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Abstract We show that the monotonicity condition is

conceptually important in Stochastic Frontier Analysis

(SFA). Despite its importance, most empirical studies do

not impose monotonicity—probably because existing

approaches are rather complex and laborious. Therefore,

we propose a three-step procedure that is much simpler

than existing approaches. We demonstrate how monoto-

nicity of a translog function can be imposed regionally at a

connected set (region) of input quantities. Our method can

be applied not only to impose monotonicity on translog

production frontiers but also to impose other restrictions on

cost, distance, or profit frontiers.
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1 Introduction

The analysis of technical efficiency is a widely used tool in

empirical production studies. It is generally based on a

‘‘frontier’’ production function that represents the maxi-

mum output quantities attainable from each set of input

quantities (Coelli et al. 2005). This methodology accounts

for the fact that not all producers succeed in optimizing

their production processes and might not achieve the

maximum output level given their input quantities. It is

often used to explore and compare the (relative) efficien-

cies of different producers and to determine factors that

influence the producer’s efficiency.

Microeconomic theory implies that production functions

should monotonically increase in all inputs. The impor-

tance of theoretical consistency in frontier analysis has

been already stressed by Sauer et al. (2006). We show that

the monotonicity property is particularly important for

estimating the (relative) efficiencies of individual firms

because otherwise a reasonable interpretation of the results

is impossible (see also O’Donnell and Coelli 2005). The

non-parametric non-stochastic Data Envelopment Analysis

(DEA) implicitly imposes monotonicity while the para-

metric Stochastic Frontier Analysis (SFA) with flexible

functional forms generally disregards this condition. Many

empirical applications of SFA present results in which the

monotonicity condition is not fulfilled, despite its impor-

tance (Sauer et al. 2006). Although procedures for impos-

ing monotonicity of frontier functions have been proposed

in the literature, they are rarely used1—probably because

these procedures are rather complex and laborious.

Therefore, we present a new three-step procedure that is

much simpler and can be used also by practitioners. Fur-

thermore, we demonstrate how monotonicity of a translog

function can be imposed not only locally at a single data

point but regionally at a connected set (region) of data

points.
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2 Theoretical consistency of production frontiers

2.1 Monotonicity

As noted above, microeconomic theory requires that pro-

duction functions monotonically increase in all inputs, i.e.

the output quantity must not decrease if any input quantity

is increased. The rationale for the monotonicity assumption

is as follows: if (in rare cases) there is indeed a negative

technical input–output relationship (e.g. too much fertilizer

burns the crops), a wise manager would simply leave a part

of the input unused (e.g. leave some of the fertilizer in the

bag). Therefore, increasing the (unused) quantity of this

input would leave the output (at least) unchanged.

Given the production function

y ¼ f ðx; bÞ; ð1Þ

where y is the output quantity, x is a vector of n input

quantities, and b is a vector of parameters, monotonicity

requires that all marginal products (fi) are positive

fiðx; bÞ ¼
of ðx; bÞ

oxi
� 0 8 i ð2Þ

If a production frontier is not monotonically increasing,

the efficiency estimates of the individual firms cannot be

reasonably interpreted. We illustrate this problem in Fig. 1.

In this example, we have a non-monotone production

frontier. Firm A is below the production frontier and hence,

considered to be inefficient, while firm B is on the

production frontier and hence, considered to be efficient.

However, firm B uses much more of the input to produce

the same output as firm A, which means that firm B uses its

input less efficiently than firm A. Thus, the efficiency

measures based on this non-monotone production frontier

imply just the opposite of the actual situation and hence,

the (relative) efficiency estimates based on a non-monotone

production frontier cannot be reasonably interpreted.

We stress that it is not sufficient to ensure that the

marginal products at all data points are non-negative. The

same problem as demonstrated in Fig. 1 might occur if

there are some non-monotone intervals between the data

points. This is demonstrated in Fig. 2, in which the pro-

duction frontier increases in the input quantity at both data

points but decreases in the input quantity in an interval

between the two data points.

The problem of a non-monotone production frontier

inhibits not only a reasonable interpretation of the indi-

vidual (relative) efficiency estimates, but also the analysis

of factors that might affect technical (in)efficiency. This is

because the non-monotonicity distorts the efficiency esti-

mates, which are the endogenous values in this analysis

(e.g. in the ‘‘Technical Efficiency Effects Model’’ proposed

by Battese and Coelli 1995).

If an estimated production frontier is not monotonically

increasing in all inputs, the question of what to do arises. If

the monotonicity condition is violated at many data points,

the model is likely misspecified and we suggest changing

the model specification. If the monotonicity condition is

violated only at a few data points, these are probably

random deviations from the ‘‘true’’ monotonically

increasing production frontier and we suggest imposing the

monotonicity condition in the estimation.

2.2 Quasiconcavity

Besides monotonicity, microeconomic theory often

assumes that production functions are also quasiconcave in

all inputs Lau (1978), because this implies convex input

sets and hence, decreasing marginal rates of technical

substitution. However, quasiconcave production functions

do not guarantee that the input demand functions are

‘‘everywhere’’ differentiable (Dhrymes 1967; Barten et al.

1969).2

Fig. 1 Non-monotone production frontier

Fig. 2 Production frontier with non-monotone interval

2 We thank an anonymous reviewer for pointing this out to us.
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If all inputs are perfectly divisible and different pro-

duction activities can be applied independently, production

functions are generally quasiconcave (e.g. Varian 1992).

Furthermore, a non-quasiconcave point of the production

function cannot reflect profit-maximizing behavior under

standard microeconomic assumptions. However, the

assumptions of perfectly divisible inputs and independent

applicability of different production activities are not

always fulfilled in the real world and measuring technical

efficiency generally assumes only that producers maximize

output given their input quantities but not that producers

maximize their profit. Hence, in contrast to the monoto-

nicity assumption, there is not necessarily a technical

rationale for production functions to be quasiconcave.

Moreover, even a non-quasiconcave point of the produc-

tion function might reflect profit-maximizing behavior if

not all of the prices are exogenously given or there are

restrictions on input use (e.g. fertilizer use in water pro-

tection areas).

Hence, we suggest abstaining from imposing quasicon-

cavity when estimating (frontier) production functions.

However, we propose to check for quasiconcavity after the

econometric estimation because some standard results of

microeconomic theory (e.g. convex input sets) do not hold

in case of non-quasiconcavity.

A function is quasiconcave if

f ðkx0 þ ð1� kÞx00; bÞ� min f ðx0; bÞ; f ðx00; bÞð Þ ð3Þ
with 0\k\1: ð4Þ

In the case of a twice continuously differentiable

production function f, quasiconcavity can be checked

using its bordered Hessian matrix

B ¼

0 f1 f2 . . . fn
f1 f11 f12 . . . f1n

f2 f21 f22 . . . f2n

..

. ..
. ..

. . .
. ..

.

fn fn1 fn2 . . . fnn

2
666664

3
777775
; ð5Þ

where fij ¼ o2f=ðoxioxjÞ is the second derivative of the

production function with respect to the ith and jth input

quantity. Because all input quantities are generally non-

negative (xi� 08i), a necessary condition for quasiconcavity is

jB1j � 0; jB2j � 0; jB3j � 0; . . .; jBnj � ð�1Þn� 0; ð6Þ

where

jB1j ¼
0 f1
f1 f11

����
����; jB2j ¼

0 f1 f2
f1 f11 f12

f2 f21 f22

������

������
; . . .; jBnj ¼ jBj

ð7Þ

(Chiang 1984, p. 393f). If there is only one input (n = 1),

monotonicity implies quasiconcavity (Takayama 1994,

p. 62). In case of two or more inputs (n [ 1), monotonicity

does not (necessarily) imply quasiconcavity.

3 Restricted estimation of frontier functions

3.1 Approaches proposed in the literature

Despite the importance of monotonicity, our search of the

literature found only a very few applications that impose

this condition in SFA. One approach is a restricted maxi-

mum likelihood (ML) estimation, i.e. the likelihood func-

tion is maximized subject to the restriction that the

theoretically derived properties of the frontier function are

fulfilled. For instance, Bokusheva and Hockmann (2006)

estimate a translog production frontier under monotonicity

and quasi-concavity restrictions. However, they impose

these restrictions only locally at the sample mean, which is

not sufficient for obtaining reasonable efficiency estimates

(see above). Furthermore, the maximization of the likeli-

hood function under constraints is rather complex and the

algorithms used for the optimization frequently have con-

vergence problems or converge to local maxima.

As another solution, O’Donnell and Coelli (2005) use

the Bayesian MCMC method to estimate a stochastic

frontier distance function with all desirable theoretical

conditions imposed at all data points. This is probably the

most suitable and most sophisticated approach, but it is

rather complex and laborious.

The main reason why the constrained ML and the MCMC

approaches have been used so rarely is probably because

these methods are not available in standard econometrics

software packages. Hence, their application requires

advanced skills in econometrics and in computer program-

ming and many (applied) researchers and practitioners do not

have the knowledge or the time to apply these methods.

3.2 Three-step procedure

As a solution, we propose a much simpler three-step pro-

cedure that is based on the two-step method suggested by

Koebel et al. (2003).

In the first step, we estimate an unrestricted stochastic

production frontier

ln y ¼ ln f ðx; bÞ � uþ v ð8Þ

E½u� ¼ z0d; ð9Þ

where u C 0 captures technical inefficiency, v captures

statistical noise, z is a vector of variables explaining

technical inefficiency, and d is a vector of parameters to be

estimated. This estimation can be done by a standard

software package for SFA. We extract the unrestricted
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parameters of the production frontier b̂ and their covari-

ance matrix R̂b from the estimation results.

In the second step, we obtain restricted b parameters by

a minimum distance estimation3:

b̂0 ¼ arg min b̂0 � b̂
� �

R̂�1
b b̂0 � b̂
� �

ð10Þ

s.t. fiðx; b̂0Þ� 0 8 i; x ð11Þ

This restricted minimization can be easily done by several

software packages.4 The restricted parameters (b̂0) are

asymptotically equivalent to a (successful) restricted one-

step ML estimation (Koebel et al. 2003). However, it might

be problematic to obtain a (consistent) covariance matrix of

the restricted parameters R̂0
b, because standard bootstrap-

ping leads to an inconsistent covariance matrix if the

restricted parameters are at the boundary of the feasible

parameter space (Andrews 2000; Dhrymes 2006).5

Andrews (2000) suggests alternative methods, e.g. rescaled

bootstrapping, that lead to a consistent covariance matrix

even in the case of binding inequality constraints. How-

ever, these alternative methods are only valid under spe-

cific conditions that need to be checked for our specific

case. Thus we leave this interesting topic for future

research.6

In the third step, we determine the efficiency estimates

of the firms and the effects of the variables explaining

technical inefficiency based on the theoretical consistent

production frontier. We estimate the stochastic frontier

model

ln y ¼ a0 þ a1 ln ~y� u0 þ v0 ð12Þ

E½u0� ¼ z0d0; ð13Þ

where the only ‘‘input variable’’ is the ‘‘frontier output’’ of

each firm calculated with the parameters of the restricted

model: ~y ¼ f ðx; b̂0Þ. Again, this estimation can be done

with a standard software package for SFA. Parameters a0

and a1 allow an adjustment of the restricted production

frontier, which gets

y ¼ ea0 f x; b̂0
� �a1

: ð14Þ

As long as a1 is positive, this adjustment is a strictly

monotonically increasing transformation. Hence, it does

not affect the monotonicity and quasiconcavity (Arrow and

Enthoven 1961, p. 781) condition of f ðx; b̂0Þ. However, if

desired, an adjustment can be prevented by restricting a0 to

zero and a1 to one.7 Since the estimation of Eq. 12 includes

a generated regressor (~y), the standard errors obtained in

the third step might be biased (see Pagan 1984).

The monotonicity restrictions can be checked by sta-

tistical tests. In a first step, the inequality restrictions in

(11) that are binding in the distance minimization (10) are

determined. In a second step, standard statistical tests such

as the Wald test or the likelihood ratio test are applied by

treating the binding inequality restrictions as equality

restrictions.

3.3 Translog production function

A popular functional form in SFA is the translog function.

It satisfies second-order flexibility (Diewert 1974) and its

logarithmic form has the advantage that inefficiencies are

captured by an additive term rather than by a multiplicative

term, which considerably simplifies the econometric esti-

mation. A translog production function is defined as

ln y ¼ ln f ðx; bÞ ¼ b0 þ
Xn

i¼1

bi ln xi þ
1

2

Xn

i¼1

Xn

j¼1

bij ln xi ln xj

ð15Þ

with bij = bji. Its marginal products are

fi ¼
f ðx; bÞ

xi
bi þ

Xn

j¼1

bij ln xj

 !
ð16Þ

and the second derivatives are

fij ¼
f ðx; bÞ

xixj

 
bi þ

Xn

k¼1

bik ln xk

 !

� bj þ
Xn

k¼1

bjk ln xk � Dij

 !
� bij

!
;

ð17Þ

where Dij is Kronecker delta with Dij = 1 if i = j and Dij = 0

otherwise.

Because all input quantities must be non-negative and

the translog functional form guarantees that the output

quantity is always positive, the monotonicity conditions for

the translog production function reduce to

3 The inclusion of the d parameters in the distance minimization is

discussed in Appendix 1.
4 The speed and probability of convergence of the non-linear distance

minimization can be increased by providing analytical gradients:

o b̂0 � b̂
� �

R̂�1
b b̂0 � b̂
� �.

ob̂0 ¼ 2R̂�1
b ðb̂0 � b̂Þ.

5 We thank two anonymous reviewers for pointing this out.
6 Bayesian MCMC estimations deliver a consistent covariance

matrix, but their estimation results are often sensitive to assumptions

about prior distributions and starting values. In this regard, the

estimators of our three step procedure can still be useful to specify

prior distributions and starting values for Bayesian MCMC

approaches. We thank Christian Aßmann for this comment.

7 While a1 can be easily restricted to one by using ðln y� ln ~yÞ as the

output variable and using no input variable in Eq. 10, not all software

packages allow the restriction of a0 to zero. However, in our empirical

applications, a0 and a1 were always very close to zero and one,

respectively, which means that there was virtually no adjustment.
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bi þ
Xn

j¼1

bij ln xj� 0 8 i: ð18Þ

Because these conditions are linear in parameters, they can

be transformed into matrix form

Rb� 0; ð19Þ

where R is a matrix of dimension n 9 (1 ? n (n ? 3)/2)

with

and

b¼ b0;b1;b2; . . .;bn;b11;b12; . . .;b1n;b22; . . .;b2n; . . .;bnnð Þ0

ð21Þ

contains the linearly independent coefficients of the trans-

log production function (15). Should the monotonicity

condition be checked or imposed not at one but at T [ 1

data points, the matrix R in Eq. 20 can be created for each

data point and then all of these (sub)matrices can be

stacked to a new R matrix with T � n rows.

Given that the monotonicity restrictions of the translog

function are linear in parameters, the quadratic distance

minimization in (10) can be converted to a usual quadratic

programming problem

s� ¼ arg min
s

c0sþ 1

2
s0Qs; ð22Þ

s.t. As� b; ð23Þ

where s ¼ b̂0 � b̂, c ¼ ð0; . . .; 0Þ, Q ¼ 2R̂�1
b , A = R, and

b ¼ �Rb̂. After solving this quadratic programming

problem, the restricted b coefficients can be obtained by

b̂0 ¼ s� þ b̂. Hence, this distance minimization can be

done easily by any quadratic programming software.

As stated in Theorem 1 below, the translog functional

form has the advantage that monotonicity can be easily

imposed regionally, i.e. in a closed connected set of the

input quantities.

Theorem 1 (Regional monotonicity of translog func-

tions) A translog function f ðx; bÞ is monotonic in x on

a closed connected set that consists of all ln x in the

convex polyhedron with vertices ln x1; . . .; ln xp; if and only

if each of its partial derivatives retains the sign over all

vertices:

sifiðx;bÞ�0 8 i 2 1; . . .;nf g; x 2 x1; . . .;xp

� �
ð24Þ

where

si¼
1 if f ð:Þ is monotonically increasing in xi

�1 if f ð:Þ is monotonically decreasing in xi

�
ð25Þ

The proof is given in Appendix 2.

Theorem 1 implies that if the input quantities are mea-

sured in logarithmic terms, imposing monotonicity at the

vertices of a convex polyhedron in the n-dimensional space

of (logarithmic) input quantities ensures that monotonicity

is fulfilled in the entire polyhedron.8 Hence, if monoto-

nicity is imposed at all sample points, the monotonicity

condition also is fulfilled on all points on the straight lines

between each two sample points (given that input quanti-

ties are measured in logarithmic terms) and the problem of

non-monotone intervals between sample points (as dem-

onstrated in Fig. 2) is ruled out. If the input quantities are

measured in natural (non-logarithmic) terms, monotonicity

is imposed in a closed connected set of the input quantities

but it is not a convex polyhedron because the edges of this

set are not straight but rather they are curved. This is

illustrated in Fig. 3.

Another option is to impose monotonicity at the vertices

of a box (n-dimensional cuboid) that includes the region at

which monotonicity should be imposed (e.g. all data

points). The lower left vertex of this box should be (at

most) at the position (min x1, minx2,…, minxn) and the

upper right vertex of this box should be (at least) at the

position (maxx1, maxx2,…, maxxn), where the edges of this

box are parallel to the axes of the n-dimensional space of

R ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

ln x1 ln x2 . . . ln xn

0 ln x1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ln x1

0 . . . 0 . . . 0

ln x2 . . . ln xn . . . 0

..

. . .
. ..

. . .
. ..

.

0 . . . ln x2 . . . ln xn

2
6664

3
7775 ð20Þ

8 Terrell (1996) imposes regional monotonicity on a (non-frontier)

translog cost function by imposing this condition at each point of a

fine grid that spans the desired region. Given our finding, it is

unnecessary to use the interior of the grid because imposing

monotonicity only at its vertices is sufficient for guaranteeing

monotonicity in the entire region.
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logarithmic input quantities. This ensures that the region at

which monotonicity is imposed is also a box in the space of

natural (non-logarithmic) input quantities. This is illus-

trated in Fig. 4.

If the unrestricted production frontier (9) is of the

translog functional form, the adjusted restricted frontier

function (14) is also of the translog form. Its coefficients

can be calculated by

^̂b
0

0 ¼ â0 þ â1b̂
0
0 ð26Þ

^̂b
0

i ¼ â1b̂
0
i 8 i [ 0 ð27Þ

^̂b
0

ij ¼ â1b̂
0
ij 8 i; j; ð28Þ

where b̂0
: are the restricted coefficients obtained from the

distance minimization (10) and â are the coefficients for

adjusting the restricted production frontier estimated in the

final stochastic frontier estimation (12).

4 An empirical example

We demonstrate this method using panel data collected

from 43 smallholder rice producers in the Tarlac region of

the Philippines from 1990 to 1997. This data set is published

as a supplement to Coelli et al. (2005).9 The data include

one output (tons of freshly threshed rice) and three inputs:

area planted (in hectares), labour used (in man-days of

family and hired labour), and fertilizer used (in kg of active

ingredients). We explain technical inefficiency according to

the education of the household head (in years) and the

percentage of area classified as ‘‘bantog’’ (upland) fields.

All estimations and calculations have been done within

the ‘‘R software environment for statistical computing and

graphics’’ (R Development Core Team 2009) using the ‘‘R’’
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Fig. 3 Imposing regional

monotonicity of translog

functions
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Fig. 4 Imposing monotonicity

of translog functions at a box

9 It can be downloaded from http://www.uq.edu.au/economics/cepa/

software/CROB2005.zip.
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packages ‘‘frontier’’ (Coelli and Henningsen 2009), ‘‘mic-

Econ’’ (Henningsen 2008), and ‘‘quadprog’’ (Turlach and

Weingessel 2007). The commands that have been used for

this analysis are available in Appendix 3.

The estimation results of the unrestricted stochastic

frontier production function are presented in Table 1.10

The b and d coefficients are defined as before, r2 is the

total error variance (r2
u þ r2

v), and c is the proportion of the

variance of technical inefficiency in the total error variance

(r2
u=r

2). The monotonicity condition is violated at 39 out

of 344 observations and quasiconcavity is not fulfilled at

four observations. While the education of the household

head has no significant influence on technical efficiency,

the proportion of ‘‘bantog’’ (upland) fields significantly

(at the 10% level) increases the farm’s efficiency.

The coefficients obtained by the minimum distance esti-

mation are presented in Table 2. Many coefficients have

changed considerably (column ‘‘diff’’), but all changes are less

than two times the standard error of the first-step estimation

(column ‘‘diff/std.err’’). The last column (‘‘adj.coef’’) shows

the restricted coefficients after adjusting the production

frontier with a0 and a1 estimated in the final step. Of course,

the monotonicity condition is fulfilled at all observations now.

Moreover, the quasiconcavity condition also is fulfilled at all

observations. Interestingly, we obtained the same result, i.e.

imposing monotonicity implies quasiconcavity, also for other

empirical applications (e.g. Wiebusch 2005; Henning and

Mumm 2009; Henning and Han 2009). Barnett (2002) argues

that imposing curvature but not monotonicity increases the

incidence of monotonicity violations. Hence, imposing

monotonicity first and checking for curvature thereafter—as

in our approach—seems more effective than imposing cur-

vature alone. However, monotonicity has a closer relationship

to quasiconcavity than to concavity (see above) so that it is

questionable if imposing monotonicity generally implies

concavity in empirical applications.

The results of the final SFA are presented in Table 3. As

expected, the coefficient of the intercept is virtually zero and

the coefficient of the ‘‘frontier output’’ is virtually one. Hence,

the coefficients of the adjusted and non-adjusted restricted

production frontier are almost identical (compare columns

‘‘coef’’ and ‘‘adj.coef’’ of Table 2). The effects of education

and the proportion of ‘‘bantog’’ (upland) fields on technical

efficiency are rather similar to the unrestricted model. The

imposition of the monotonicity restriction caused an increase

of the total error variance (r2) from around 0.41 to 0.46. In

contrast, the proportion of the variance of technical ineffi-

ciency in the total error variance (c) does not change much.

We test the monotonicity restrictions by a Wald test and

a likelihood ratio test. Both tests do not reject the

monotonicity restrictions with P-values of 0.39 and 0.42,

respectively.

Figures 5, 6, and 7 illustrate the effect of imposing mono-

tonicity on the partial production elasticities of the inputs. The

estimates based the unrestricted and the restricted model are

highly correlated with coefficients of correlation of 0.99, 0.97,

and 0.99 for land, labor, and fertilizer, respectively. While the

partial production elasticities of fertilizer are very similar in

both models, imposing monotonicity reduces the average

elasticity of land from 0.49 to 0.45 and increases the average

Table 1 Unrestricted stochastic frontier estimation

Estimate Std. error t value Pr([|t|)

b0 -7.5546 1.6898 -4.4708 0.0000

b1 -2.0886 0.7812 -2.6735 0.0079

b2 3.0734 0.7954 3.8641 0.0001

b3 0.7890 0.5472 1.4420 0.1502

b11 -0.3972 0.2139 -1.8568 0.0642

b12 0.5829 0.1778 3.2776 0.0012

b13 0.0428 0.1415 0.3025 0.7625

b22 -0.5647 0.2755 -2.0496 0.0412

b23 -0.1276 0.1410 -0.9051 0.3661

b33 -0.0030 0.0924 -0.0321 0.9744

d1 -0.0103 0.0489 -0.2097 0.8341

d2 -1.0724 0.5914 -1.8134 0.0707

r2 0.4089 0.1720 2.3771 0.0180

c 0.9168 0.0386 23.7612 0.0000

Table 2 Minimum distance estimation

coef diff diff/std.err adj.coef

b0
0 -4.8927 2.6619 1.5753 -4.8918

b0
1 -0.9999 1.0887 1.3935 -0.9998

b0
2 1.8159 -1.2575 -1.5811 1.8157

b0
3 0.6851 -0.1040 -0.1900 0.6850

b0
11 -0.1918 0.2055 0.9603 -0.1918

b0
12 0.3323 -0.2506 -1.4091 0.3323

b0
13 0.0168 -0.0260 -0.1838 0.0168

b0
22 -0.2431 0.3216 1.1674 -0.2430

b0
23 -0.1275 0.0002 0.0013 -0.1275

b0
33 0.0217 0.0246 0.2667 0.0217

Table 3 Final stochastic frontier estimation

Estimate Std. error t value Pr([|t|)

a0 0.0005 0.0469 0.0110 0.9912

a1 0.9999 0.0190 52.5687 0.0000

d0
1 -0.0231 0.0571 -0.4045 0.6861

d0
2 -1.1885 0.6733 -1.7653 0.0784

r2 0.4620 0.2039 2.2656 0.0241

c 0.9277 0.0333 27.8679 0.0000
10 The last column shows the (asymptotic) marginal significance

level assuming that the t-values have a standard normal distribution.
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elasticity of labor from 0.25 to 0.29. Furthermore, imposing

monotonicity clearly reduces the ranges and variances of the

partial production elasticities of land and labor, i.e. small

values (including negative values) increase and large values

decrease.

The efficiency estimates of the unrestricted and restric-

ted models are contrasted in Fig. 8. The average technical

efficiencies of the unrestricted (0.7749) and the restricted

model (0.7744) are almost identical and most individual

technical efficiencies of the restricted and unrestricted

models are very similar (i.e. lying on the 45� line). How-

ever, a few technical efficiencies are considerably smaller

in the theoretically consistent model, where the observa-

tions with the largest differences in the efficiency estimates

are those with the monotonicity condition violated in the

unrestricted model. Hence, the unrestricted model leads to

some inconsistent efficiency estimates.

5 Conclusions

We have shown that efficiency estimates based on non-

monotone frontier functions cannot be reasonably inter-

preted. Given the importance of monotonicity we suggest that

non-monotone production frontiers should no longer be used

in empirical production analysis, particularly since we have

proposed a three-step procedure that is much simpler than

existing approaches. We show that imposing monotonicity at

one point is not sufficient to obtain reasonable efficiency

estimates and we demonstrate how monotonicity of a flexible

translog function can be imposed on a closed set (region) of

input quantities. Our three-step method can be used to impose

theoretical consistency not only on translog production

frontiers but also on other functional forms and other frontier

functions such as distance, cost, or profit frontiers. Although

the theoretical restrictions for these functions are more

complex than the monotonicity restrictions of a translog
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Fig. 5 Partial production elasticities of land. Note: the unfilled circles
indicate observations with monotonicity violated in the unrestre-
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production frontier, our proposed three-step procedure still is

probably less complex than a restricted ML or a Bayesian

Markov chain Monte Carlo (MCMC) estimation.
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Appendices

Appendix 1: Distance minimization with d parameters

It also is possible to include the d parameters in the dis-

tance minimization (10, 11):

ĥ0 ¼ arg min ĥ0 � ĥ
� �

R̂�1
h ĥ0 � ĥ
� �

; ð29Þ

s.t. fiðx; ĥ0Þ� 0 8 i; x; ð30Þ

where h ¼ ðb0; d0Þ0. This approach also adjusts the d coef-

ficients, but both approaches result in identical restricted b

coefficients (see proof below). We suggest including only

the b coefficients in this minimization because d coeffi-

cients based on a theoretically consistent frontier produc-

tion function are obtained in the third step anyway.

Distance minimization of the b coefficients

b0 ¼ arg min
b0

b0 � b
� �0

R�1
11 b0 � b
� �

; ð31Þ

s.t. Rb0� r ð32Þ

Lagrangian function

L ¼ b0 � b
� �0

R�1
11 b0 � b
� �

þ l0 r � Rb0
� �

ð33Þ

Kuhn–Tucker conditions

oL

ob0
¼ 2R�1

11 b0 � b
� �

� R0l ¼ 0 ð34Þ

l� 0 ð35Þ

r � Rb0� 0 ð36Þ

l r � Rb0
� �

¼ 0 ð37Þ

Distance minimization of the b and d coefficients

b0

d0

	 

¼ arg min

b0;d0

b0 � b
d0 � d

	 
0
R11 R12

R012 R22

� ��1
b0 � b
d0 � d

	 

;

ð38Þ

s.t. Rb0� r ð39Þ

Lagrangian function

L ¼ b0 � b
d0 � d

	 
0
X11 X12

X012 X22

� �
b0 � b
d0 � d

	 

þ l0 r � Rb0

� �

ð40Þ

Kuhn–Tucker conditions

oL

o
b0

d0

	 
 ¼ 2
R11 R12

R012 R22

� ��1
b0 � b
d0 � d

	 

þ �R0l

0

	 

¼ 0

ð41Þ
l� 0 ð42Þ

r � Rb0� 0 ð43Þ

l r � Rb0
� �

¼ 0 ð44Þ

Equation 41 can be split into

oL

ob0
¼ 2X11 b0 � b

� �
þ 2X12 d0 � d

� �
� R0l ¼ 0 ð45Þ

oL

od0
¼ 2X21 b0 � b

� �
þ 2X22 d0 � d

� �
¼ 0 ð46Þ

with
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Fig. 8 Efficiency estimates of the restricted and unrestricted model.

Note: the unfilled circles indicate observations with monotonicity

violated in the unrestrestricted model

J Prod Anal (2009) 32:217–229 225

123



X11 X12

X22 X22

� �
¼ R11 R12

R012 R22

� ��1

The inverse of this (partitioned) R matrix is

X11 X12

X21 X22

� �
¼ R11 R12

R012 R22

� ��1

ð47Þ

¼ R�1
11 þ R�1

11 R12Q�1R012R
�1
11 �R�1

11 R12Q�1

�Q�1R012R
�1
11 Q�1

� �
ð48Þ

¼ P�1 �P�1R12R
�1
22

�R�1
22 R012P�1 R�1

22 þ R�1
22 R012P�1R12R

�1
22

� �
ð49Þ

with Q = R22-R12

0
R11R12 and P ¼ R11 � R12R

�1
22 R012

(Harville 1997, p. 99). From Eq. 46 we get

d0 � d
� �

¼ �X�1
22 X21 b0 � b

� �
ð50Þ

Substituting this into (45) and applying (48) we get
oL

ob0
¼ 2X11 b0 � b

� �
� 2X12X

�1
22 X21 b0 � b

� �
� R0l ¼ 0

ð51Þ

¼ 2 X11 � X12X
�1
22 X21

� �
b0 � b
� �

� R0l ¼ 0 ð52Þ

¼ 2
�
R�1

11 þ R�1
11 R12Q�1R012R

�1
11

� R�1
11 R12Q�1QQ�1R012R

�1
11

��
b0 � b

�
� R0l ¼ 0

ð53Þ

¼ 2R�1
11 b0 � b
� �

� R0l ¼ 0 ð54Þ

From Eq. 54 we get

b0 � b
� �

¼ 1

2
R11R0l ð55Þ

Substituting this into (46) and applying (49) we get

oL

od0
¼ X21R11R0lþ 2X22 d0 � d

� �
¼ 0 ð56Þ

¼ �R�1
22 R012P�1R11R0lþ 2 R�1

22 þ R�1
22 R012P�1R12R

�1
22

� �

d0 � d
� �

¼ 0 ð57Þ

Hence, the Kuhn–Tucker conditions (41–44) can be

re-written as

oL

ob0
¼ 2R�1

11 b0 � b
� �

� R0l ¼ 0 ð58Þ

oL

od0
¼� R�1

22 R012P�1R11R0lþ 2 R�1
22 þ R�1

22 R012P�1R12R
�1
22

� �

d0 � d
� �

¼ 0 ð59Þ

l� 0 ð60Þ

r � Rb0� 0 ð61Þ

l r � Rb0
� �

¼ 0 ð62Þ

Because the Kuhn–Tucker conditions (58) and (60–62) are

identical to the conditions (34–37) and Eq. 59 does not

contain a b0, both minimization approaches result in the

same values for b0.

Appendix 2: Proof of Theorem 1

Proof (Theorem 1) The partial derivatives of a quadratic

function

gðw; bÞ ¼ a0 þ
Xn

i¼1

biwi þ
1

2

Xn

i¼1

Xn

j¼1

bijwiwj ð63Þ

evaluated at point wk are

giðwk; bÞ ¼
ogðw; bÞ

owi

����
w¼wk

¼ bi þ
Xn

j¼1

bijwj;k: ð64Þ

If we set w equal to ln x, the partial derivatives of the

quadratic function evaluated at the point wk ¼ ln xk become

giðwk; bÞ ¼ giðln xk; bÞ ¼ bi þ
Xn

j¼1

bij ln xj;k ð65Þ

Since f ðx; bÞ[ 0 and x1; . . .; xn � 0, the partial derivatives

of f ðx; bÞ and gðw; bÞ always have the same sign:

sgn fiðx; bÞ½ � ¼ sgn
f ðx; bÞ

xi
bi þ

Xn

j¼1

bij ln xj

 !" #
ð66Þ

¼ sgn bi þ
Xn

j¼1

bij ln xj

" #
¼ sgn giðln x; bÞ½ � ¼ sgn giðw; bÞ½ �

8 b;w ¼ ln x; and i 2 1; . . .; nf g
ð67Þ

Hence, Eq. 24 implies that each of the partial derivatives of

gðw; bÞ retains the sign over a set of points w1; . . .;wp,

where wk ¼ ln xk8k 2 f1; . . .; pg:
si giðw; bÞ� 0 8 i 2 1; . . .; nf g; w 2 w1; . . .;wp

� �

ð68Þ

Tangian (2002, p. 134) shows that this implies that gðw; bÞ
is monotonic in w on the convex polyhedron P with

vertices w1; . . .;wp:

si giðw; bÞ� 0 8 w 2 Pðw1; . . .;wpÞ ð69Þ

This further implies that f ðx; bÞ is monotonic in x, if ln x is

in the convex polyhedron with vertices ln x1; . . .; ln xp:

si fiðx; bÞ� 0 8 x with ln x 2 Pðln x1; . . .; ln xpÞ ð70Þ

h

Appendix 3: Source code

Commands used for the estimation

The following commands have been used to estimate a

theoretically consistent stochastic frontier production

function:
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Commands to display the results

The following commands can be used to display the esti-

mation results.

Unrestrcited stochastic frontier estimation (step 1)

Minimum distance estimation (step 2)
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Final stochastic frontier estimation (step 3)

Testing monotonicity restrictions

Partial production elasticities of the restricted and the

unrestricted model

Efficiency estimates of the restricted and the unrestricted

model
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