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Abstract This paper shows how to compute the standard

errors for partial effects of exogenous firm characteristics

influencing firm inefficiency under a range of popular sto-

chastic frontier model specifications. We also develop an R2-

type measure to summarize the overall explanatory power of

the exogenous factors on firm inefficiency. The paper also

applies a recently developed model selection procedure to

choose among alternative stochastic frontier specifications

using data from household maize production in Kenya. The

magnitude of estimated partial effects of exogenous house-

hold characteristics on inefficiency turns out to be very

sensitive to model specification, and the model selection

procedure leads to an unambiguous choice of best model.

We propose a bootstrapping procedure to evaluate the size

and power of the model selection procedure. The empirical

application also provides further evidence on how household

characteristics influence technical inefficiency in maize

production in developing countries.

Keywords Stochastic frontier model � Model selection �
Bootstrapping � Maize production in Kenya
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Stochastic production frontier analysis has been widely

used to study technical inefficiency in various settings

since its introduction by Aigner et al. (1977), and Meeusen

and van den Broeck (1977). The approach has two com-

ponents: a stochastic production frontier serving as a

benchmark against which firm inefficiency is measured,

and a one-sided error term which captures technical inef-

ficiency. In early applications the one-sided error was

assumed to be identically and independently distributed

across firms, but more recent studies have allowed its

distribution to be heterogeneous and depend on various

firm characteristics (see Battese and Coelli 1995; Caudill

et al. 1995; Wang 2002, 2003).

Allowing inefficiency to depend on firm characteristics

allows researchers to identify the determinants of ineffi-

ciency and to suggest possible policy or behavioral

responses which might improve efficiency. However, this

approach has been hampered by two problems. First,

existing studies have mostly focused on the directions of the

influence of the firm characteristics on technical inefficiency

while generally overlooking the magnitudes of the partial

effects. This makes it difficult to determine which type of

policy intervention will have the largest impact on ineffi-

ciency. This problem is somewhat surprising given that the

magnitudes of the effects of explanatory variables on

dependent variables are often the focal point in other types

of regression analyses. Second, the relationship between

firm characteristics and technical inefficiency is often sen-

sitive to the model used to incorporate firm characteristics,

and choosing between competing models is difficult (see

Alvarez et al. 2006, hereafter AAOS). This model uncer-

tainty makes policy recommendations quite tenuous.

In this paper we make four contributions to the sto-

chastic frontier literature. First, we take the formulas for

estimating the partial effects of exogenous firm character-

istics on firm inefficiency that have been proposed by

Wang (2002, 2003) and show how to put standard errors
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around these point estimates. The standard errors are

computed using the delta method and will be useful in

assessing the precision of estimated partial effects. Second,

we propose an R2-type measure to summarize the overall

explanatory power of the exogenous factors on ineffi-

ciency. To date, there has been no way of assessing the

overall power of firm characteristics to explain variations

in inefficiency across firms. Our R2-type measure provides

an easily computed means of doing this. Third, we propose

a bootstrapping procedure to evaluate the power of the

recently developed model selection procedure suggested by

AAOS to choose among competing models of the influence

of firm characteristics on inefficiency. This bootstrapping

procedure should prove useful in various applications.

Fourth and finally, we apply our procedures to an empirical

application of stochastic frontier analysis of maize pro-

duction in Kenya. In the application we apply the model

selection procedures of AAOS and use bootstrapping to

evaluate the power of the procedure. We then compute

point estimates of partial effects of farm characteristics on

inefficiency and their standard errors. We also use our R2-

type measure to evaluate the joint explanatory power of the

farm characteristics. We find that while alternative models

of the relationship between farm household characteristics

and technical inefficiency in maize production in Kenya

tend to provide the same direction of the influence of

household characteristics, the magnitudes of the partial

effects on firm inefficiency are quite sensitive to model

selection.

In the remainder of the paper, we first review the stan-

dard stochastic frontier production model and then extend

it to provide: (i) standard errors around point estimates of

the effects of firm characteristics on technical inefficiency;

and (ii) an R2-type measure of the overall explanatory

power of firm characteristics on inefficiency. Next we

describe our data and variables used in the empirical

application to Kenyan maize production, followed by

estimation results from alternative model specifications.

Results for the magnitude of partial effects of farm

household characteristics on inefficiency are quite sensitive

to model specification. Then we carry out AAOS specifi-

cation tests to choose a final model and use our

bootstrapping procedure to examine the reliability of these

specification tests in choosing the correct model. The final

sections contain an analysis of technical inefficiency in

maize production in Kenya based on the final model cho-

sen, and some concluding comments.

1 Stochastic production frontier models

The basic setup and notation follow Wang and Schmidt

(2002) and AAOS. Firms are indexed by i = 1,…,N. Let yi

be log output; xi be a vector of inputs; and zi be a vector of

exogenous variables that exert influence on firm ineffi-

ciency. Let yi
* be the unobserved frontier which is modeled as

y�i ¼ x0ibþ vi; ð1Þ

where vi is distributed as N(0, rv
2) and is independent of xi

and zi, and b is a parameter vector. The actual log output

level yi equals yi
* less a one-sided error, ui, whose

distribution depends on zi. The full model is written as

yi ¼ x0ibþ vi � uiðzi; hÞ; uiðzi; hÞ� 0; ð2Þ

where h is a vector of parameters. It is assumed that ui and

vi are independent of one another and that ui is independent

of xi (conditional on zi). The model is usually implemented

by assuming ui is distributed as N(li, ri
2)? with various

specifications (discussed below) used to model li and ri.

The frontier function and the inefficiency part are generally

estimated in one step using maximum likelihood estimation

(MLE) to achieve both efficiency and consistency.1

Indexing exogenous factors with k = 1,…,K, we take

expectations conditional on xi and zi, and then take partial

derivatives with respect to zik on both sides of Eq. 2,2 to get

o½Eðyijxi; ziÞ�=ozik ¼ o½Eð�uijxi; ziÞ�=ozik: ð3Þ

The term o½Eð�uijxi; ziÞ�=ozik can be interpreted as the

partial effect of zik on efficiency and from (3) is also the

partial effect on yi. Because yi is log output,

o½Eð�uijxi; ziÞ�=ozik is the semi-elasticity of output

(efficiency) with respect to the exogenous factors (i.e.,

the percentage change in expected output when zik

increases by one unit). Similarly, taking conditional

variances we have

o½Vðyijxi; ziÞ�=ozik ¼ o½Vðuijxi; ziÞ�=ozik: ð4Þ

So o½Vðuijxi; ziÞ�=ozik is the partial effect of zik on the

variance of both the inefficiency term ui and yi. It can be

interpreted as an estimator of the partial effect of zik on

production uncertainty.

The measures o½Eðuijxi; ziÞ�=ozik and o½Vðuijxi; ziÞ�=ozik

were proposed and used in Wang (2002, 2003), but a

means for computing their standard errors was not

1 Some studies use a two-step procedure where the frontier function

is estimated first, and then the inefficiency term is regressed on

exogenous variables in the second step. This procedure is biased for

two reasons. The first and more obvious reason is the possible

correlation between the input variables in the frontier function and the

variables in the inefficiency term. The second reason is that the

inefficiency term from the first step is measured with error and the

error is correlated with the exogenous factors. See Wang and Schmidt

(2002) for an extensive discussion and evidence from Monte Carlo

experiments.
2 Here we assume there is no overlap between x and z, i.e., no

variable appears in both the frontier component (x) and the

inefficiency component (z). It is straightforward to generalize the

following equations to allow for overlap between x and z.
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provided. In the Appendix we provide formulas for com-

puting estimates of o½Eð�uijxi; ziÞ�=ozik and o½Vðuijxi; ziÞ�=
ozik; along with their standard errors using the delta method

for several popular model specifications for li and ri.

It will often be useful to measure how well the vector of

exogenous factors, z, explains inefficiency, u, in a data

sample. Surprisingly, this has not been addressed in the

previous literature. We suggest a statistic, Rz
2, to summarize

the explanatory power of z for firm inefficiency. To moti-

vate the measure, the variance of the inefficiency term ui

can be decomposed as

VðuiÞ ¼ Vz½EðuijziÞ� þ Ez½VðuijziÞ�; ð5Þ

where Vz[E(ui|zi)] is the variance of the conditional mean

function over the distribution of zi, and Ez[V(ui|zi)] is the

expected variance around the conditional mean of ui. The

fraction of variation in ui that is explained by zi is

Vz[E(ui|zi)]/V(ui). Thus a natural measure of explanatory

power over the sample would be

R2
z ¼

Pn
i¼1 ÊðuijziÞ � 1

n

Pn
i¼1 ÊðuijziÞ

� �2

Pn
i¼1 ÊðuijziÞ � 1

n

Pn
i¼1 ÊðuijziÞ

� �2þ
Pn

i¼1 V̂ðuijziÞ
;

ð6Þ

where Ê and V̂ indicate sample estimates of the mean and

variance of ui conditional on zi. Letting R1 = li/ri, R2 = /
(R1)[U(R1)]-1, and R3 = -R2

2-R1R2, where /(�) and U(�)
are the density and cumulative density functions for the

standard normal, then the mean and variance of ui

conditional on zi can be expressed as

Eðuijxi; ziÞ ¼ ri � ðR1 þ R2Þ ð7Þ

Vðuijxi; ziÞ ¼ r2
i � ð1þ R3Þ: ð8Þ

So all that remains to compute Rz
2 is to estimate l̂i and r̂i

for a specific model specification (see the model

specification section below) and then substitute these

estimators for the population values li and ri in (7) and

(8) to get the sample estimates of ÊðuijziÞ and V̂ðuijziÞ:
Similar to R2 in an ordinary least squares regression, Rz

2

can be called the ‘‘goodness of fit’’ of the efficiency

component, and it can be interpreted as the fraction of the

sample variation in u that is explained by z.

1.1 Alternative model specifications

In the original specification of stochastic frontier functions,

Aigner et al. (1977) and Meeusen and van den Broeck

(1977) assumed an identical and independent half-normal

distribution for the one-sided error terms ui. Subsequent

studies have generalized the model to allow for heteroge-

neity in the distribution of the inefficiency term while

maintaining the assumption of half normality. Kumbhakar

et al. (1991), Huang and Liu (1994), and Battese and Coelli

(1995) allow the mean of the pre-truncated normal distri-

bution of ui to depend on a set of exogenous factors.

Reifschneider and Stevenson (1991), Caudill and Ford

(1993), Caudill et al. (1995) and Hadri (1999) allow the

variance of the pre-truncated normal distribution of ui to

depend on the exogenous factors. Wang (2003) allows both

the mean and the variance of the pre-truncated distribution

of ui to depend on exogenous factors.

Regardless of whether we allow the mean, the variance,

or both the mean and the variance of the pre-truncated

normal to depend on exogenous factors, both the mean and

the variance of the truncated half normal will always

depend on the exogenous factors. These are sometimes

called models of heteroscedasticity, but the fact that the

mean also changes makes this terminology potentially

misleading. Whereas heteroscedasticity affects only the

efficiency of estimation in a standard linear model, in a

stochastic frontier model with heterogeneity in the distri-

bution of the inefficiency term, failure to model the

exogenous factors appropriately leads to biased estimation

of the production frontier model and of the level of tech-

nical inefficiency, hence leading to poor policy conclusions

(see Caudill and Ford 1993; Caudill et al. 1995; Hadri

1999; Wang 2003).

With different specifications available to model hetero-

geneity, it is unclear which should be used in particular

applied settings. The choices made in many past studies

seem to be somewhat arbitrary. However, a carefully spec-

ified model might help to increase estimation efficiency and

remove sources of potential bias and inconsistency (Wang

2003). Moreover, there has been little investigation of how

the choice of model specification influences the estimation

results. In order to deal with the model specification prob-

lem, researchers usually do sensitivity analysis using

competing models. But if the competing models give very

different results, it is difficult to pick one and discard the

others. Wang (2003) treats this problem by specifying a

flexible model that nests most of the usual model specifica-

tions for li and ri. However, a more flexible model has more

parameters, which imposes a higher computational burden

and reduces degrees of freedom. Given that large samples

are typically difficult to obtain in stochastic frontier esti-

mation, some relevant parameters may be estimated

imprecisely in flexible model specifications. Even when

large samples are available, finding an appropriate parsi-

monious model can still improve performance and a more

flexible model specification may not always be preferred.

AAOS suggest a procedure for selecting a model for the

one-sided error term. First, assume the general model of

inefficiency (Wang 2003) in which ui is distributed as N(li,

ri
2)?, with li = l � exp(zi

0
d) and ri = ru � exp(zi

0
c). This

general model nests several simpler models, many of which

have been used in previous studies. In particular, the
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following six models are special cases of the general

model, as outline in AAOS.

1. Scaled Stevenson model: let d = c. Then the distribu-

tion of ui becomes exp(zi

0
d) � N(l, ru

2)?, which is used

in Wang and Schmidt (2002).

2. KGMHLBC model: let c = 0. Then the distribution of

ui becomes N(l � exp(zi

0
d), ru

2)?, which has been

considered in Kumbhakar et al. (1991), Huang and

Liu (1994), and Battese and Coelli (1995).

3. RSCFG-l model: let d = 0. Then the distribution of ui

becomes N(l, ru
2 � exp(2zi

0
c))?.

4. RSCFG model: let l = 0. Then the distribution of ui

becomes exp(zi

0
c) � N(0, ru

2)?, which is considered in

Reifschneider and Stevenson (1991), Caudill and Ford

(1993), and Caudill et al. (1995).

5. Stevenson model: let d = c = 0. Then the distribution

of ui becomes N(l, ru
2)?, which is the model of

Stevenson (1980).

6. ALS model: let l = c = 0. Then the distribution of ui

becomes N(0, ru
2)?, which is the model of Aigner et al.

(1977).

Among the six models, the scaled Stevenson,

KGMHLBC and RSCFG-l models have the same number

of parameters. The RSCFG model is nested by the scaled

Stevenson model and the RSCFG-l model. Also notice that

the Stevenson model and the ALS model do not contain

any variables (zi) that influence the distribution of ineffi-

ciency. AAOS show how to use likelihood ratio (LR) tests,

LM tests and Wald tests to test the above restrictions, and

hence to choose a plausible model for inefficiency.

2 Empirical application

The empirical application is to maize production in Kenya

using detailed household survey data. The problem of

hunger in Kenya remains widespread and its economy

depends heavily on agriculture with 75% of Kenyans

making their living from farming. Maize is the primary

staple food and most farmers are engaged in maize pro-

duction. In recent years, total maize output has not kept

pace with growing population and demand, largely due to

falling land productivity: average national maize yields

have fallen from over 2 tons/ha in the early 1980s to about

1.6 tons/ha recently (Nyoro et al. 2004). The technical

efficiency level of Kenya maize production is therefore an

important economic and policy issue.

2.1 Data

The data are from a rural household survey of about 1,100

households planting maize in the main season of 2003–2004

in Kenya.3 The survey was designed and implemented under

the Tegemeo Agricultural Monitoring and Policy Analysis

Project, a collaboration among Tegemeo Institute of Eger-

ton University, Michigan State University, and the Kenya

Agricultural Research Institute. Figure 1 is a map of Kenya

with the round dots representing sampled villages. These

villages were chosen randomly from each of eight pre-

determined agro-economic zones and then households were

sampled randomly from each selected village.

Field level data are available for each sampled household

and some households planted maize in more than one field.

The survey includes not only detailed field production

information but also rich demographic and infrastructure

characteristics of each household. The production data for

each field include size of the field, yield, labor input, fer-

tilizer application, and seed usage. The demographic

information includes the age, gender and education level of

each household member; how far a household is from a bus

stop, a motorable road, a telephone booth, mobile phone

service, and extension service; whether a household member

has non-farm income; whether a household receives loans;

how much land a household owns, and land tenure. Rainfall

and soil quality data are also available at the village level.

2.2 Variables in the production frontier

In the production frontier part of the model, the output

variable is maize yield per acre, and the input variables are

applied fertilizer nutrients, labor, maize seeds and machine

usage. Since both the output and inputs are in per acre

terms, land is not explicitly included as an input. Most of

the maize fields are inter-crop fields where more than one

type of crop is planted in the same season. Because most

inputs (land, fertilizer and labor) are at the field level and

cannot be separately allocated to maize production only,

we generate an output index for inter-crop fields using:

Yi ¼
P

j YijPj

P1

; ð9Þ

where Yi is the output index, Pj is the market price of crop j,

Yij is the yield of crop j in field i, and crop 1 is maize.

Fields with more than three types of crops are deleted

because we want to focus on the fields where maize is the

major crop.4 Only pre-harvest labor input (LABOR) is

included because harvesting and post-harvest activities

have little effect, if any, on yield. The unit of labor is

person-hours. One person-hour of labor from children

younger than 16 is transformed to 0.6 person-hours of adult

3 See Suri (2005) for a study of the adoption decisions of hybrid seed

by maize producers in Kenya using the same data set.
4 Six hundred and thirty-seven out of the total 1,718 fields are

dropped.
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labor. Nitrogen (FERTILIZER), the most important nutri-

ent in maize growth, is computed from fertilizer

application data according to the quantity and composition

of each type of fertilizer used.5 Maize seeds can be sepa-

rated into hybrid seeds and local seeds. All fields used

either hybrid seeds or local seeds (no combinations in the

same field). These seed inputs are captured by two vari-

ables, SEED measures the amount of (hybrid or local) seed

per acre applied to the field, and HYBRID is a dummy

variable measuring one for hybrid seeded fields and zero

otherwise. We also use a dummy variable MONO as an

indicator for mono-crop fields because these might be

expected to have systematically different yields than multi-

crop fields. Tractor usage in land preparation is the only

machine used for pre-harvest activities. This is captured by

a dummy variable TRACTOR with one indicating that a

tractor was used and zero otherwise.

Environmental variables are also included on the right

hand side of the frontier production function. Failure to

control for environmental variables may cause a correlation

between some inputs and unobserved factors in the error

term (for example, if a farmer makes input decisions based

on soil properties that also affect maize yield) and therefore

may bias estimates of the production frontier and

inefficiency level (Sherlund et al. 2002). In order to control

for environmental conditions, we include seven dummy

variables indicating the different agro-economic zones.

Farms in the same zone share similar terrain and climate

conditions. We also include three village level variables:

DRAINAGE, DRAINAGE2 and STRESS. DRAINAGE

captures the drainage property of the soil. It is a categorical

variable ranging from one to ten where one indicates the

least and ten the highest drainage. DRAINAGE2 is the

square of DRAINAGE. We include a quadratic term

because yield is expected to increase in DRAINAGE at

lower drainage levels and decrease at higher levels. Rain-

fall is a very important factor in maize production in Kenya

because all of the maize fields are rain-fed and drought is

the usual cause of yield loss. We use the variable STRESS

to capture the moisture stress in maize growth. STRESS is

computed as the total fraction of 20-day periods with less

than 40 mm of rain during the 2003–2004 main season.

This is a better measure for moisture conditions than total

rainfall because total rainfall does not reflect the distribu-

tion of rainfall over time, which is very important in maize

growth.

Any observations with missing values were discarded.

Because of potential measurement errors, we also drop any

observation that satisfies one of the following conditions:

(1) yield lower than 65 kg per acre or higher than 4,580 kg

per acre, (2) seed usage less than 2 kg per acre or more

than 20 kg per acre, and (3) labor input less than 40 person-

hours per acre or more than 2,200 person-hours per acre.

After these filters were applied, there are 815 fields

Fig. 1 Location of sample

villages in Kenya (source: Suri

2005)

5 More than 20 types of fertilizers were applied. While some of these

use nitrogen, phosphorous, and other nutrients in various proportions,

nitrogen is usually the major nutrient deficiency and many of the

major fertilizers use nitrogen and phosphorous in fixed proportions.

Therefore, the level of applied nitrogen should give a reasonably

accurate measure of the impact of fertilizer on yields.
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(observations) remaining. The 815 fields were managed by

660 households. Table 1 summarizes the descriptive sta-

tistics for the variables included in the frontier production

function (excluding zone dummies).

2.3 Exogenous factors affecting efficiency

Previous studies have identified numerous factors that may

limit farm productivity and efficiency. Education is argu-

ably an important factor and Kumbhakar et al. (1989) find

that education increases the productivity of labor and land

on Utah dairy farms while Kumbhakar et al. (1991) also

show that education affects production efficiency. Huang

and Kalirajan (1997) find that average household education

level is positively correlated with technical efficiency

levels for both maize and rice production in China. Here

we measure education with EDUHIGH, the highest level of

education among all household members.6 We also inves-

tigate gender effects by including a dummy variable for

female-headed households (FEMHEAD).

Physical and social infrastructure, such as road condi-

tions, access to telephone and mobile phone service, access

to extension service, etc., have also been mentioned for

their role in rural development and farm productivity. Ja-

coby (2000) examines the benefits of rural roads to

Nepalese farms and suggests that providing road access to

markets would confer substantial benefits through higher

farm profits. Karanja et al. (1998) show that distance to the

nearest motorable road and access to extension services

have positive effects on maize productivity in Kenya. More

developed infrastructure helps farmers to obtain more

information and thus may improve technical efficiency.

Here we use three infrastructure variables to account for

these effects on efficiency—DISTBUS, distance of the

house from the nearest bus stop;7 DISTPHONE, distance of

the house from the nearest telephone or mobile phone

service; and DISTEXTN, distance from the nearest

extension service office.

Land tenure is another element that affects farm per-

formance. Secure tenure may induce more investment

(such as soil conservation) and increase farm productivity

in the long run. Place and Hazell (1993) suggest land

tenure is important to investment and productivity in

Rwanda. Puig-Junoy and Argiles (2000) show that farms

with a large proportion of rented land have low efficiency

in Spain. Here we use a dummy variable (OWNED) with

one indicating that the field is owned by the household and

zero indicating the field is rented.

Financial constraints, such as limited access to credit,

might also affect farm input decisions and efficiency. Ali

and Flinn (1989) show that credit non-availability is posi-

tively and significantly related to profit inefficiency for rice

producers in Pakistan. Parikh et al. (1995) find that farmers

with larger loans are more cost efficient in Pakistan. The

effects of financial constraints on technical efficiency seem

to be unexamined to date but may be important because the

timing of input usage can be an important factor influ-

encing yields. When farmers face financial constraints,

they may resort to relatives or friends for loans or try to

obtain in-kind inputs through governments or other input

subsidy programs. These extra efforts may prevent them

from applying inputs at the right times to optimize pro-

ductivity. We attempt to capture this effect using

CRDCSTR (a dummy variable with one indicating the

household has unsuccessfully pursued credit and zero

otherwise), and RNFINC (the proportion of household

members that have non-farm income).

The relationship between farm productivity and farm

size has been a long-standing empirical puzzle in devel-

opment economics since Sen (1962) (see Benjamin 1995;

Barrett 1996; Lamb 2003). Empirical results on the

Table 1 Descriptive statistics

for the variables in the

production frontier

Variable Notation Mean SD Min Max

YIELD Maize yield index (kg/acre) 1,071 726 69 4,410

LABOR Pre-harvest labor input (person-hour/acre) 344 271 40 2,160

FERTILIZER Nitrogen fertilizer application (kg/acre) 11 12 0 63

SEED Maize seed quantity (kg/acre) 8.5 3.3 2.5 18.8

TRACTOR If tractor used in land preparation (1 = yes, 0 = no) 0.28 0.45 0 1

MONO If mono-crop field (1 = yes, 0 = no) 0.11 0.31 0 1

HYBRID If hybrid seed (1 = yes, 0 = no) 0.72 0.45 0 1

STRESS Moisture stress (0–1) 0.14 0.21 0 1

DRAINAGE Drainage of soil (categorical 1–10) 7.2 2.1 1 10

6 EDUHIGH may capture the effects of education on efficiency for a

household better than the average education level or the education

level of the household head, in that the one who receives the highest

education can help the household head and the other household

members in making production decisions.

7 We use DISTBUS instead of how far a household is from a

motorable road, because only a very small proportion of the

households in Kenya own motorable transportation tools (like

tractors), and bus and bicycles are the major transportation tools there.
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relationship between efficiency and farm size have been

mixed. Kumbahakar et al. (1991) show that large farms are

relatively more efficient both technically and allocatively.

Ahmad and Bravo-Ureta (1995) find a negative correlation

between herd size and technical efficiency, while Alvarez

and Arias (2004) find a positive relationship between

technical efficiency and size of Spanish Dairy farms. Hu-

ang and Kalirajan (1997) show that the size of household

arable land is positively related to technical efficiency in

maize, rice and wheat production in China. Parikh et al.

(1995) find that cost inefficiency increases with farm size.

Hazarika and Alwang (2003) show that cost inefficiency in

tobacco production is negatively related to tobacco plot

size but unrelated to total farm size in Malawi. Here we

include farm size (TTACRES) and field size (ACRES) as

measures of the size effect. Descriptive statistics for the

household survey data used to define the exogenous factors

affecting efficiency are summarized in Table 2.

3 Estimation results from competing models

In this section, we report the estimation results under

alternative model specifications for the inefficiency com-

ponent of the model. We use a flexible translog functional

form for FERTILIZER, LABOR, and SEED in the frontier

production function. We also interact the dummy variable

for hybrid maize (HYBRID), and the variable for moisture

stress (STRESS), with FERTILIZER, LABOR, and SEED

because there may be important interactions between these

variables. In order to obtain more precise estimation and

simplify computation, we drop jointly insignificant vari-

ables based on LR tests and the 10% significance level.8

The dropped variables are the second order effects for

LABOR and SEED, all interaction effects among FER-

TILIZER, LABOR, and SEED, interaction effects for

SEED and HYBRID, and FERTILIZER and STRESS, two

zone dummy variables, DISTPHONE, DISTEXTN,

CRDCSTR, and ACRES. Tables 3 and 4 report the MLE

estimation results for alternative specifications for the

inefficiency part, after dropping the jointly insignificant

variables.

The parameter estimates for the frontier part of the

model are very similar across alternative models for the

inefficiency component (see Table 3). Furthermore, Both

the LR test and Wald test reject the null hypothesis that all

the exogenous factors have zero effect on inefficiency at

the 1% significance level in each of the five models (see

Table 4). Hence, it seems clear that the exogenous factors

have a statistically significant effect irrespective of the

model specification employed to model inefficiency. The

Battese and Coelli efficiency estimates are computed for

each observation in all the models and their correlations

across alternative models are reported in Table 5. The

lowest correlation is 0.97. Therefore, all five models yield

similar results for the production frontier and for the

rankings of inefficiency among households, consistent with

previous studies (e.g. Caudill et al. 1995).

The goodness of fit statistics for the inefficiency com-

ponent, Rz
2, are reported at the bottom of Table 4 for the

alternative model specifications. For example, the value of

Rz
2 for the KGMHLBC model is 0.1035, indicating that

10.35% of the sample variation in inefficiency can be

explained by the exogenous factors. The remaining 89.65%

of the sample variation is due to other unobserved factors

(such as managerial skill). Not surprisingly, the general

model provides the best fit at 12.75%.

The coefficients of the exogenous factors reported in

Table 4 are not very interesting by themselves because

they are the parameters of the pre-truncated distribution of

the inefficiency term ui. So these parameters do not tell us

how the exogenous factors affect the distribution of ui. In

order to quantify the effects of exogenous factors, we

compute o½Eð�uijxi; ziÞ�=ozi and o½Vðuijxi; ziÞ�=ozi for each

observation. The formulas for computing these measures

and their standard errors for the general model are provided

Table 2 Descriptive statistics

for the exogenous variables in

the efficiency model

Variable Notation Mean SD Min Max

EDUHIGH # School years for the highest educated member 12 5.5 0 24

FEMHEAD If the household head is female (1 = yes, 0 = no) 0.19 0.39 0 1

DISTBUS Distance to the nearest bus-stop (km) 2.4 2.4 0 20

DISTPHONE Distance to the nearest phone service (km) 0.78 1.6 0 15

DISTEXTN Distance to the nearest extension service (km) 5.2 4.5 0 33

OWNED If the field owned by the household (1 = yes, 0 = no) 0.86 0.35 0 1

CRDCSTR If pursued credits and was rejected (1 = yes, 0 = no) 0.08 0.27 0 1

RNFINC Percentage of members that have non-farming income 0.20 0.19 0 1

TTACRES Total acres of land owned by the household 7.46 10.9 0.13 110

ACRES Acres of the field 1.46 2.01 0.03 27

8 The LR test results are available from the authors on request.
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Table 3 Estimates for the production frontier in alternative models

LYIELD General Scaled Stevenson KGMHLBC RSCFG-l RSCFG

LFERTILIZER 0.15 (0.020) 0.15 (0.020) 0.15 (0.020) 0.15 (0.020) 0.15 (0.020)

LLABOR 0.33 (0.050) 0.33 (0.052) 0.33 (0.049) 0.33 (0.052) 0.33 (0.052)

LSEED 0.33 (0.048) 0.32 (0.050) 0.33 (0.048) 0.32 (0.050) 0.32 (0.050)

LFERTILIZER2 0.025 (0.004) 0.026 (0.004) 0.026 (0.004) 0.026 (0.004) 0.026 (0.004)

LFERTILIZER 9 HYBRID -0.062 (0.016) –0.063 (0.016) –0.063 (0.016) –0.063 (0.016) –0.063 (0.016)

LLABOR 9 HYBRID –0.16 (0.059) –0.15 (0.061) –0.16 (0.059) –0.16 (0.061) –0.15 (0.060)

LLABOR 9 STRESS –0.23 (0.14) –0.29 (0.14) –0.26 (0.14) –0.29 (0.14) –0.29 (0.14)

LSEED 9 STRESS –0.29 (0.17) –0.28 (0.19) –0.29 (0.17) –0.27 (0.20) –0.29 (0.19)

HYBRID 0.19 (0.063) 0.20 (0.059) 0.20 (0.063) 0.20 (0.059) 0.20 (0.059)

STRESS –0.38 (0.18) –0.36 (0.18) –0.39 (0.18) –0.36 (0.18) –0.37 (0.18)

MONO –0.22 (0.059) –0.21 (0.060) –0.23 (0.058) –0.21 (0.060) –0.21 (0.60)

DRAINAGE 0.15 (0.056) 0.13 (0.056) 0.15 (0.055) 0.13 (0.057) 0.13 (0.056)

DRAINAGE2 –0.012 (0.005) –0.001 (0.005) –0.011 (0.005) –0.001 (0.005) –0.001 (0.005)

TRACTOR 0.15 (0.056) 0.15 (0.051) .15 (0.057) 0.14 (0.050) 0.15 (0.051)

Constant & Zone Dummies not reported

rv
2 0.16 (0.023) 0.14 (0.023) 0.15 (0.020) 0.15 (0.022) 0.13 (0.021)

Note: LYIELD is log YIELD. LFERTILIZER, LLABOR and LSEED are defined similarly. Standard errors are in parentheses

Table 4 Estimates for the inefficiency components in alternative models

LYIELD General Scaled Stevenson KGMHLBC RSCFG-l RSCFG

Variables in function li

l -4.1 (6.9) -0.30 (0.36) -1.45 (0.72) –0.75 (0.40) 0

EDUHIGH 0.034 (0.049) -0.018 (0.0068) 0.053 (0.024) 0 0

FEMHEAD -5.3 (41) 0.22 (0.093) -2.3 (2.0) 0 0

DISTBUS -0.36 (0.16) 0.048 (0.016) -0.31 (0.14) 0 0

OWNED -1.4 (1.0) 0.35 (0.11) -1.3 (0.41) 0 0

RNFINC 0.82 (1.2) -0.36 (0.19) 1.4 (0.73) 0 0

TTACRES 0.0018 (0.045) -0.013 (0.003) 0.024 (0.012) 0 0

Variables in function ri
2

ru
2 2.7 (5.9) 0.42 (0.13) 0.59 (0.14) 0.54 (0.12) 0.34 (0.11)

EDUHIGH -0.0063 (0.015) -0.018 (0.0068) 0 -0.014 (0.0048) -0.032 (0.014)

FEMHEAD -0.22 (0.28) 0.22 (0.093) 0 0.18 (0.072) 0.41 (0.17)

DISTBUS -0.014 (0.044) 0.048 (0.016) 0 0.040 (0.012) 0.087 (0.030)

OWNED -0.061 (0.46) 0.35 (0.11) 0 0.28 (.073) 0.63 (0.22)

RNFINC -0.14 (0.36) -0.36 (0.19) 0 -0.29 (0.15) -0.63 (0.38)

TTACRES -0.012 (0.013) -0.013 (0.003) 0 -0.011 (0.0015) -0.020 (0.014)

# Observations 815 815 815 815 815

Log-likelihood -616.30 -623.63 -618.71 -623.42 -623.70

LR statistic 56.84 34.54 50.62 38.36 37.98

Wald statistic 26.80 18.28 29.74 77.69 27.17

1% critical value 26.22 16.81 16.81 16.81 16.81

Rz
2 0.1275 0.0848 0.1035 0.0936 0.0773

Note: Standard errors are in parentheses. The LR and Wald statistics test the null hypothesis that the exogeneous factors have no joint influence

on inefficiency
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in the Appendix. To obtain the formulas for the nested

models, we only need to impose the corresponding

restrictions on the parameters.9

The partial effects of the exogenous factors evaluated at

the sample mean are reported in Table 6 along with their

standard errors. The signs of the partial effects are the same

for all the models. However, different models give quan-

titatively different values for the partial effects. For

example, the partial effects of TTACRES on the condi-

tional mean of -u range from 0.0023 to 0.0072, and these

differences are large relative to the standard errors of the

estimates. So conclusions about the semi-elasticity of

output with respect to farm size may differ by a factor of

more than 100%, depending on which inefficiency model is

used.

Table 7 reports the average partial effects of EDUHIGH

on E(-ui|xi, zi) for alternative model specifications over

observations within each of the four quartiles of the effi-

ciency levels.10 The KGMHLBC model shows an

increasing trend of the partial effect of education on effi-

ciency levels from low to high quartiles, while the scaled

Stevenson model, RSCFG-l model and RSCFG model

suggest a decreasing trend. So using the KGMHLBC

model we would conclude that the households with lower

efficiency levels would not benefit as much from increased

education as the ones with higher efficiency levels. How-

ever, an opposite conclusion would follow if we use the

scaled Stevenson model, the RSCFG-l model or the

RSCFG model.11

Table 8 reports the correlations of partial effects of

EDUHIGH on E(-ui|xi, zi) among alternative models. Most

correlations are very low and some are even negative (see

footnote 11). This further confirms that different models

yield rather different partial effects. Therefore, if we are

only interested in the signs of the yield semi-elasticities

with respect to exogenous factors, model specification is

not critical. However, if we are interested in the magni-

tudes of the yield semi-elasticities, it is important to choose

the appropriate model specification.

Table 5 Correlation of

efficiency estimates among

alternative models

General Scaled Stevenson KGMHLBC RSCFG-l RSCFG

General 1

Scaled Stevenson 0.9793 1

KGMHLBC 0.9910 0.9848 1

RSCFG-l 0.9839 0.9986 0.9843 1

RSCFG 0.9700 0.9970 0.9833 0.9917 1

Table 6 Partial effects of exogenous factors, evaluated at the sample mean

General Scaled Stevenson KGMHLBC RSCFG-l RSCFG

Partial effects on E(-ui|xi, zi)

EDUHIGH .0080 (.0044) .0079 (.0012) .0052 (.0044) .0080 (.00081) .0081 (.0029)

FEMHEAD -.12 (.11) -.10 (.051) -.14 (.058) -.11 (.049) -.11 (.052)

DISTBUS -.037 (.025) -.021 (.0038) -.037 (.016) -.022 (.0028) -.022 (.0083)

OWNED -.19 (.074) -.14 (.047) -.17 (.052) -.14 (.042) -.14 (.058)

RNFINC .19 (.12) .16 (.039) .13 (.11) .17 (.028) .16 (.090)

TTACRES .0075 (.0021) .0058 (.00067) .0023 (.0015) .0061 (.00040) .0049 (.0023)

Partial effects on V(ui|xi, zi)

EDUHIGH -.0042 (.0020) -.0045 (.0015) -.0024 (.0020) -.0044 (.0012) -.0045 (.0016)

FEMHEAD .035 (.058) .064 (.037) .066 (.026) .063 (.034) .065 (.038)

DISTBUS .016 (.013) .012 (.0055) .017 (.0072) .012 (.0049) .012 (.0057)

OWNED .083 (.040) .070 (.029) .078 (.021) .068 (.026) .071 (.035)

RNFINC -.097 (.062) -.091 (.048) -0.061 (.050) -.091 (.043) -.088 (.051)

TTACRES -.0046 (.0016) -.0033 (.0011) -.0011 (.00070) -.0033 (.00083) -.0028 (.0014)

Note: Standard errors are in parentheses

9 Wang (2002) gives the expressions for these derivatives but not for

the standard errors.
10 The quartiles were computed using the KGMHLBC model.

11 Similar patterns are observed for the other exogenous factors but

these results are not reported to conserve space.
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4 Model selection

In this section, we apply the procedure proposed by AAOS

to select an appropriate model for our empirical applica-

tion. A bootstrap analysis then follows to evaluate the

performance of the model selection procedure.

4.1 Empirical model selection

We start with the general model, and then use LR tests to

find simpler models that the data do not reject. Estimation

of the general model yields a log-likelihood value of

-616.30. Table 9 reports the log-likelihood values for the

six restricted models nested in the general model. Taking

the general model as the unrestricted model, we then test

the restrictions that would reduce the general model to

simpler specifications. LR test statistics with Chi-squared

critical values are listed in Table 9 and provide the fol-

lowing results:

• We reject the scaled Stevenson model (d = c),

RSCFG-l model (d = 0), and RSCFG model (l = 0)

at the 5% significance level.

• We fail to reject the KGMHLBC model (c = 0) at any

reasonable significance level.

• We reject the Stevenson model (d = c = 0) and ALS

model (l = c = 0) at any reasonable significance

level.

Because both the Stevenson model and ALS model are

rejected, we conclude that the exogenous factors do affect

efficiency. Among RSCFG, RSCFG-l, and scaled Ste-

venson models, the RSCFG model is preferred because we

fail to reject the RSCFG model at any reasonable signifi-

cance level using the RSCFG-l model or the scaled

Stevenson model as the unrestricted model. Moreover,

among all the models, the KGMHLBC model is most

preferred because it is the only one that we can accept at

any reasonable significance level. Therefore, we select the

KGMHLBC model as our final model.

4.2 A bootstrap evaluation

The model selection procedure proposed by AAOS leads to

one clearly preferred model, the KGMHLBC model,

among the set of competing models. However, it is

important to ask about the reliability of the model selection

criterion, which is a question of the size and power prop-

erties of the LR tests. We investigate this question using

the bootstrap. That is, we generate data via the bootstrap

assuming that the KGMHLBC model is correct, and then

we see how reliably the model selection procedure picks

the KGMHLBC model. So far as we are aware this

approach has not been used previously in the literature. It is

useful because we are using the bootstrap to evaluate the

probability with which the actual model selection proce-

dure will pick the correct model.

Table 8 Correlation of partial

effects of EDUHIGH on

E(-ui|xi, zi) among alternative

models

General Scaled Stevenson KGMHLBC RSCFG-l RSCFG

General 1

Scaled Stevenson -0.3910 1

KGMLBC 0.7811 -0.7899 1

RSCFG-l -0.3716 0.9991 -0.7861 1

RSCFG -0.4140 0.9882 -0.8047 0.9970 1

Table 9 Results of

specification tests for model

selection

The value of log-likelihood for

the general model is -616.30

Scaled Stevenson KGMHLBC RSCFG-l RSCFG Stevenson ALS

Log-likelihood -623.63 -618.71 -623.42 -623.70 -641.44 -642.04

LR statistics 14.66 4.82 14.24 14.80 50.28 51.48

# Restrictions 6 6 6 7 12 13

1% Critical value 16.81 16.81 16.81 18.48 26.22 27.69

5% Critical value 12.59 12.59 12.59 14.07 21.03 22.36

10% Critical value 10.64 10.64 10.64 12.02 18.55 19.81

Table 7 Average partial effects of EDUHIGH on E(-ui|xi, zi), for

the observations within each of the four quartiles based on efficiency

levels predicted in KGMHLBC model

%

Percentile

General Scaled

Stevenson

KGMHLBC RSCFG-

l
RSCFG

0–25 0.0067 0.0092 0.0039 0.0092 0.0092

25–50 0.0074 0.0085 0.0052 0.0085 0.0085

50–75 0.0078 0.0080 0.0059 0.0081 0.0081

75–100 0.0079 0.0069 0.0072 0.0070 0.0071
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The KGMHLBC model is written as

yi ¼ x0ibþ vi � ui; where ui�N½l � expðz0idÞ; r2
u�
þ

and

vi�Nð0; r2
vÞ: ð10Þ

We take the following steps to conduct the parametric

bootstrap:

1. Using the actual sample data {(yi, xi, zi)}i=1
n , estimate

the KGMLBC model using MLE to get ĥ ¼
fb̂; d̂; l̂; r̂2

u; r̂
2
vg: These results are provided in Tables 3

and 4.

2. Next generate pseudo-data sets based on the parameter

estimates from step 1. That is, for i = 1,…,n, draw ui
*

from N½l̂ � expðz0id̂Þ; r̂2
u�
þ; vi

* from Nð0; r̂2
vÞ; and then

compute y�i ¼ x0ib̂þ v�i � u�i :
3. Based on the pseudo-data {yi

*, xi, zi}i=1
n generated in step

2, estimate all seven inefficiency models using MLE.

Take the log-likelihood value (ll*) and parameter

estimates (ĥ�) in each of the models, denoted as f� ¼
fðll�j ; ĥ�j Þg

7
j¼1;where j indexes the different models.

4. Repeat steps 2 and 3 1,000 times to obtain B ¼
ff�bg

1000
b¼1 :

We use the log-likelihood statistics in B to conduct

the AAOS specification tests for each pseudo-data set,

taking the general model as the unrestricted model and

conduct LR tests at the 5% significance level. The results

are:

• We reject the true model in 5.7% of the pseudo-data

sets, the scaled Stevenson model in 75% of the pseudo-

data sets, the RSCFG-l in 78% of the pseudo-data sets,

and the RSCFG in 75% of the pseudo-data sets.

• We reject both the Stevenson model and the ALS

model in 99.9% of the pseudo-data sets. That is, in only

one of the 1,000 data sets, we would wrongly conclude

that the set of exogenous factors do not affect

efficiency.

• We accept the true model and reject all of the other

models in 66.0% of the pseudo-data sets. We reject the

true model and accept an alternative one at the same

time in only 0.4% of the data sets.

• In 28.4% of the pseudo-data sets, we simultaneously

accept the true model and at least one of the alternative

models. And we reject all of the models simultaneously

in 5.3% of the data sets.

These results suggest that the AAOS model selection

criteria do a good job of discriminating between models. If

the KGMHLBC model is correct, the model selection

procedure will reject it with small probability (6%), and

will pick it unambiguously with relatively high probability

(66%).

The bootstrap results also can be used to generate con-

fidence intervals for any of our original estimates. These

confidence intervals may be more accurate in finite samples

than those generated by first order asymptotic approxima-

tions such as the delta method. For example, we can use the

parameter estimates of the KGMHLBC model in B to

compute the partial effects for every observation in each

pseudo-data set. Confidence intervals then follow directly

from the set of B estimates. For example, given 1,000

pseudo-data sets a 90% confidence interval for a parameter

ranges from the 50th to the 950th largest values of the

bootstrap estimates of that parameter. This is called the

‘‘percentile bootstrap’’. Table 10 reports 90% percentile

bootstrap confidence intervals for the partial effects in the

KGMHLBC model, evaluated at the sample mean. For

purposes of comparison, it also gives the 90% confidence

intervals based on the delta method (i.e. using the standard

errors computed as in the appendix and reported in

Table 6). The confidence intervals given by bootstrap and

the delta method are not very different. This confirms the

reliability of the delta method.

5 Post-estimation analysis

Post-estimation analysis is based on the results of our

selected KGMHLBC model. Table 11 reports output elas-

ticity estimates for local seed users and hybrid seed users

Table 10 Partial effect of the exogenous factors on E(-ui|xi, zi) and their 90% confidence intervals based on bootstrap and the delta method in

the KGMHLBC model, evaluated at the sample mean

EDUHIGH FEMHEAD DISTBUS OWNED RNFINC TTACRES

.0052 -.14 -.037 -.19 .13 .0023

Bootstrap (.00047, .011) (-.22, -.048) (-.058, -.0078) (-.28, -.035) (-.011, .30) (.00011, .0053)

Delta method (-.0020, .012) (-.24, -.045) (-.063, -.011) (-.26, -.084) (-.051, .31) (-.0017, .0048)

Table 11 Output elasticity with respect to inputs for local seed users

and hybrid seed users, evaluated at the sample means

Inputs Local seed users Hybrid seed users

FERTILIZER 0.209 (.00076) 0.224 (.0011)

LABOR 0.300 (.0027) 0.177 (.0063)

SEED 0.293 (.0032) 0.336 (.0026)

Note: Standard errors are in parentheses
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calculated at their respective sample means with their

standard errors in parentheses.12 The sum of the output

elasticities with respect to FERTILIZER, LABOR, and

SEED is less than 1 (0.80 for local seed users and 0.74 for

hybrid seed users). However, this is expected and does not

mean the technology is decreasing returns to scale because

we are holding land constant (production is measured as

yield per acre). Results show that output elasticities with

respect to FERTILIZER and SEED are higher for hybrid

seed users than local seed users, but the output elasticity

with respect to LABOR is higher for local seed users.

Figure 2 plots the density of the Battese and Coelli

technical efficiency estimates. The minimum efficiency

level is 18% and the maximum is 98%. The mean of

technical efficiency is 71%, while the mode is around 80%.

The distribution is left skewed.

The statistic Rz
2 suggests that about 10% of the sample

variation in inefficiency can be explained by the set of

exogenous factors (see bottom of Table 4). From Table 6,

EDUHIGH, RNFINC and TTACRES all have positive

partial effects on the mean and negative effects on the

variance of efficiency. FEMHEAD, DISTBUS, and

OWNED all have negative effects on the mean and positive

effects on the variance of efficiency. Therefore, an average

household tends to have a higher efficiency level and a

lower uncertainty on efficiency if it has a higher education

level, more off-farm income, or larger farm size. Alterna-

tively, it tends to have a lower efficiency level and higher

uncertainty of efficiency if it has a female head, or is far

from a bus-stop.

These results are mostly consistent with a priori rea-

soning and the previous literature. The effects of education,

credit constraints, farm size and infrastructure on efficiency

have been discussed extensively in the previous literature.

The effect of female head could be due to the fact that

females are subject to social discrimination in Kenya.

There are generally two situations in which a female can

become the head of a household. One is that she is a single

mother, and the other is that her husband is dead. Females

do not have the same inheritance rights as males in rural

Kenya. A widow cannot obtain full rights to the land left by

her husband and has to give away a certain proportion of

the harvest to her husband’s brothers. This may reduce the

incentive to work intensively.

A surprising result is that farmers tend to be more effi-

cient in rented fields than in their own fields. There are

possible two reasons: (1) a fixed rent has to be paid at

planting time, which provides more incentives for farmers

who work in a rented field than in their own fields; (2)

farmers rent fields that they know are productive. To the

extent the second reason is a factor, the variable OWNED

might capture the unobserved land quality not included as a

covariate in the production frontier.

As explained earlier, not only the directions but the values

of the partial effects on E(-ui|xi, zi) are of economic interest.

According to the KGMHLBC model (see Table 10), one

more school year would increase yield per acre by a little

over half a percent for an average household, ceteris paribus.

Being one kilometer closer to public transportation would

increase yield per acre by 3.7%. An increase of one acre in

farm size would raise yield per acre by less than one-third of

a percent. If the proportion of household members who

receive off-farm income increases by 10%, yield per acre

would increase by 1.3%. However, using the same amount

and the same quality of inputs, a household with a female

head tends to produce 14% less maize than a household with

a male head, and farmers tend to produce 17% more maize

working in rented fields than in their own fields.

6 Conclusion

This paper makes four contributions to the stochastic

frontier literature. First, we provide formulas to compute

the standard errors for partial effects of exogenous firm

characteristics on output levels and inefficiency for alter-

native model specifications. Second, we develop an R2-

type measure that summarizes the overall explanatory

power of the exogenous factors that affect inefficiency.

Third, we propose a bootstrapping procedure to evaluate

the power of the recently developed model selection pro-

cedure suggested by AAOS to choose among competing

models of the influence of firm characteristics on ineffi-

ciency. To our knowledge, bootstrapping has not been used

previously to examine the size and power of model selec-

tion criteria. Fourth and finally, we apply our procedures

and the AAOS model selection approach to an empirical

Fig. 2 Kernel density estimate based on Battese and Coelli technical

efficiency estimates

12 The means of FERTILIZER, LABOR, and SEED are computed

after taking logarithms.
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application of stochastic frontier analysis of maize pro-

duction in Kenya.

The application is to Kenyan maize production and we

find that different specifications provide similar efficiency

rankings of households and predict the same directions for

partial effects of exogenous factors. However, the magni-

tudes of these estimated partial effects are rather different

across model specifications. This finding calls for more

attention to model selection in empirical stochastic frontier

analysis. The specification tests recently proposed by Alva-

rez et al. (2006) yield an unambiguous choice of best model

using the Kenyan maize data. After evaluating the size and

power of the test procedures with our bootstrap analysis we

then use the preferred model to identify factors that limit

technical efficiency in maize production in Kenya, and

quantify their partial effects on maize yields. We examine

the effects of education, female head of household, distance

from a bus stop, land owned or rented, extent of off-farm

income, and farm size on the level of efficiency. Approxi-

mately 10% of the variation in efficiency levels is accounted

for by these household characteristics, and while education,

non-farm income, and farm size increase technical effi-

ciency, female-headed households, distance from a bus stop,

and land being owned rather than rented all decrease it.
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Appendix

Estimating partial effects of exogenous factors and their

standard errors for the general model

Assume there are K exogenous factors (K1 continuous

variables and K2 = K - K1 dummy variables). We deal

with the continuous variables first. Let zi
c be the K1

dimensional vector of the continuous variables. We derive

the partial effects of zi
c on the mean and variance of effi-

ciency via differentiation as

oEð�uijxi; ziÞ=ozc
i ¼ ccriðR1R3 � R2Þ � dcriR1ð1þ R3Þ

ð11Þ

oVðuijxi; ziÞ=ozc
i ¼ 2ccr2

i ð1þ R3 þ R4Þ � dcr2
i R4; ð12Þ

where li = l � exp(zi

0
d), ri = ru � exp(zi

0
c), dc and cc are

the coefficient vectors associated with zi
c, R1, R2, and R3

are as defined in the text, and R4 = R1(R2 ? R1R3 ?2R2R3).

Next we derive the variances of the partial effects of zi
c.

Let h0 = (d0 c0), and gðhÞ ¼ o½Eð�uijxi; ziÞ�=ozc
i ; and

hðhÞ ¼ o½Vðuijxi; ziÞ�=ozc
i ; where both g(h) and h(h) are

K1 9 1 dimensional vectors. Following the delta method,

ffiffiffi
n
p
½gðĥÞ � gðhÞ� ! N 0;

ogðhÞ
oh0

� �

X
ogðhÞ
oh0

� �0� �

; ð13Þ

ffiffiffi
n
p
½hðĥÞ � hðhÞ� ! N 0;

ohðhÞ
oh0

� �

X
ohðhÞ
oh0

� �0� �

: ð14Þ

We derive ogðhÞ=od0; ogðhÞ=oc0; ohðhÞ=od0 and ohðhÞ=
oc0 as

ogðhÞ
od0
¼ �riðccz0i þDÞR1ð1þ R3Þ � riðdc � ccÞz0iR5; ð15Þ

ogðhÞ
oc0
¼ ric

cz0ið�R1�R2�R1R4Þþ riDðR1R3�R2Þ

þ rid
cz0iR5; ð16Þ

ohðhÞ
od0

¼ r2
i ccz0iðR6 � 2R4Þ � dcz0iR6 � R4D
� �

; ð17Þ

ohðhÞ
oc0

¼ r2
i

�
ccz0ið4þ 4R3 þ 4R4 � R6Þ þ dcz0iðR6 � 2R4Þ

þ 2ð1þ R3 þ R4ÞD�; ð18Þ

where D = [IK1 0K1 9 K2 ] is a K1 9 K dimensional

matrix, and

R5 ¼ R1ð1þ R3Þ � R1R4; ð19Þ

R6 ¼ R4 þ R1ð2R1R3 þ 2R1R2
3 � R1R4 � 2R2R4Þ: ð20Þ

ogðhÞ
oh0
¼ gðhÞ

d0
gðhÞ
c0

h i
and

ohðhÞ
oh0
¼ hðhÞ

d0
hðhÞ
c0

h i
are K1 9 2K

dimensional matrices, which depend on the model

parameters d and c. We can get the estimates of
ogðhÞ
oh0

and
ohðhÞ
oh0

by substituting the estimates of d and c into the above

formulas. The variances of the partial effects can be

estimated by substituting the estimate of
ogðhÞ
oh0

as well as the

estimate of the variance–covariance matrix of ĥ into the

formulas (13) and (14).

Next we compute partial effects of dummy variables.

Let zik be the dummy of concern. The partial effects of zik

on E(-ui|xi,zi) and V(ui|xi,zi) are

dðhÞ ¼ Eð�uijxi; zi; zik ¼ 1Þ � Eð�uijxi; zi; zik ¼ 0Þ
¼ ½�riðR1 þ R2Þ�jzik¼1 � ½�riðR1 þ R2Þ�jzik¼0

ð21Þ

rðhÞ ¼ Vðuijxi; zi; zik ¼ 1Þ � Vðuijxi; zi; zik ¼ 0Þ
¼ ½r2

i ð1þ R3Þ�jzik¼1 � ½r2
i ð1þ R3Þ�jzik¼0

ð22Þ

Similarly, following the delta method, we have

ffiffiffi
n
p
½dðĥÞ � dðhÞ� ! N 0;

odðhÞ
oh0

� �

X
odðhÞ
oh0

� �0� �

ð23Þ

ffiffiffi
n
p
½rðĥÞ � rðhÞ� ! N 0;

orðhÞ
oh0

� �

X
orðhÞ
oh0

� �0� �

ð24Þ
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We then have odðhÞ=od0; odðhÞ=oc0; orðhÞ=od0; and orðhÞ=
oc0 as follows

odðhÞ=od0 ¼ ½�riR1ðR1 þ R3Þz0i�jzik¼1

� ½�riR1ðR1 þ R3Þz0i�jzik¼0 ð25Þ

odðhÞ=oc0 ¼ ½�riðR2 � R1R3Þz0i�jzik¼1

� ½�riðR2 � R1R3Þz0i�jzik¼0 ð26Þ

orðhÞ=od0 ¼ ½�r2
i R4z0i�jzik¼1 � ½�r2

i R4z0i�jzik¼0 ð27Þ

orðhÞ=oc0 ¼ ½ð2þ 2R3 þ R4Þr2
i z0i�jzik¼1

� ½ð2þ 2R3 þ R4Þr2
i z0i�jzik¼0 ð28Þ

odðhÞ
oh0
¼ dðhÞ

d0
dðhÞ
c0

h i
and

orðhÞ
oh0
¼ rðhÞ

d0
rðhÞ
c0

h i
are 1 9 2K

dimensional matrices. The variances of the partial effects

for zik can be estimated similarly as for the continuous

variables described earlier.
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