of firms depends on how similar the firms are in terms of

technology adopted and efforts made to adopt new tech-

nology. As suggested by others, these efforts are related to

many factors, such as the sector in which each firm oper-

ates, the size of the firm, the number of skilled employees

with respect to unskilled ones, R&D investments and

expenditure on Information and Communication Technol-

ogy (ICT).

Bearing in mind all previous considerations, in order to

measure technological proximity between each pair of

firms, we consider the uncentered correlation metric4

computed using a set of variables. For each pair of firms

(i, j) the uncentered correlation is defined as follows:

xijt ¼
XitX

0
jt

XitX
0
jt

� �
XjtX

0
jt

� �� �1=2
ð1Þ

where X is the set of variables which define the techno-

logical similarity between firms and t is time (1998–2003).

Index xijt ranges from zero to one. It is zero when firm i

and firm j are not related at all, while it is unity if the

k-variables in Xit and Xjt are identical.5 Firms which are

relatively close with respect to the variables used to com-

pute Eq. 1 are assumed to benefit more from each other’s

R&D investments than firms at a greater distance from

each other. In order to determine proximity in the tech-

nological space, we use variables which should be strictly

related to the firms’ innovative activities, such as the

numbers of skilled (with at least a high school level of

education) and unskilled (just primary school) employees,

investments in ICT,6 internal and external (e.g. using uni-

versity laboratories) R&D investments, and, finally, the

sectoral mark-up.7 The latter variable is included in order

to consider the characteristics of the industry in which each

firm operates as well as the fact that the flow of technology

between firms in the same sector should be higher than that

between firms belonging to two different sectors. All

variables are normalised with respect to their average in

order to take into account the different scales and units

used in their measurement. The values of variables are

expressed at 2000 real prices.8 Table 4 of the Appendix

presents the average values of technological flow intensi-

ties between each pair of sectors for the year 2003, as

obtained by using Eq. 1. Average values show that firms

belonging to the sectors of leather, wood, petroleum and

non-metallic mineral products mainly use technology pro-

duced by other firms in the same sector. Relatively high

intensities of technological flows are observed among firms

belonging to the sectors of petroleum, basic metal and non-

metallic mineral products, while lower technological flow

intensities are found in the electrical machinery and motor

vehicle sectors. Table 5 presents an example of the prox-

imity measure given by Eq. 1 computed for twenty Italian

manufacturing firms in 2003. The table shows high vari-

ability in the index of technological similarity among firms

as, excluding diagonal values, xij ranges from 0.24 to 0.99.

Moreover, it should be noted that there are relatively high

intensities of technological flows among firms belonging to

the same sector.

4 According to Jaffe (1986) and Cincera (2005), the Euclidean

measure is ‘‘sensitive to the length of the vector. The length depends

on the level of concentration of the firm’s research activities among

the technological classes. With this measure, the more two firms

differ, the shorter their technological vectors are. As a result, these

firms will be located in the central region of the technological space.

Hence, they will be close to each other even though their technolog-

ical vectors are orthogonal’’ (Cincera 2005, p. 12).

5 The similarity index differs at firm-pair level and this allows us to

overcome the strict assumption that firms operating in a given sector

have the same absorptive capacity. Such an assumption is common-

place in all the papers that use I/O models and sectoral patent data

(Los and Verspagen 2000; Aiello and Pupo 2004; Aiello et al. 2005;

Medda and Piga, 2004).
6 The ICT variable is the sum of hardware, software and telecom-

munication investments.
7 We have also computed the similarity index of Eq. 1 by considering

different weights for each of these variables, but estimation results do

not change substantially.
8 In order to obtain variables expressed at 2000 real prices, we use the

production price index provided by the Italian Institute of Statistics

(ISTAT).
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As Tables 4 and 5 show, the similarity index yields a

symmetric matrix of weights, i.e. xijt = xjit. This means

that the intensity of the technological flows from firm i to

firm j is equal to that observed from firm j to firm i. This

property of the index contrasts with the evidence that

direction matters in determining how technology circulates

from one firm to another. Therefore, we consider an

asymmetric transformation of the similarity index based on

an index of technical efficiency obtained from an appli-

cation of the DEA (Data Envelopment Analysis). In other

words, the similarity index is combined with the technical

efficiency of each firm, measured in terms of distance from

the technological frontier. This makes asymmetric the

similarity index because the technical efficiency index

differs across firms. The DEA is implemented bearing in

mind a problem orientated to the maximisation of output

and assuming variable returns to scale. The output indicator

is the firm’s value added while the inputs considered are

employees, book value of total assets and technological

capital, as determined by using the perpetual inventory

methods based on R&D investments and assuming a

depreciation rate of 15%.9 For each year, we compute four

different frontiers, dividing the sample according to the

Pavitt (1984) classification. Technical efficiency is then

computed for each firm in the sample over the period

1998–2003.10

The index of technical efficiency obtained from DEA is

multiplied by the similarity index (Eq. 1). The underlying

hypothesis is that the more efficient a firm is, the more it is

able to absorb external technology. In other words, it is

assumed that a firm which is close to the efficiency frontier

uses technological factors properly in the productive pro-

cess allowing the firm to absorb and use a higher amount of

external technology. Thus, the weighting system which

combines both technological similarity and technical effi-

ciency is defined as follows:

~xijt ¼ xijt � TEit ð2Þ

where TEit indicates the technical efficiency of firm i at

time t. ~xijt is equal to 1 if the two firms, i and j, are

technological similar and firm i is efficient, while it tends to

zero if firms i and j are not similar or firm i is not efficient.

As a robustness check, we also consider that firms which

are far from the efficient frontier would benefit more from

the absorption of external technology, i.e. we compute:

~x1�TE
ijt ¼ xijt � ð1� TEitÞ ð3Þ

If proximity to the efficient frontier improves the

absorption and utilisation of external technology in the

production process, then, in the estimation results, we

should find that spillovers computed with the weighting

system given by Eq. 2 affect firms’ production more than

those determined by using weights in Eq. 3. On the other

hand, if distance from the efficient frontier determines

more benefits in terms of adoption and utilisation of

technology produced by others, then estimates should show

that spillovers computed considering Eq. 2 affect firms’

production less than spillovers obtained when considering

weights in Eq. 3.

Finally, since a large number of papers deal with the

theoretical issues of the nexus between spatial agglomer-

ation and knowledge spillovers (Romer 1986; Arrow 1962;

Orlando 2000; Audretsch and Feldmann 2004; Koo 2005;

Bottazzi and Peri 2003; Aldieri and Cincera 2009), we

include the geographical dimension among factors which

determine the technological diffusion.

A simple way of weighting the diffusion of innovation

among firms located in different areas is to take into

account the geographical distance between them. In this

paper, the distance is measured using the great circle sys-

tem (Maurseth and Verspagen 2002), which is based on

geographical coordinations and is defined as the shortest

distance between any two points on the surface of a

sphere.11 Denoting the geographical distance between the

provinces where firms i and j operate by dij, a weight of

geographical proximity can be computed as follows:

gij ¼ 1
�

1þ dij

� �
ð4Þ

which is unity when the pair (i, j) is in the same province

and tends to zero when the two firms are located in distant

provincial capitals.12

9 Imposing a rate of depreciation equal to 15% is a consolidated

hypothesis in the empirical analyses dealing with technological

capital (Parisi et al. 2006; Hall and Mairesse 1995; Harhoff 1998; Del

Monte and Papagni 2003). In some of these studies (Hall and

Mairesse 1995; Harhoff 1998), a higher depreciation rate, equal to

25%, is also considered, but empirical results are not substantially

different from those obtained imposing a depreciation rate of 15%.
10 We compute the technical efficiency index for each year of the

period analysed in order to take into account the likelihood of some

changes in the index from one year to another.

11 Given two firms located in area 1 and 2, respectively, the great

circle is given by:

dist12 ¼ 69:1 � ð180=pÞ � ar cosðsinðlat1Þ � sinðlat2Þ þ cosðlat1Þ�
cosðlat2Þ � cosðlon2� lon1ÞÞ in which lat1 and long1 are the latitude

and longitude of the area 1, respectively, and lat2 and long2 are the

latitude and longitude of the area 2, respectively.
12 We have chosen a reciprocal function of the distance in order to

take into account the fact that technological flows due to geographical

proximity decrease more than proportionately when the distance

between firms increases. Indeed, it is reasonable to assume that

beyond a certain distance technological flows between firms are only

marginally influenced by geographical proximity, as they are also

likely to be promoted by other factors such as technological similarity

between firms. It is worth mentioning that there are many other

functions that can be used to measure geographical proximity, all of

which are valid under specific assumptions. For example, another

44 J Prod Anal (2012) 37:41–58
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An effective indicator of technological flow intensities

needs to take all of the determinants of technological dif-

fusion, such as technological similarity, technical effi-

ciency and geographical proximity, into account jointly.

Since the closer and more similar firms are, the more they

should benefit from each other’s technology, we average

the indexes ~xijt and gij:

mijt ¼
~xijt þ gij

2
ð5Þ

We also consider other weighting systems which combine

asymmetric technological and geographical proximities.

To be more precise, we also compute a combination of

measures [2] and [4] given by:

m0ijt ¼
2~xijt þ gij

3
ð6Þ

and

m00ijt ¼
~xijt þ 2gij

3
ð7Þ

The indices are asymmetric and range from zero to one.13

They are zero when both ~xijt and gij are equal to zero, i.e.

firm i and firm j are both geographically distant and tech-

nologically dissimilar (or firm i is not technically efficient).

Moreover, as ~xijt and gij cannot be greater than one, indices

given by Eqs. 5–7 are unity if both ~xijt and gij are equal to

one, that is when the closeness of the pair (i,j) is unity in

both dimensions (technology and geography). This range

ensures that firm i cannot absorb more technology than that

produced by firm j and that the technological flow from

firm i to firm j is not negative. With measure given by

Eq. 5, we assume that asymmetric technological similarity

and geographical proximity affect the flow of technology

between two firms with the same intensity. When using

measures given by Eq. 6 and 7, we assume that techno-

logical flows are driven by asymmetric technological

similarity and geographical proximity, respectively. If both

asymmetric technological similarity and geographical

proximity matter, independently of the weight used for

their combination, then we should find that the R&D

spillovers determined by using the weights in 5, 6 and 7

have a similar impact on firms’ production.

All the weighting systems can be used to determine

technological spillovers. For the ith firm and time t, the

stock of R&D spillovers (Spillit) is the weighted sum of

R&D capital of the other N - 1 firms, that is:

Spillit ¼
XN

j ¼ 1

j 6¼ i

tijtCTjt with i ¼ 1; 2; . . .;N and

t ¼ 1; 2; . . .; T

ð8Þ

where tijt denotes a generic weighting system. Bearing in

mind all previous considerations, seven stocks of R&D

spillovers are computed. First of all, the spillover stock is

computed considering the symmetric and asymmetric sim-

ilarity approaches, i.e. tijt ¼ xijt, tijt ¼ ~xijt and tijt ¼ ~x1�TE
ijt .

Secondly, flows of innovation are weighted using geo-

graphical proximity (tijt ¼ gij). Finally, the combinations of

geographical and technological proximity (tijt ¼ vijt, tijt ¼
v0ijt and tijt ¼ v00ijt) are considered.14 The decision to consider

just these weighting systems is due to the fact that, as we

indicated above, the unweighted sum of other firms’ tech-

nological capital (i.e. tijt = 1) cannot represent the true

intensities of technological diffusion among firms.

3 The translog production function

This section describes the production function used to

estimate the impact of technological spillovers on output.

As indicated above, the Cobb Douglas production function

is the most commonly used functional form. This func-

tional form imposes that the elasticity of substitution

between inputs is constant. In this paper, a translog pro-

duction function (Christensen et al. 1973) is considered,

and a test is carried out to see whether this choice is

Footnote 12 continued

measure that might be used is gij ¼ 1� dij

max dijð Þ

� �2

. However, in this

case it has to be assumed that when dij = max(dij) then the flow of

technology between firms i and j is equal to zero. However, it is more

likely that the flow of technology between two firms is very low but

positive.
13 These very simple indices are an attempt to take into account all of

the factors that are likely to affect technological diffusion, in the

absence of prior information regarding the relative importance of

technological similarity with respect to geographical proximity in the

transfer of technology. A natural extension to this study might be the

estimation of the translog production function by including two

distinct measures of R&D spillovers as regressors at the same time

(the ones obtained using technological similarity and geographical

distance). Although this is a fashionable idea, it cannot be

implemented for two main reasons. The first one regards the fact

that, by using the translog production function, we have the constraint

of having to identify the cost share equations (see Sect. 3). In other

words, if we use two measures of R&D spillovers, then we should

include, in the system of equations, the cost share equation of one of

the two R&D spillover stocks. This is a difficult task, because the

costs of R&D spillovers are not observable. The second reason is that

the two spillover indicators are highly correlated and, thus, cannot be

both included in the model at the same time.

14 It should be noted that, in this paper, the international aspect of the

diffusion of technology has not been explicitly taken into account due

to a lack of available information at firm level on the R&D

technological flows from foreign countries. The restrictive assump-

tion underlying the paper is that the flow of foreign technology has the

same intensity to all Italian firms and is independent from, e.g.,

technological or geographical proximity.
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confirmed as being correct by data. The specification

considered is that proposed by Chan and Mountain (1983)

and successively corrected by Kim (1992). This specifica-

tion does not require returns to scale to be constant since

the relative parameter h is directly estimated. The translog

production function considered is the following:

ln Yit ¼hðaþ aL ln Lit þ aK ln Kit þ aCt ln CTit

þ aSp ln Spillit�1 þ nT t

þ 1

2
bLL ln Litð Þ2þ 1

2
bKK ln Kitð Þ2þ 1

2
bCtCt ln CTitð Þ2

þ 1

2
bSpSp ln Spillit�1ð Þ2þ 1

2
dTT tð Þ2

þ bLK ln Lit ln Kit þ bLCt ln Lit ln CTit

þ bLSp ln Lit ln Spillit�1

þ bKCt ln Kit ln CTit þ bKSp ln Kit ln Spillit�1

þ bCtSp ln CTit ln Spillit�1

þ cLT ln Lit � t þ cKT ln Kit � t þ cCtT ln CTit � t
þ cSpT ln Spillit�1 � tÞ

þ gsdps þ ggdag þ eit

ð9Þ

for i = 1,…,N firms and t = 1,…,T years, where Y is

output, L is labour, K is physical capital, CT is techno-

logical capital, Spill is the R&D spillover stock and t is a

temporal index. Furthermore, dps, with s = 2, 3, 4, are

industrial dummies in accordance with the Pavitt (1984)

classification, dag, with g = 1, 2, 3, are territorial dum-

mies, and eit is the error term.15 We consider the usual

assumption of symmetry in the translog production func-

tion (Christensen et al. 1973; Berndt and Christensen

1973), so that bij ¼ bji.

Output is measured by firms’ value added. Physical

capital is measured by the book value of total assets.

Labour is given by the number of employees in head

counts. Furthermore, for each firm the stock of techno-

logical capital is determined by current and past invest-

ments in R&D. This stock of capital is used to determine

the stock of R&D spillovers that is available to each firm

(equation [8]). Moreover, the stock of spillovers is 1-year

lagged in order to take into account the plausible

assumption that there is a temporal lag between when new

knowledge becomes available and when it is applied to the

production process by the firm.16

In order to verify the validity of the choice of the

translog production function rather than the Cobb-Douglas,

the joint significance of parameters b, c and d is tested. If

these parameters are jointly significant then the use of the

Cobb-Douglas production function is not adequate. The

contrary holds.

Following Berndt and Christensen (1973) and May and

Denny (1979), Eq. 9 is estimated in conjunction with the

cost-share equations. This is because the system of equa-

tions allows us to use additional information without

increasing the number of parameters to be estimated

(Antonioli et al. 2000). Furthermore, it improves the effi-

ciency of estimations and reduces the multicollinearity

which is suspected to be present in the Eq. 9 (Feser 2004;

Lall et al. 2001; Goel 2002).

Given the assumption of profit maximising firms, the

cost share equations of labour SL, physical capital SK,

technological capital SCT and R&D spillover stock SSP are

the following:

SL;it ¼ aL þ bLL ln Lit þ bLK ln Kit þ bLCt ln CTit

þ bLSp ln Spillit�1 þ cLT � t þ uL;it ð10Þ

SK;it ¼ aK þ bLK ln Lit þ bKK ln Kit þ bKCt ln CTit

þ bKSp ln Spillit�1 þ cKT � t þ uK;it ð11Þ

SCt;it ¼ aCt þ bLCt ln Lit þ bKCt ln Kit þ bCtCt ln CTit

þ bCtSp ln Spillit�1 þ cCtT � t þ uCt;it ð12Þ

SSp;it ¼ aSp þ bLSp ln Lit þ bKSp ln Kit þ bCtSp ln CTit

þ bSpSp ln Spillit�1 þ cSpT � t þ uSp;it ð13Þ

We assume a sum of input cost shares equal to one and

homogeneity of grade h, in formulae
P

i o ln Y=o ln Xi ¼ h
with

P
i ai ¼ 1,

P
j bij ¼ 0 and

P
i ciT ¼ 0. As a conse-

quence, the sum of the error terms in the Eqs. 10–13 is

unity for each observation, and, hence, the error variance–

covariance matrix is singular. Thus, estimation of the

equation system 9–12 yields estimates for all of the

parameters.17

15 With regards the industrial dummies, dp1 is relative to traditional

industries, dp2 to large scale industries, dp3 to specialised industries

and dp4 to highly technological ones. The control group is dp1, i.e.

traditional industries. As for the geographical dummies, da1 relates to

the North West, da2 to the North East, da3 to the Centre and da4 to the

South of Italy. The control group is da4, which refers to firms located

in the South of Italy.

16 R&D spillovers is a stock variable given by the weighted sum of

technological capital of other firms. Thus, it is likely that there is a

temporal lag between when the new technology is available to the

innovative firm and when the same technology is used in the

production process by imitators, which should first absorb external

technology and then use it in the production process.
17 The labour cost share SL is the total labour cost to the value added.

Following Verspagen (1995) and Saal (2001), we compute SK and SCT

as [PI(d ? r)]Z/V where PI is the investment price deflator, d is the

rate of depreciation, which is assumed to be equal to 5% for physical

capital and 15% for technological capital, r is the interest rate, which

is assumed to be 5%, Z is the stock of capital (physical or

technological) and V is the value added.
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4 Data source

Data used in the empirical analysis come from the 8th and

9th ‘‘Indagine sulle imprese manifatturiere’’ (IMM) sur-

veys carried out by Capitalia. These two surveys cover the

period 1998–2003, contain standard balance sheets and

collect a great deal of qualitative information from a large

sample of Italian firms. The 8th survey covers the period

1998–2000 while the 9th survey refers to the period 2001–2003.

Each survey considers more than 4,500 firms and includes

all Italian manufacturing firms with more than 500 workers

and a representative sub-sample of firms with more than 10

workers (the stratification used by Capitalia considers

location, size and sector of the firm). 1,650 firms figure in

both surveys, but, after data cleaning, we obtain a balanced

panel of 7,218 observations, with large N (1,203 cross

sections) and small Y (6 years).

Table 1 shows a breakdown of the sample of firms in

2003. We only present data regarding the last year available

as the distribution of firms by size, sector and location is

time-invariant. We split the sample into R&D performing

firms and non-R&D performing firms. The first group is

comprised of firms with positive R&D capital. In the sample,

there are 557 R&D performing firms and 646 non-R&D

performing firms. With regards to the geographical location

of firms, we find that about two-thirds were located in

northern Italy (445 in the north west and 382 in the north

east). At the 2-digit ATECO18 industry level, the sample is

dominated by firms in the textiles, basic metals and non-

electrical machinery industries, while the petroleum refinery

industry is represented by just 6 firms. In the case of R&D

performers, most firms are located in northern Italy and are

active in the textiles, non-electrical and electrical machinery

industries. As far as size is concerned, a large number of

firms are of small and medium size (Table 1).

Table 1 also presents 2003 labour productivity and

physical and technological capital intensities. Labour pro-

ductivity is measured as the ratio of value added with respect

to the number of employees, whereas capital factor intensity

is expressed as the ratio of physical (or R&D) capital to

value added. Data are the 6-year weighted average.19

It is worth pointing out that the average value of labour

productivity is 72,000 euros for the entire sample of firms

and 63,000 euros for R&D performing firms. Furthermore,

output per worker differs with geographical area: it ranges

from 100,000 euros, for the firms operating in the centre of

Italy, to 61,000 euros in the northern regions.20 With

regards size, the highest labour productivity is found in

large firms, while, as far as sectors are concerned, the most

productive firms belong to the paper and petroleum

industries. Finally, the leather industry accounts for the

lowest labour productivity.

Physical capital intensity is 1.20 for the total sample of

firms and 1.25 for R&D performers; moreover, in the case of

the entire sample, it is relatively high for firms located in the

north-east and the south, and high physical capital intensity

is also observed for R&D performing firms located in the

north-east and in the centre of Italy. With regards size and

industry, larger firms, firms in the food, rubber and plastic

industries and R&D performers in the paper sector register

relatively high values of physical capital intensity.

Bearing in mind the specific aim of this paper, the anal-

ysis of R&D capital intensity is of great interest. It is com-

puted as the share of technological capital (CT) with respect

to value added (Y). At a national level, it is 0.35 for all R&D

performers; firms operating in the north west of Italy register

a value (0.47) which is higher than the national average,

while, in other areas, R&D intensity is lower (0.30 in north

east, 0.26 in the centre and 0.09 in the south). R&D intensity

differs greatly when one considers firm size: it is 0.41 for

firms with more than 250 employees, 0.29 for small (11–50

workers) and 0.25 for medium sized firms (51–250

employees). Finally, intensity is high in the chemical (0.96),

electrical (0.67) and non-electrical (0.40) sectors and low in

the wood (0.03) and paper (0.04) sectors (Table 1).21 To sum

up, it seems, from the descriptive analysis, that there is no

clear relationship between R&D expenditure and a firm’s

productivity, except for the analysis based on size which

indicates that larger firms seem to invest more in R&D. The

lack of a marked relationship between productivity and

R&D might be due to the fact that firms which operate in

different industries carry out different R&D activities with

18 ATECO is an Italian classification of economic activities devel-

oped by ISTAT and is equivalent to the European NACE classifica-

tion for the first four digits.

19 Weights are given by fi ¼ Fit

.P2003
t¼1998

PN
i¼1 Fit where Fit is the

sales of the ith firm at time t (t = 1998,…, 2003) belonging to a group

sized N (i = 1,…,N).

20 These figures are driven by the high level of productivity of one

firm with 21–50 workers operating in the petroleum industry and by

two firms with more than 250 workers belonging to the paper sector.

If we exclude these firms, the differences in labour productivity

decrease. We are not worried about the presence of these outliers

because these firms are non-R&D performing and, hence, they are

considered in the estimation of the probability of investing in R&D

(see Sect. 5), but not in the estimation of the translog production

function in which logarithms are used and, as a consequence, zero

observations are dropped.
21 The distribution of the firms, size and R&D investments among

sectors and areas are in line with those observed for the whole of the

Italian industrial system information about which is provided ISTAT—

http://www.istat.it/imprese/ and http://dwcis.istat.it/cis/index.htm. For

example, in the Capitalia dataset chemical and electrical sectors absorb

24 and 22% of R&D investments in manufacturing firms, respectively,

while considering data from ISTAT the percentages are 23 and 25%,

respectively. Moreover, R&D investments in the sample are 51% of

those made by the entire Italian manufacturing sector.
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different intensities. Even the divergence between North and

South in terms of technological capital intensities seems less

evident in terms of labour productivity.

5 Estimation method and econometric results

This section presents results regarding the output elasticities

with respect to each input. Results are obtained by estimating

the equation system 9–12. The equation system is nonlinear

because of the nonlinearity of Eq. 9. It is estimated by using

a nonlinear three stage least square estimator (N3SLS).

Moreover, bias of the sample selection is taken into account.

The sample selection issue arises because the stock of R&D

capital is determined using R&D investments and, in many

cases, firms do not invest in R&D (zero-investment values).

As a consequence, we have a sub-sample of firms with

positive values for R&D capital and a sub-sample of firms

with zero values for R&D capital. The log-linearisation of

Eq. 9 restricts the sample of firms to the R&D performing

firms, and in so doing, forces us to work with a sample which

is no longer random because it ignores the underlying pro-

cess which leads each firm to invest, or not, in R&D. It can be

shown that, if this underlying process is correlated with the

primary equation, i.e. the translog specification, then esti-

mates obtained disregarding this issue are biased. The

selection process can be modelled by using a treatment effect

model where the sample is separated into the treated (the

units that participate in a programme, in this case the firms

which invest in R&D) and the untreated (those which do not

invest in R&D) firms, where the treatment (investing in

R&D) is an endogenous process. Following Wooldridge

(2002), this issue is addressed by using a two-step IV

method: in the first step a probit model is considered which

Table 1 Breakdown of the sample of firms, labour productivity and factor intensity in Italian manufacturing firms by industry, area and size in

2003 (weighted average)

Total sample R&D performing firms

No of firms Y/La K/Ya No of firms Y/La K/Ya CT/Ya

Sector

Food, beverages & tobacco 103 62 2.11 35 62 2.25 0.12

Textiles & apparel 148 60 1.14 71 64 1.12 0.16

Leather 50 39 0.98 22 43 1.08 0.18

Wood products & furniture 47 47 1.00 15 56 1.01 0.03

Paper, paper prod. & printing 68 164 1.20 19 106 3.15 0.04

Petroleum refineries & product 6 326 1.06 2 60 0.66 0.22

Chemicals 55 68 0.49 36 68 0.41 0.96

Rubber & plastic products 65 74 1.41 32 77 1.33 0.36

Non-metallic mineral products 81 66 2.10 26 60 2.34 0.11

Basic metal & fab. met. prod. 193 65 1.30 58 57 1.28 0.25

Non-electrical machinery 174 62 0.87 122 61 0.88 0.40

Electrical machinery and electronics 100 51 0.95 71 51 1.00 0.67

Motor vehicles & other transport equipment 27 57 1.08 12 61 1.20 0.25

Other manufacturing industries 86 41 0.92 36 43 0.94 0.17

Size

11–20 Employees 452 53 1.07 152 52 0.83 0.29

21–50 Employees 440 70 1.20 187 56 1.14 0.25

51–250 Employees 242 55 1.07 163 53 1.00 0.25

[250 Employees 69 83 1.27 55 68 1.40 0.41

Area

North West 445 61 0.97 215 60 0.91 0.47

North East 382 62 1.48 195 63 1.55 0.30

Centre 227 100 1.03 98 56 1.55 0.26

South 149 95 1.42 49 86 1.12 0.09

Total 1,203 72 1.20 557 63 1.25 0.35

Source: Our calculation based on data from Capitalia (2002, 2005)

Weights are expressed as the sales of the ith firm in relation to the aggregate sales of the group
a Y/L = Value added/employee (in .000 of Euro); K/Y = Physical capital/Value added; CT/Y = Technological capital/Value added
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explains the decision to invest in R&D, and in the second

step the translog production function is estimated using as

instruments the fitted probabilities Ĝit

� �
derived from the

first step. Whereas all firms (R&D performing and non-R&D

performing) are used in the first stage, in the second stage

(Eqs. 9–12), only the R&D performing group is considered.

This procedure is suitable for two main reasons. First of all,

the usual standard errors and test statistics are asymptotically

valid and, secondly, no particular specification of the probit

model has to be set up (Wooldridge 2002).22

The dependent variable of the probit model is unity if the

i-th firm invests in R&D and is zero if it does not. The probit

model regressors are the same as the explanatory variables

of the production function (Eq. 9), plus the key determinants

of the decision to invest in R&D, which are selected fol-

lowing the literature on this subject (Leo 2003; Becker and

Pain 2003; Gustavsson and Poldhal 2003; Bhattacharya and

Bloch 2004). The determinants considered are human cap-

ital, cash flow, investments in ICT, a dummy equal to unity if

firm i exports and a set of dummies measuring the geo-

graphical location and the economic sector of each firm.23

The probit estimation results are presented in Table 6 of

the Appendix. Results show that the probability of investing

in R&D is positively correlated with human capital and

investments in ICT, as well as exports. Furthermore, the

effect of R&D spillovers on the probability of investing in

R&D is not significant when considering the asymmetric

similarity index of Eq. 2 and the geographic proximity

through Eq. 4, while it is significantly negative in the case of

spillovers computed by considering higher weights for less

efficient firms (Eq. 3). The latter result is in line with those

obtained by Cardamone (2010) according to which R&D

spillovers negatively affect the probability of introducing a

product or process innovation within Italian manufacturing

firms. Moreover, when considering spillovers computed in

Eq. 3, the coefficient of the squared variable (lnspill2) is

significantly positive. Hence, in that case, it seems that the

diffusion of technology is a disincentive in the decision to

invest in R&D until a given level of spillovers is reached;

after the effect becomes positive.

As regards the estimation of the translog production

function, there could also be an endogenity problem, due to

the fact that inputs and output will be probably determined

simultaneously, as in all estimation of a production func-

tion (see, among the others, Mairesse and Hall 1996). In

order to take into account endogeneity of regressors, as

well as the fitted probabilities obtained in the first step, we

consider the 1-year lagged value of endogenous variables

(labour, physical and technical capital and their squared

values) as instrumental variables in the second step.24

From a theoretical point of view, the estimated param-

eters of a translog are not interpretable and, hence, only the

implied output elasticities with respect to each input are

discussed.25 These elasticities are obtained as a combina-

tion of estimated translog coefficients and the average of

input values (Verspagen 1995; Saal 2001).

Several tests are carried out in order to verify whether the

specification chosen and the estimation method employed are

appropriate. An initial test concerns the joint significance of

coefficients relative to squared and interaction variables.26 A

second test looks at the constant returns to scale hypothesis. In

particular, the null hypothesis H0 : h ¼ 1 is tested against the

alternative hypothesis that h is different from one. Finally, a

Breusch-Godfrey test on the serial correlation of error terms is

also carried out. Results are presented in Table 2. The diag-

nostic tests show, in all estimations, the absence of first and

second order serial correlation. Furthermore, the F-Fisher test

indicates that the use of the Cobb-Douglas production function

is not adequate since coefficients of the interaction and squared

variables are jointly significant; the t-Student test computed on

the h coefficient also shows that returns to scale are always

significantly higher than one, except for one case in which they

are significantly decreasing (column 3). These findings greatly

support our decision to relax the hypothesis of constant returns

to scale and shed some light on the fact that R&D spillovers act

as a quasi-public good that generates positive externalities.

5.1 Output elasticities

The econometric results for the full sample of firms are

summarised in Table 2. In column 1, elasticities are

22 Denoting the treatment indicator by w, which is equal to 1 if there

is treatment and 0 otherwise, and the probit specification by G(x, z,

c*), ‘‘what we need is that the linear projection of w onto [x, G(x, z,

c*)] actually depends on G(x, z, c*), where we use c* to denote the

plim of the maximum likelihood estimator when the model is

misspecified […] These requirements are fairly weak when z is

partially correlated with w00 (Wooldridge 2002, p. 624).
23 Human capital is computed by exp(uRSh) where Sh is the

weighted number of years of schooling (8 for primary and middle

school, 13 for high school and 18 for bachelor degree), where weights

are the number of employees by years of schooling, and uR is the

regional rate of returns on education drawn from Ciccone (2004). The

cash flow variable is computed as gross profits minus taxes plus

depreciation. Finally, the IMM surveys report information on exports

only for the last year of each survey, i.e. 2000 and 2003. Thus, it is

assumed that this dummy is constant over each 3-year period.

24 We do not use more instruments because, although increasing their

number may improve efficiency, it reduces the degrees of freedom

and might also cause severe bias (Wooldridge, 2006).
25 In the appendix (Table 7), we present the estimated coefficients of

the translog production function.
26 The null hypothesis is: H0 ¼ bLK ¼ bLCt ¼ bLSp ¼ bKCt ¼ bKSp ¼
bCtSp ¼ bLL ¼ bKK ¼ bCtCt ¼ bSpSp ¼ dTT ¼ cTL ¼ cTK ¼ cTCt ¼ cTSp

¼ 0

while the alternative hypothesis is that coefficients are jointly

different than zero.
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estimated by considering the symmetric index of techno-

logical similarity to be the weighting system of techno-

logical flows (see Eq. 1). Columns 2 and 3 refer to

asymmetric similarity indices which combine technologi-

cal similarity and technical efficiency (Eqs. 2 and 3,

respectively). Column 4 regards the outcomes obtained

using the index of geographical proximity (Eq. 4). The

final output elasticities (columns 5, 6, 7) are obtained using

the three combinations of the asymmetric technological

similarity index and geographical proximity measure

(Eqs. 5–7, respectively).

One of the first things to emerge is that all the output

elasticities are positive and highly significant. As for

conventional inputs, the output elasticities relative to

labour and physical capital are similar to those derived

from a neoclassical production function. To be more

precise, output elasticity relative to labour ranges from

0.56 to 0.58 while output elasticity relative to physical

capital varies from 0.17 to 0.24. Similar results are also

obtained in the several estimations for the internal stock

of R&D capital: output elasticity is highest and equal to

0.16 when considering asymmetric technological spill-

overs with higher weights for firms which lie far from the

efficient frontier (column 3), while it is lowest, equal to

0.11, when considering asymmetric spillovers with higher

weights for firms that are close to the efficient frontier.

These findings suggest that the elasticities of output wth

respect to the traditional inputs (labour, physical and

technological capital) are robust to the different measures

of spillovers used. Moreover, they are similar to those

already presented in some papers aimed at assessing the

impact of R&D capital on firms’ production (Mairesse

and Hall 1996; Hall and Mairesse 1995; Harhoff 1998;

Aiello et al. 2005).

The magnitude of the impact of R&D spillovers on

firms’ production is high, except for cases of higher

weights for firms that are far from the efficient frontier

(0.036, column 3). This result suggests that firms which

are not efficient would only benefit marginally from the

technology produced by others, as they would need to

develop an adequate absorptive capacity. The output

elasticity relative to R&D spillovers is 0.15 if we consider

geographical proximity (column 4), and 0.44 if we

determine spillovers by using the asymmetric index of

technology (column 2). It is between 0.39 and 0.43 when

combining asymmetric technological spillovers and geo-

graphical proximity (columns 5,6,7). It may be noticed

that the McElroy R-squared, which measures the good-

ness of fit of the equation system, is slightly higher in the

case of estimation with asymmetric technological spill-

overs of Eq. 2 (column 2) than it is in the other estima-

tions. Thus, it seems that using the asymmetric

technological index which combines technological

proximity and technical efficiency improves the model

specification.27

The estimates obtained in this analysis are similar to those

obtained by Cincera (2005) for a sample of 625 large firms

throughout the world over the period 1987–1994, while Los

and Verspagen (2000) obtain a higher value (equal to 0.56) for

a sample of 680 U.S. manufacturing firms over the period

1977–1981. It should also be noted that results obtained when

considering different weights of asymmetric technological and

geographical spillovers (columns 5,6,7) are not substantially

different. This means that the method used to combine tech-

nological and geographical proximities when measuring

spillover intensities does not seem to affect output elasticities.

To sum up, these results confirm the hypothesis that elasticities

vary according to the procedure used to weight technological

flows, i.e. to the various assumptions made regarding the

capacity to absorb technology produced by other firms. Elas-

ticity of geographical spillovers is substantially lower than that

observed for technological spillovers (except in the case of

higher weights for firms that are far from the efficient frontier)

and this finding suggests that Italian manufacturing firms seem

to benefit more from technological diffusion stimulated by

proximity in technological space than from that encouraged by

proximity in the geographical sense. Finally, it should also be

noted that returns to scale are generally increasing, except in

column 3 where we observe decreasing returns to scale and a

substantially lower elasticity of production to spillovers. This

could be due to the fact that technological diffusion can only

marginally help firms which are distant from the efficient

frontier to benefit from external technology and achieve

increasing returns to scale. This result suggests that, for Italian

manufacturing firms, proximity to the efficient frontier may

mean that there are greater benefits, in terms of production, to

be had from absorbing external technology.

5.2 Elasticity of substitution

The degree of substitution among inputs is evaluated by

considering the technical elasticities of substitution.28

27 It may be noticed that the estimated coefficient b̂CtSp, relating to

the interaction between R&D capital and R&D spillovers, gives us

information regarding the absorptive capacity. In particular, we

expect that the effect of R&D spillovers on production is higher for

firms with higher technological capital (Cohen and Levinthal 1989).

Results regarding the estimated coefficients are presented in Table 7

which shows that the effect of R&D spillovers on technological

capital slightly increases if a firm’s R&D capital increases because the

coefficient is significant and positive, albeit very low.
28 The Technical Elasticity of Substitution (TES) indicates the

percentage change in the use of a production factor in response to an

exogenous shock relative to the supply of another input. In other

words, it quantifies how much the reduction of 1 per cent of factor s
forces a rise in factor k in order to keep the level of production

constant in the short term. In the case of the translog production
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The determination of elasticities of substitution is limited

to cases of the asymmetric technological and geographical

indices (columns 2, 3, 4, 5 in Table 2).

Table 3 shows the technical elasticities of substitution,

which are computed by considering the average of the

variables. Furthermore, a test which verifies the null

hypothesis that elasticities of substitution are equal to one

is reported. Test results show that elasticities of substitution

are significantly different from one.

From Table 3 it may be noticed that a decrease of 1% in

the use of labour implies an increase of 2–3% in the use of

physical capital and 4–5% in the use of technological

capital. These are the highest elasticities of substitution

observed when considering traditional inputs. Moreover, a

Table 3 Technical (TES)

elasticity of substitution (as a

mean average of the sample)

over the period 1998–2003

Standard errors reported in

brackets

*** Statistical significance at the

1% level; § t-test H0 : rij ¼ 1

Asymm. technol. and

technical efficient spill.

(Eq. 2) tijt ¼ ~xijt

Asymm. technol. and

technical inefficient spill.

(Eq. 3) tijt ¼ ~x1�TE
ijt

Geographic spill.

(Eq. 4) tijt ¼ gij

Asymm. techn.

and geogr.

spill. (Eq. 5) tijt ¼ vijt

L & K 0.302*** 0.419*** 0.370*** 0.306***

(.0003) (.0004) (.0004) (.0003)

§ -(2,106.6938) -(1,369.0705) -(1,555.4817) -(2,021.9757)

K & L 3.309*** 2.386*** 2.702*** 3.264***

(.0036) (.0024) (.003) (.0037)

§ (636.6614) (573.7582) (575.7285) (619.4631)

L & CT 0.198*** 0.282*** 0.267*** 0.203***

(.0002) (.0002) (.0002) (.0002)

§ -(4,947.4623) -(3,585.1698) -(3,401.0008) -(4,670.6873)

CT & L 5.060*** 3.546*** 3.743*** 4.926***

(.0042) (.0025) (.003) (.0041)

§ (977.7949) (1,011.1315) (908.7184) (948.1678)

K & CT 0.654*** 0.673*** 0.722*** 0.663***

(.001) (.001) (.0011) (.001)

§ -(359.0604) -(332.8542) -(244.9379) -(335.9214)

CT & K 1.529*** 1.486*** 1.385*** 1.509***

(0.002) (0.002) (0.002) (0.002)

§ (234.8149) (224.0004) (176.8177) (222.5884)

L & Sp 0.783*** 0.063*** 0.263*** 0.737***

(.0011) (.0006) (.001) (.0012)

§ -(191.9279) -(1,448.9014) -(747.6601) -(221.4206)

Sp & L 1.277*** 15.848*** 3.800*** 1.356***

(.0018) (.1624) (.0142) (.0022)

§ (150.2387) (91.4232) (196.7547) (163.2854)

K & Sp 2.590*** 0.151*** 0.711*** 2.407***

(.0047) (.0016) (.0029) (.0048)

§ (335.5535) -(543.2887) -(101.3282) (292.9359)

Sp & K 0.386*** 6.642*** 1.406*** 0.415***

(.0007) (.069) (.0056) (.0008)

§ -(869.1574) (81.7985) (72.0441) -(705.1191)

CT & Sp 3.961*** 0.224*** 0.985*** 3.633***

(.0074) (.0023) (.004) (.0074)

§ (402.3404) -(333.236) -(3.805) (357.9633)

Sp & CT 0.252*** 4.470*** 1.015*** 0.275***

(.0005) (.0465) (.0041) (.0006)

§ -(1,593.5737) (74.5541) (3.7476) -(1,300.3592)

Footnote 28 continued

function, it can be shown that the technical elasticity of substitution

may be expressed as follows: TESks ¼
asþbss ln Xsþ

P
i 6¼s

bis ln XiþcsT t

akþbkk ln Xkþ
P

i 6¼k
bik ln XiþckT t

. This

equation indicates that the technical elasticity of substitution between

inputs k and s is inversely related to their output elasticities. Fur-

thermore, the TESks index is the inverse of TESsk, and both are always

positive.
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decrease of 1% in the use of physical capital implies an

increase of 1.4–1.5% in the use of technological capital.

With regards R&D spillovers computed when considering

more efficient firms, a decrease of 1% in technology

absorbed from other firms implies an increase of 2.6% in

the use of physical capital and of 4% for technological

capital. This also means that if the absorption of external

R&D increases, physical capital and technological capital

substantially decrease. These elasticities do not signifi-

cantly change when considering the R&D spillovers com-

puted by using the combination of geographical and

technological proximities. This finding suggests that the

absorption of external technology may yield large benefits

if firms are technological similar and also technical

efficient.

Moreover we found very different elasticities of sub-

stitution when considering higher asymmetric spillovers for

less efficient firms. In particular, technological capital and

R&D spillovers are only marginally substitutes, given that

the relative coefficient is relatively low. This means that if

the stock of external R&D decreases, the internal tech-

nology increases but only marginally. Moreover, a

decrease of 1% in the use of labour, physical capital or

technological capital determines an increase in the use of

spillovers of 15.8, 6.6 and 4.5%, respectively. This result

suggests that, in the case of contingent difficulties, ineffi-

cient firms could be stimulated to improve their absorptive

capacity in order to obtain more benefits from external

technology.

6 Concluding remarks

The aim of this paper is to assess the impact of R&D

spillovers on the production of Italian manufacturing firms.

With respect to the related literature, it introduces two main

improvements in the empirical specification. The first deals

with the functional form to be used in modelling the impact

of R&D and the second concerns the use of an index of

technical efficiency to refine the determination of R&D

spillovers.

As far as functional form is concerned, we use a non-

linear translog production function which allows the esti-

mation of returns to scale. With regards to R&D spillovers,

we propose an asymmetric transformation of the uncen-

tered correlation based on a technical efficiency index,

determined by considering the DEA approach. The

underlying assumption is that the flow of innovation

between firms is related to the technical efficiency of each

firm. Moreover, we also take into account the technological

diffusion among firms due to geographical proximity.

Using a data panel of 1,203 manufacturing firms over

the period 1998–2003, we estimate the nonlinear translog

specification through the 2-step IV estimator in order to

take into account both sample selection and endogeneity

issues. In the first step, the selection process that leads

firms to invest or not in R&D is modelled. In the second

step, a system of the nonlinear translog and cost-share

equations is estimated using the nonlinear 3SLS estimator.

Results show that returns to scale are mainly increas-

ing. Furthermore, it emerges that output elasticity to R&D

spillovers is always positive and that different methods of

measuring of spillovers bring about different effects of

internal and external R&D stocks on the firm’s output.

Even though this analysis does not allow it to be estab-

lished which indicator best represents technological flow

between firms, it is worth noting that if we consider the

asymmetric similarity index determined by combining

technological proximity and technical efficiency, the

McElroy R-squared is slightly higher than in the other

cases. If technological flows are weighted by the average

of the asymmetric technological index and the geo-

graphical proximity measure, the output elasticity relative

to R&D spillovers is equal to 0.4. Aiello and Cardamone

(2008), who adopted a linear translog specification, found

similar results with regards output elasticity relative to

R&D spillovers. However, they found that output elas-

ticity relative to traditional inputs is very sensitive to the

spillover indicator considered. Their result is probably

due to the assumption of constant returns to scale which

means that the sum of output elasticities has to be equal

to one. Results also show that the effect of R&D spill-

overs is greater if the absorptive capacity is assumed to be

higher for more efficient firms. This outcome suggests

that technological absorption capacity could be improved

by technical efficiency in enterprises’ production

processes.

As far as elasticities of substitution between inputs are

concerned, in the case of higher R&D flows for efficient

firms, the technical elasticity of substitution between

technological capital and R&D spillovers is relatively high.

Hence, from results regarding output elasticities and elas-

ticities of substitution, it seems that the more efficient and

technological similar firms are, the more they are able to

absorb and use technology produced by others in their

production processes.

In terms of policy implications, the low level of R&D

intensity observed in Italy suggests that public intervention

in the promoting of R&D activities is required. Indeed,
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lowering R&D costs would cause an increase in production

and the adoption of technology and, therefore, an

improvement in firms’ performances. Hence, policy inter-

ventions aimed at stimulating Italian R&D investments and

innovation could help Italian firms narrow the competitive

gap with respect to other developed countries.

Appendix

Estimation of translog coefficients

Given the assumption of homogeneity of grade h, the fol-

lowing constraints are imposed
P

i ai ¼ 1,
P

j bij ¼ 0 andP
i ciT ¼ 0.

Thus, the equation system becomes:

ln Yit ¼ hðaþ aL ln Lit þ aK ln Kit þ aCt ln CTit

þ ð1� aL � aK � aCtÞ ln Spillit þ nT � t

þ 1

2
�bLK � bLCt � bLSp

� �
ln Litð Þ2

þ 1

2
�bLK � bKCt � bKSp

� �
ln Kitð Þ2

Table 4 Average values of technological flows between industries according to the technological similarity index (Eq. 1), 2003

DA DB DC DD DE DF DG DH DI DJ DK DL DM DN

DA 0.77 0.69 0.59 0.58 0.71 0.81 0.58 0.67 0.79 0.78 0.63 0.48 0.42 0.71

DB 0.69 0.65 0.59 0.59 0.67 0.72 0.57 0.64 0.70 0.70 0.61 0.50 0.47 0.67

DC 0.59 0.59 0.63 0.63 0.60 0.58 0.53 0.60 0.59 0.60 0.55 0.50 0.57 0.64

DD 0.58 0.59 0.63 0.66 0.62 0.59 0.55 0.61 0.58 0.60 0.57 0.53 0.60 0.65

DE 0.71 0.67 0.60 0.62 0.70 0.75 0.58 0.66 0.73 0.73 0.62 0.51 0.48 0.70

DF 0.81 0.72 0.58 0.59 0.75 0.87 0.61 0.70 0.83 0.82 0.66 0.50 0.41 0.73

DG 0.58 0.57 0.53 0.55 0.58 0.61 0.55 0.58 0.58 0.58 0.56 0.51 0.49 0.60

DH 0.67 0.64 0.60 0.61 0.66 0.70 0.58 0.65 0.68 0.68 0.61 0.52 0.51 0.67

DI 0.79 0.70 0.59 0.58 0.73 0.83 0.58 0.68 0.82 0.80 0.63 0.47 0.41 0.71

DJ 0.78 0.70 0.60 0.60 0.73 0.82 0.58 0.68 0.80 0.79 0.64 0.49 0.43 0.72

DK 0.63 0.61 0.55 0.57 0.62 0.66 0.56 0.61 0.63 0.64 0.59 0.51 0.48 0.63

DL 0.48 0.50 0.50 0.53 0.51 0.50 0.51 0.52 0.47 0.49 0.51 0.50 0.51 0.54

DM 0.42 0.47 0.57 0.60 0.48 0.41 0.49 0.51 0.41 0.43 0.48 0.51 0.62 0.54

DN 0.71 0.67 0.64 0.65 0.70 0.73 0.60 0.67 0.71 0.72 0.63 0.54 0.54 0.71

The manufacturing economic activities are divided by the Italian Institute of Statistics (ISTAT) into the following ATECO classification:

DA-Food, Beverages & Tobacco; DB-Textiles & Apparel; DC-Leather; DD-Wood Products & Furniture; DE-Paper, Paper Prod. & Printing;

DF-Petroleum Refineries & Product; DG-Chemicals; DH-Rubber & Plastic Products; DI-Non-Metallic Mineral Products; DJ-Basic Metal & Fab.

Met. Prod.; DK-Non-Electrical Machinery; DL-Electrical Machinery and Electronics; DM-Motor vehicles & Other Transport Equipment;

DN-Other Manufacturing Industries

þ 1

2
�bLCt � bKCt � bCtSp

� �
ln CTitð Þ2

þ 1

2
�bLSp � bKSp � bCtSp

� �
ln Spillitð Þ2þ 1

2
dTT tð Þ2

þ bLK ln Lit ln Kit þ bLCt ln Lit ln CTit

þ bLSp ln Lit ln Spillit

þ bKCt ln Kit ln CTit þ bKSp ln Kit ln Spillit

þ bCtSp ln CTit ln Spillit

þ cLT ln Lit � t þ cKT ln Kit � t þ cCtT ln CTit � t
þ ð�cLT � cKT � cCtTÞ ln Spillit � tÞ
þ gsdps þ ggdag þ eit ð14Þ

SL;it ¼aL þ ð�bLCt � bKCt � bCtSpÞ ln Lit þ bLK ln Kit

þ bLCt ln CTit þ bLSp ln Spillit þ cLT � t þ uL;it ð15Þ

SK;it ¼ aK þ bLK ln Lit þ ð�bLK � bKCt � bKSpÞ ln Kit

þ bKCt ln CTit þ bKSp ln Spillit þ cKT � t þ uK;it ð16Þ

SCt;it ¼aCt þ bLCt ln Lit þ bKCt ln Kit

þ ð�bLCt � bKCt � bCtSpÞ ln CTit

þ bCtSp ln Spillit þ cCtT � t þ uCt;it ð17Þ
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Table 6 Results of the probability of investing in R&D for Italian manufacturing firms. Probit estimates over the period 1998–2003

Asymmetric technol.

and technical efficient

spill. (Eq. 2) tijt ¼ ~xijt

Asymm. technol. and

technical inefficient spill.

(Eq. 3) tijt ¼ ~x1�TE
ijt

Geographic spill.

(Eq. 4) tijt ¼ gij

Asymm. techn. and

geogr. spill.

(Eq. 5) tijt ¼ vijt

ln(H) 0.008 (.001)*** 0.007 (.001)*** 0.009 (.001)*** 0.008 (.001)***

ln(cf) 0.000 (.011) 0.098 (.012)*** 0.026 (.01)** 0.010 (.011)

D_exp 0.204 (.021)*** 0.180 (.022)*** 0.209(.02)*** 0.207 (.02)***

ln(ict) 0.061 (.008)*** 0.063 (.009)*** 0.065 (.008)*** 0.062 (.008)***

North-West 0.060 (.023)*** 0.028 (.024) 0.064 (.024)*** 0.077 (.023)***

North-East 0.069 (.029)** 0.033 (.031) 0.088 (.034)*** 0.100 (.029)***

Centre -0.016 (.036) -0.071 (.035)** 0.061 (.054) 0.015 (.038)

D_DB 0.023 (.047) 0.007 (.048) 0.036 (.046) 0.024 (.046)

D_DC 0.047 (.059) -0.008 (.059) 0.090 (.058) 0.064 (.059)

D_DD -0.027 (.058) -0.150 (.052)*** -0.006 (.058) -0.018 (.058)

D_DE -0.132 (.053)** -0.230 (.046)*** -0.131 (.053)** -0.140 (.052)***

D_DF 0.071 (.147) 0.150 (.162) 0.150 (.13) 0.101 (.141)

D_DG 0.158 (.056)*** 0.027 (.064) 0.215 (.054)*** 0.170 (.055)***

D_DH 0.089 (.053)* -0.025 (.053) 0.119 (.052)** 0.091 (.052)*

D_DI 0.038 (.051) -0.003 (.055) 0.005 (.05) 0.025 (.05)

Table 5 Example of technological similarity index (Eq. 1) between twenty Italian manufacturing firms, 2003

Firm j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATECO

classification

DG DB DC DI DA DA DD DN DA DL DL DI DJ DA DA DD DA DA DI DJ

Firm i

1 DG 1.00 0.89 0.79 0.57 0.61 0.63 0.80 0.78 0.83 0.79 0.67 0.50 0.65 0.76 0.73 0.77 0.68 0.83 0.76 0.57

2 DB 0.89 1.00 0.93 0.75 0.73 0.80 0.87 0.97 0.92 0.97 0.63 0.68 0.85 0.90 0.85 0.88 0.84 0.81 0.86 0.80

3 DC 0.79 0.93 1.00 0.65 0.62 0.74 0.86 0.96 0.87 0.98 0.56 0.57 0.75 0.94 0.77 0.99 0.78 0.60 0.71 0.66

4 DI 0.57 0.75 0.65 1.00 0.99 0.99 0.34 0.81 0.87 0.73 0.30 0.99 0.98 0.84 0.97 0.54 0.97 0.72 0.95 0.57

5 DA 0.61 0.73 0.62 0.99 1.00 0.98 0.30 0.77 0.89 0.68 0.30 0.99 0.94 0.83 0.96 0.51 0.97 0.76 0.96 0.46

6 DA 0.63 0.80 0.74 0.99 0.98 1.00 0.41 0.86 0.92 0.79 0.34 0.97 0.97 0.91 0.98 0.64 0.99 0.72 0.95 0.55

7 DD 0.80 0.87 0.86 0.34 0.30 0.41 1.00 0.79 0.66 0.86 0.66 0.24 0.50 0.68 0.49 0.88 0.48 0.60 0.51 0.75

8 DN 0.78 0.97 0.96 0.81 0.77 0.86 0.79 1.00 0.92 0.99 0.54 0.74 0.90 0.96 0.89 0.91 0.89 0.69 0.84 0.77

9 DA 0.83 0.92 0.87 0.87 0.89 0.92 0.66 0.92 1.00 0.88 0.52 0.83 0.90 0.96 0.93 0.81 0.95 0.86 0.95 0.57

10 DL 0.79 0.97 0.98 0.73 0.68 0.79 0.86 0.99 0.88 1.00 0.57 0.65 0.84 0.93 0.82 0.94 0.82 0.65 0.77 0.80

11 DL 0.67 0.63 0.56 0.30 0.30 0.34 0.66 0.54 0.52 0.57 1.00 0.24 0.38 0.48 0.41 0.56 0.41 0.55 0.45 0.47

12 DI 0.50 0.68 0.57 0.99 0.99 0.97 0.24 0.74 0.83 0.65 0.24 1.00 0.95 0.79 0.94 0.45 0.95 0.69 0.93 0.51

13 DJ 0.65 0.85 0.75 0.98 0.94 0.97 0.50 0.90 0.90 0.84 0.38 0.95 1.00 0.88 0.97 0.65 0.97 0.74 0.95 0.72

14 DA 0.76 0.90 0.94 0.84 0.83 0.91 0.68 0.96 0.96 0.93 0.48 0.79 0.88 1.00 0.91 0.90 0.94 0.68 0.86 0.57

15 DA 0.73 0.85 0.77 0.97 0.96 0.98 0.49 0.89 0.93 0.82 0.41 0.94 0.97 0.91 1.00 0.67 0.98 0.75 0.95 0.61

16 DD 0.77 0.88 0.99 0.54 0.51 0.64 0.88 0.91 0.81 0.94 0.56 0.45 0.65 0.90 0.67 1.00 0.69 0.53 0.61 0.60

17 DA 0.68 0.84 0.78 0.97 0.97 0.99 0.48 0.89 0.95 0.82 0.41 0.95 0.97 0.94 0.98 0.69 1.00 0.76 0.96 0.56

18 DA 0.83 0.81 0.60 0.72 0.76 0.72 0.60 0.69 0.86 0.65 0.55 0.69 0.74 0.68 0.75 0.53 0.76 1.00 0.90 0.54

19 DI 0.76 0.86 0.71 0.95 0.96 0.95 0.51 0.84 0.95 0.77 0.45 0.93 0.95 0.86 0.95 0.61 0.96 0.90 1.00 0.61

20 DJ 0.57 0.80 0.66 0.57 0.46 0.55 0.75 0.77 0.57 0.80 0.47 0.51 0.72 0.57 0.61 0.60 0.56 0.54 0.61 1.00

The manufacturing economic activities are divided by the Italian Institute of Statistics (ISTAT) into the following ATECO classification:

DA-Food, Beverages & Tobacco; DB-Textiles & Apparel; DC-Leather; DD-Wood Products & Furniture; DE-Paper, Paper Prod. & Printing;

DF-Petroleum Refineries & Product; DG-Chemicals; DH-Rubber & Plastic Products; DI-Non-Metallic Mineral Products; DJ-Basic Metal & Fab. Met.

Prod.; DK-Non-Electrical Machinery; DL-Electrical Machinery and Electronics; DM-Motor vehicles & Other Transport Equipment;

DN-Other Manufacturing Industries
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Table 6 continued

Asymmetric technol.

and technical efficient

spill. (Eq. 2) tijt ¼ ~xijt

Asymm. technol. and

technical inefficient spill.

(Eq. 3) tijt ¼ ~x1�TE
ijt

Geographic spill.

(Eq. 4) tijt ¼ gij

Asymm. techn. and

geogr. spill.

(Eq. 5) tijt ¼ vijt

D_DJ -0.053 (.043) -0.055 (.043) -0.053 (.041) -0.063 (.042)

D_DK 0.144 (.045)*** 0.141 (.047)*** 0.172 (.043)*** 0.146 (.045)***

D_DL 0.197 (.05)*** 0.092 (.054)* 0.242 (.048)*** 0.204 (.049)***

D_DM -0.028 (.065) -0.177 (.055)*** -0.009 (.066) -0.022 (.065)

D_DN -0.007 (.052) -0.092 (.049)* 0.017 (.051) -0.002 (.051)

ln(k) 0.103 (.154) -0.211 (.181) -0.013 (.072) 0.011 (.151)

ln(l) 0.005 (.238) 0.940 (.327)*** 0.205 (.12)* 0.007 (.225)

ln(sp) -0.072 (.339) -2.218 (.31)*** 0.144 (.135) -0.325 (.401)

ln(l)ln(k) -0.005 (.012) 0.001 (.013) -0.008 (.012) -0.007 (.012)

ln(l)ln(sp) 0.014 (.022) -0.103 (.027)*** 0.005 (.01) 0.022 (.021)

ln(k)ln(sp) -0.004 (.014) 0.022 (.016) 0.006 (.006) 0.005 (.013)

[ln(l)]2 -0.044 (.03) 0.060 (.034)* -0.039 (.026) -0.052 (.029)*

[ln(k)]2 -0.001 (.007) -0.004 (.008) 0.002 (.007) 0.000 (.007)

[ln(sp)]2 0.034 (.029) 0.226 (.027)*** -0.024 (.013)* 0.039 (.035)

t 0.674 (.148)*** -0.468 (.159)*** -0.036 (.073) 0.409 (.14)***

t ln(l) 0.028 (.01)*** 0.005 (.011) 0.009 (.009) 0.018 (.01)*

t ln(k) -0.011 (.006)* -0.013 (.006)** -0.009 (.006) -0.011 (.006)**

t ln(sp) -0.059 (.013)*** 0.050 (.014)*** 0.012 (.005)** -0.034 (.012)***

(t)2 0.001 (.011) -0.022 (.013)* -0.007 (.011) 0.000 (.011)

Obs. No. 3,595 3,394 3,595 3,595

Wald test 842.18 911.02 819.27 826.39

Pseudo R2 0.2295 0.2904 0.2219 0.2248

Standard errors in brackets

H, human capital; cf, cash flow; D_exp, dummy equal to one if the firms exports; ict, ICT investments; k, physical capital; l, labour; sp,

spillovers; sectoral (according to the Ateco classification: DA = Food, Beverages & Tabacco, DB = Textiles & Apparel, DC = Leather,

DD = Wood Products, DE = Paper, Paper Prod. & Printing, DF = Petroleum Refineries & Product, DG = Chemicals, DH = Rubber & Plastic

Products, DI = Non-Metallic Mineral Products, DJ = Basic Metal & Fab. Met. Prod., DK = Non-Electrical Machinery, DL = Electrical

Machinery and Electronics, DM = Motor vehicles & Other Transport Equipment, DN = Other Manufacturing Industries) and territorial (North-

West, North-East, Centre and South) dummies (the control groups are traditional industries and Southern firms, respectively)

***, **, * Statistical significance at 1, 5 and 10%, respectively

Table 7 Estimated coefficients of the translog production function. Italian manufacturing firms, 1998–2003

Asymmetric technol. and technical

efficient spill. (Eq. 2) tijt ¼ ~xijt

Asymm. technol. and technical

inefficient spill. (Eq. 3) tijt ¼ ~x1�TE
ijt

Geographic spill.

(Eq. 4) tijt ¼ gij

Asymm. techn. and geogr.

spill. (Eq. 5) tijt ¼ vijt

a 1.9757 (.006)*** 0.6884 (.012)*** 2.1494 (.011)*** 1.8639 (.007)***

aL 0.7760 (.)*** 0.6515 (.)*** 0.6854 (.)*** 0.7674 (.)***

aK 0.1650 (.)*** 0.1888 (.001)*** 0.1754 (.001)*** 0.1678 (.)***

aCt 0.1843 (.)*** 0.1759 (.)*** 0.1905 (.)*** 0.1846 (.)***

bLK -0.0152 (.)*** -0.0158 (.)*** -0.0158 (.)*** -0.0152 (.)***

bLCt -0.0022 (.)*** -0.0024 (.)*** -0.0029 (.)*** -0.0023 (.)***

bLSp 0.0004 (.)*** 0.0004 (.)*** 0.0004 (.)*** 0.0004 (.)***

bKCt -0.0040 (.)*** -0.0047 (.)*** -0.0045 (.)*** -0.0040 (.)***

bKSp 0.0002 (.)*** 0.0002 (.)*** 0.0002 (.)*** 0.0002 (.)***

bCtSp 0.0001 (.)*** 0.0002 (.)*** 0.0002 (.)*** 0.0001 (.)***

nT -0.7878 (.003)*** 0.8573 (.004)*** -0.0195 (.005)*** -0.6643 (.003)***
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