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Abstract An alternative efficiency estimation approach is

developed utilizing generalized maximum entropy (GME).

GME combines the strengths of both SFA and DEA,

allowing for the estimation of a frontier that is stochastic,

without making an ad hoc assumption about the distribu-

tion of the efficiency component. GME results approach

SFA results as the one-sided inefficiency bounds used by

GME shrink. Results similar to DEA are achieved as the

bounds increase. The GME results are distributed like

DEA, but yield virtually the same rankings as SFA. The

results suggest that GME may provide a link between

various estimators of efficiency.
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1 Introduction

The empirical estimation of X-efficiency has resulted in an

extensive literature addressing both the econometric theory

of efficiency estimation and the empirical application of the

concepts in different situations. Of the approaches used to

estimate frontiers and X-efficiency, the two most popular

are stochastic frontier analysis (SFA) and data envelop-

ment analysis (DEA). Both methods have their strengths

and weaknesses and their own group of supporters/

detractors. Despite a number of studies comparing the

techniques, neither of the two methods has emerged as the

preferred approach.

Generalized maximum entropy (GME) provides a

potential alternative frontier estimation approach that

combines the strengths of both SFA and DEA. An advan-

tage GME shares with SFA is that it allows the researcher

to explicitly estimate a stochastic frontier without requiring

bootstrapping for statistical inference as with DEA. With

maximum entropy estimation the researcher establishes a

discrete set of support points for each parameter and then

estimates the probability associated with each support point

to arrive at the parameter estimate. For example, suppose a

random variable, X, can take the values 1, 2, 3, or 4 with

associated probabilities p1, p2, p3, and p4, respectively.

GME is used, in combination with the prior information

embedded in the support points, to estimate the associated

probabilities and hence obtain a predicted value for X.

Using the generalized maximum entropy methodology

developed by Golan et al. (1996, Chap. 6), we specify a set

of support points for the unknown parameters and then

estimate the probabilities associated with these support

points.

An advantage GME shares with DEA is that it does not

require an ad hoc assumption about the distribution of the

inefficiency component as is required with SFA. With

GME the researcher also establishes a set of support points

for the inefficiency component. These support points bound

the estimated inefficiency and are based on theory or prior
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information. For example, we may have information that

all firms within an industry are between 60% and 100%

efficient. The range of support points for the inefficiency

component would reflect this information. Due to the

uncertainty regarding these support points, we examine the

effects of using different sets of support points in our

model. As expected, the estimated inefficiency is some-

what sensitive to the choice of support points, particularly

the maximum and minimum points. However, the relative

rankings of firms do not vary much with the choice of

support points.

In this paper, we develop the GME frontier estimator.

We compare GME estimation to SFA and DEA using a

data set on 123 electric utilities in the US. This data set has

been used extensively in econometric studies of efficiency

estimation and provides an appropriate setting for the

comparison of efficiency estimates across these models.

The results suggest the GME formulation provides a link

between the SFA and DEA estimators.

This paper is organized as follows: Sect. 2 provides a

brief review of the efficiency literature including a few

studies that use GME techniques. Section 3 presents the

SFA and DEA cost frontier estimators and develops the

GME approach. Section 4 compares cost efficiency esti-

mates from SFA, DEA, and GME. Section 5 adds a

production frontier example, allowing for a comparison

with deterministic frontier results also. Concluding remarks

are given in Sect. 6.

2 Review of the literature on efficiency estimation

The theoretical literature on productive efficiency origi-

nates with the work of Koopmans (1951), Debreu (1951),

and Shephard (1953). The first attempt to estimate effi-

ciency was found in Farrell (1957) who used linear

programming (LP) techniques to estimate efficiency in US

agriculture. Research on efficiency estimation continued

with the development of SFA (Meeusen and van den

Broeck 1977; Aigner et al. 1977; Battese and Corra 1977)

and DEA (Charnes et al. 1978). Each of these techniques

has subsequently been extended and developed further.1

As these techniques matured, studies appeared that

applied both SFA and DEA to the same data set and con-

ducted an explicit comparison of results. Ferrier and Lovell

(1990) use both approaches on a set of US banks, finding

mixed results in terms of efficiency estimates. Hjalmarsson

et al. (1996) compare SFA, DEA, and deterministic para-

metric models for a panel of 15 Colombian cement plants.

Although each method finds similar trends in efficiency

over time, the correlations between efficiency estimates are

mixed. Sharma et al. (1997) estimate the technical effi-

ciency of the swine industry in Hawaii using both SFA and

three forms of DEA. They find that SFA leads to higher

estimates of technical efficiency and that the correlation

between rankings from the different approaches is positive.

Bauer et al. (1998) also use both approaches and propose a

set of conditions for comparing the two, finding mixed

results using a set of US banks. Wadud and White (2000)

estimate technical efficiency for rice farmers in Bangladesh

using SFA and three forms of DEA and find some corre-

lation between SFA and DEA estimates. Weill (2004)

compares results from these approaches for banks from five

European countries. The results are again mixed, although

they are all generally consistent with standard measures of

performance in the banking industry. These disparities

across models are not unexpected given the differences in

the statistical properties of the models used to develop the

DEA and SFA estimators.2

Due to mixed results from SFA and DEA, and in response

to criticism of both approaches, we develop a GME frontier

estimator. There has been very little research applying

maximum entropy techniques to efficient frontier estima-

tion, and even less of an emphasis on direct comparisons

with other frontier estimation approaches. Sengupta (1992)

applies maximum entropy to derive the distribution of the

one-sided error term in a production frontier model. Given

the error distribution, the productivity parameters are esti-

mated using DEA. Miller (2002) also focuses on a

production frontier model, proposing a procedure using a

semiparametric specification of the production frontier and

parametric specification of a one-sided efficiency compo-

nent. He concentrates on the theoretical development of the

model without an empirical application. Lansink et al.

(2001) use GME to estimate intra- and inter-firm efficiency

in an input–output model. They use GME to estimate a

production frontier including an intra-firm efficiency com-

ponent that is constrained to be between zero and one. GME

estimates are presented but no comparison to other frontier

techniques is provided. Rezek and Campbell (2007) use

GME to estimate shadow prices for power plant emissions.

They only include a two-sided error term and do not com-

pare GME results to SFA or DEA results. The following is

an attempt to extend the contributions of GME to efficiency

1 See Kumbhakar and Lovell (2000) for a recent textbook treatment

of SFA and Cooper et al. (2004) for DEA.

2 See Simar and Wilson (2000) and Kumbhakar and Lovell (2000)

for discussions of the statistical models used to construct DEA and

SFA estimators, respectively.
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estimation by performing a direct comparison with SFA and

DEA results.

3 Data and methodology

This study uses SFA, DEA, and GME to estimate cost

efficiency for a sample of 123 electric utilities in the US.

This data set has been used in numerous studies on the

estimation of cost functions/frontiers and efficiency (e.g.

Christensen and Greene 1976; Greene 1990; Sengupta

1995). For each firm i, the data set includes a single output,

yi, and three inputs: labor, capital, and fuel. Input quantities

and prices are given by the column vectors xi = (xil, xik, xif)

and wi = (wil, wik, wif). The total cost of production is

given by Ci ¼ w0ixi. Descriptive statistics are given in

Table 1.

3.1 Stochastic frontier analysis

Following Kumbhakar and Lovell (2000, pp. 136–142), in

log form the cost frontier can be written as

ln Ci ¼ ln cðy;wiÞ þ ui þ vi

where ui is a non-negative inefficiency component and vi is

a producer specific random disturbance. Cost efficiency is

then CEi ¼ expf�uigð0�CEi� 1; 8 iÞ: To allow for

comparisons in this study, as well as with past research,

the form of c(X) follows that used by Greene (1990). For

firm i,

ln C
�

wf

� �
¼ b0 þ b1 ln yþ b2 ln2 yþ b3 ln wl

�
wf

� �

þ b4 ln wk

�
wf

� �
þ uþ v ð1Þ

where total cost and the prices of labor and capital are

divided by the price of fuel to ensure the cost frontier is

linearly homogeneous in input prices. Maximum likelihood

is use to estimate (1) assuming vi�N 0; r2
v

� �
and the ui

follow a one-sided distribution.

3.2 Data envelopment analysis

In contrast to SFA, the DEA approach is based on non-

parametric linear programming techniques. Under certain

assumptions, the non-parametric DEA estimator is shown

to be a consistent, asymptotically Weibull distributed

maximum likelihood estimator, with a known rate of

convergence.3 Following the approach outlined in Färe

et al. (1985) and using the same notation as above, the

linear programming problem for firm i is

Min
xi

Ci

s:t: yi�
PN

i¼1

liyi;

xil�
PN

i¼1

lixil;

xik�
PN

i¼1

lixik;

xif �
PN

i¼1

lixif ;

li� 0; i ¼ 1; . . .;N;

PN

i¼1

li ¼ 1;

where N is the number of firms and l = (l1,…,lN) is a

vector of activity weights that forms convex combinations

of the input and output vectors. The first four restrictions

require each observation to be within the feasible produc-

tion set, the fifth requires that the activity weights be non-

negative. The final equation in the linear program above

allows the underlying technology to exhibit variable

returns to scale. Given the solution vector x�s , cost effi-

ciency for firm i is then the ratio w0ix
�
i =w0ixi.

3.3 Generalized maximum entropy

Finally, we estimate the cost frontier given by Eq. 1 by

modifying the generalized maximum entropy methodology

as described by Golan et al. (1996, Chap. 6). In GME, the

parameter vector b, with K elements, is decomposed into a

set of T support points (zk) and probability weights (pk) for

each parameter, with 2 B T \?. Intuitively, each

parameter is equal to the product of a support point and its

associated probability weight, summed over all support

points. The supports are provided by the researcher based

on prior information; the probability weights are estimated

within the model and are restricted to sum to unity. The

lower and upper bounds for the supports for bk are zk1 and

zkT. The coefficient vector is then

Table 1 Cost frontier data summary statistics (N = 123)

Variable Mean Standard

deviation

Minimum Maximum

Cost 48.47 64.06 0.13 282.94

Quantity 9,501.15 12,512.82 4.00 72,247.00

Price of labor 7,988.56 1,252.83 5,063.49 10,963.90

Price of capital 72.90 9.52 39.13 92.65

Price of fuel 30.81 7.93 9.00 50.45

3 See, for instance, Banker (1993) and Kneip et al. (2008).
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b ¼ Zp ¼

z01 0 � � � 0

0 z02 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � z0K

2

6664

3

7775

p1

p2

..

.

pK

2

6664

3

7775
ð2Þ

where the zk’s and pk’s are both T 9 1, so Z is K 9 KT and

p is KT 9 1. Similarly, for the random disturbances vi

(i = 1,…,N), there is a set of L support points (ri) and

probability weights (xi) for each observation, with

2 B L \?. The random disturbance vector is

v ¼ Rx ¼

r01 0 � � � 0

0 r02 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � r0N

2

6664

3

7775

x1

x2

..

.

xN

2

6664

3

7775
ð3Þ

where the ri’s and xi’s are both L 9 1, so v is N 9 NL and

x is NL 9 1.

We extend the GME approach to include the one-

sided inefficiency component u, which we define simi-

larly to the two-sided error component. For each ui, there

is a set of J support points (qi) and probability weights

(/i) for each observation, with 2 B J \?. In contrast to

the two-sided disturbances, the lower bound of the sup-

port points for the one-sided inefficiency component is

zero for all observations. All other support points are

positive:

qi1 ¼ 0 8 i
qij [ 0 8 i and j� 2

In matrix form

u ¼ Q/ ¼

q01 0 � � � 0

0 q02 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � q0N

2

6664

3

7775

/1

/2

..

.

/N

2

6664

3

7775
ð4Þ

where the qi’s and /i’s are both J 9 1, so u is N 9 NJ and

/ is NJ 9 1.

Combining Eqs. 2–4, the general linear model to be

estimated is

C ¼ XZpþ Q/þ Rx: ð5Þ

The dependent variable C and the matrix of explanatory

variables X come from observed data. The support points in

the matrices Z, R, and Q are selected by the researcher

using a priori information. The unknown vectors of

probability weights p, /, and x, are estimated by

maximizing the entropy function:

max
p;/;x

Hðp;/;xÞ ¼ �p0 lnðpÞ � /0 lnð/Þ � x0 lnðxÞ

subject to:

C ¼ XZpþ Q/þ Rx

IK � i0T
� �

p ¼ iK

IN � i0J
� �

/ ¼ iN

IN � i0L
� �

x ¼ iN

where I is an identity matrix, i is a column of ones,

and � is the Kronecker product. The first constraint

imposes the linear cost function while the other constraints

ensure that each set of probability weights sum to one. The

GME solution selects the most uniform distribution con-

sistent with the information provided in the constraints.

Focusing on the inefficiency component of the model, the

only a priori information needed is the set of support

points. No assumptions are made about the distribution of

the u.

4 Results

4.1 SFA and DEA results

For the SFA portion of the analysis, we estimate three

versions of the model in Eq. 1 using different assumptions

about the distribution of the inefficiency component u. We

estimate the model using a half-normal, exponential, and a

gamma distribution for u. Summary statistics for estimated

efficiency are given in Table 2. For the half-normal model,

average efficiency is 89%; that is, on average, costs are

11% higher than the efficient frontier would predict. Mean

efficiency is slightly higher for the exponential and gamma

versions at 91% and 92%, respectively. Standard deviations

range from a low of 5% for the half-normal version to a

high of 6% for the gamma version. All three sets of results

are negatively skewed with most firms near the mean.

Efficiency measures from DEA are also described in

Table 2. Average efficiency is lower at 71%, and the

estimates show more dispersion with a standard deviation

of 14%. In comparison to the SFA estimators, each firm is

generally less efficient according to DEA.4 This result is

not surprising since the statistical foundations of the SFA

and DEA estimators are quite different, as mentioned

previously. The DEA result is obtained using linear pro-

gramming techniques from a finite sample, thus the

efficiency measures are sensitive to outliers. The DEA

estimates are also negatively skewed, but are relatively less

skewed than the SFA estimates.

4 DEA efficiency is lower for all firms compared to the exponential

model. Eight firms in the sample have higher efficiency according to

DEA in both the half-normal and gamma models. In these cases the

difference in efficiency ranges from 2% to 8%.
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4.2 GME results

In order to obtain GME estimates of Eq. 1, we must choose

the support points in Z, R, and Q. We choose five support

points for each of the regression coefficients, the two-sided

random disturbance, and the one-sided inefficiency com-

ponent.5 Given the results of Greene (1990) using the same

data and functional form, and the linear homogeneity

assumption of the cost function, we expect the parameters,

excluding the intercept, to be positive and less than one.

Therefore, we choose supports of {-20, -10, 0, 10, 20}

for the intercept and a narrower support of {-1, -0.5, 0,

0.5, 1} for all other parameters. Although we expect the

slope parameters to be positive, we do not wish to impose

this as a restriction so we allow the parameters to vary

between -1 and 1. The supports for the two-sided random

disturbance were chosen to be symmetric around zero since

we expect the random errors to be mean zero. We follow

the 3r rule developed by Pukelsheim (1994) to choose the

largest and smallest error support points. Since r is

unknown we use the consistent estimator r̂ ¼ 0:144 from

OLS estimation of Eq. 1 to give us a guide for setting

boundaries. Based on this result, we choose the two-sided

error support vector to be {-0.5, -0.25, 0, 0.25, 0.5}.6

For the inefficiency component, the lower bound for the

supports is already chosen as zero due to the requirements

of the frontier model as discussed above. However, the

lower bound for efficiency of 0% is only obtained as the

upper bound for the supports approaches infinity. There-

fore, we vary this upper bound to examine the effects of

changing the minimum efficiency and the prior mean of

efficiency. The prior mean is the average of the support

points or the efficiency that would be assigned to each firm

without any data on costs, outputs, and inputs. We estimate

five different GME models using different upper bounds.

The model GME1 uses {0, 0.005, 0.01, 0.015, 1.67} as the

support points for the inefficiency term. This gives a

maximum efficiency of exp(0) = 100% and a minimum

efficiency of exp(-1.67) = 18.8%, with a prior mean of

exp(-0.340) = 71.2%. For the remaining four versions,

GME2–GME5, we maintain the first four support points

but use progressively smaller upper bounds of 1.27, 0.97,

0.67, and 0.37. In each case the minimum efficiency and

prior mean increase slightly. For example, GME5 with the

supports {0, 0.005, 0.01, 0.015, 0.37}, implies a minimum

efficiency of exp(-0.37) = 69.1% and a prior mean of

exp(-0.08) = 92.3%.7

GME results for all five versions are given in Table 2.

Mean efficiency ranges from 71% to 92% for the five

versions with standard deviation of 2–7%. Across these

five versions, as the range of u gets smaller, the mean

efficiency rises and becomes closer to the SFA means. In

addition, the distribution tightens as the range of u gets

smaller as shown by the reduction in standard deviation

from models 1 through 5. The degree of skewness also

increases as the range of u shrinks. This trend reflects the

tendency of GME estimation to choose the most uniform

distribution consistent with the data, since the distribution

becomes more uniform as the potential range is increased.

4.3 Comparison of GME with SFA and DEA

The GME estimates of mean efficiency span the same

range as the SFA and DEA results, as expected given the

prior means. Mean efficiency is the lowest for DEA at

71.2% and highest for SFA at 89–92.3%. The GME results

range from 70.6% for the version with the largest range of

support points for u, to 92.1% for the model with the

smallest range. Looking beyond mean efficiency, and

focusing on the distribution of estimates reveals that the

GME results are more similar to DEA. All sets of estimates

are negatively skewed, but the degree of skewness is much

smaller for DEA and GME than for SFA. Another impor-

tant observation this research highlights is that for the

GME results, moving from GME1 to GME5, as the starting

range of support points for u shrinks, the degree of skew-

ness increases. To provide a view of the distribution of

Table 2 Cost efficiency estimates summary statistics (N = 123)

Model Mean Standard

deviation

Skewness Minimum Maximum

Half-

normal

0.890 0.052 -1.478 0.685 0.971

Exponential 0.910 0.062 -2.612 0.598 0.977

Gamma 0.923 0.064 -2.923 0.588 0.988

DEA 0.712 0.143 -0.312 0.313 1.000

GME1 0.706 0.077 -0.021 0.513 0.926

GME2 0.764 0.071 -0.229 0.570 0.953

GME3 0.812 0.061 -0.419 0.632 0.965

GME4 0.864 0.045 -0.628 0.722 0.972

GME5 0.921 0.021 -0.780 0.850 0.975

5 Golan et al. (1996) conduct several Monte Carlo experiments and

conclude that there is not much gain to using more than five support

points.
6 GME models were also estimated using a range of -1 to 1 for the

two-sided error. Numerically, the results are very similar and are not

reported here, but are available upon request.

7 The choice of prior means and minimum efficiency is somewhat

arbitrary. The priors were chosen according to the range of mean

efficiency for DEA and SFA estimators. GME1 uses a prior mean

close to the DEA mean efficiency while GME5 has a prior near the

highest SFA mean. The other three estimators have a prior mean

within that range. The values of these priors are reasonable given the

findings of Greene (1990) using the same set of data and functional

form.
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estimated efficiency across firms, a histogram was con-

structed for five of the models (Fig. 1).8 The bar graph

illustrates the high level of skewness found in the SFA

estimates. The more restrictive version of GME (GME5) is

the next closest to SFA, followed by the less restrictive

GME3 and GME1 results. The DEA results show the least

amount of skewness. Comparing means and the skewness

of the estimates suggests that as the a priori range of the

inefficiency component u shrinks, the mean estimated

efficiency approaches SFA results. Conversely, as the

a priori range of the inefficiency component u increases,

the mean estimated efficiency approaches DEA results.

Another important feature of efficiency estimation is

that the results allow for a numerical ranking of firms from

most to least efficient. In this case it is possible that the

different models used to estimate efficiency could lead to

different rankings of firms. To examine this, rank correla-

tions were computed for the nine models estimated

(Table 3). Firm rankings from the three versions of SFA

and the five GME models are all highly positively corre-

lated with correlation coefficients near unity. The rankings

from DEA are all positively correlated with the other eight

models, but do not exhibit as high a degree of correlation

(0.63–0.67). With regard to ranking firms according to

efficiency, SFA and GME provide virtually the same

results. Comparing rank correlations for DEA with the

GME estimators, the similarity of the rankings declines

slightly from GME1 to GME5. This downward trend in

rank correlation provides weak confirmation of the rela-

tionship noted above that GME1 is relatively closer to

DEA than the other versions of GME.

5 Production frontier example

In the empirical cost frontier application, even though

GME can achieve mean efficiency results close to DEA,

individual scores as reflected by the rank correlations can

be quite different. In comparison, GME and SFA consis-

tently have very similar rankings even when mean

efficiency is not very close. As an example, GME1 results

in mean efficiency that is 18% points lower than in the half-

normal model, while the rankings of these two estimators

have a correlation of 0.997. In contrast, the rank correlation

between GME1 and DEA estimators is only 0.652 even

though mean efficiency is very close.

The source of this similarity between SFA and GME and

disparity with DEA may relate to the functional form used

in the analysis. While SFA and GME use the same func-

tional form for the cost frontier, DEA, as a non-parametric

maximum likelihood estimator, makes no such assumption.

What is needed is a parametric version of DEA that uses

the same functional form as SFA and GME. By estimating

a production frontier instead of cost, a deterministic para-

metric frontier (DFA) can be estimated, as in Hjalmarsson

et al. (1996). DFA combines features of SFA and DEA

estimators by including a parametric production function

with a non-stochastic error. A measure of firm efficiency is

constructed by solving a linear programming problem in

which parameters are chosen subject to the constraint that

all observations are on or below the estimated production

frontier. Any differences between DFA, SFA, and GME

estimators would then be due solely to the method

employed to estimate u, rather than differences in the

functional form.

Using the same data set described above, technical

efficiency was estimated by constructing a simple Cobb–

Douglas production frontier for SFA, GME, and DFA

estimators.9 Table 4 gives summary statistics of technical

efficiency estimates of each. Table 5 gives the rank cor-

relations and Fig. 2 gives a histogram of selected
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Fig. 1 Histogram of cost efficiency estimates by estimator

8 Although nine sets of efficiency estimates are reported, only five

were included in the histogram so that the graph would be readable.

The half-normal model was chosen to reflect the SFA results.

Histograms of the exponential and gamma results follow a similar

pattern as the half-normal estimates. Three of the GME estimates are

shown, including GME1 with the largest starting range for u, and

GME5 with the smallest starting range for u. The distributions of the

other GME models (GME3 is shown) fall between these two.

9 For the GME estimators, different supports points were used for

regression parameters and error terms, since the dependent and

independent variables change for a production function. For the u’s,

support points were chosen so that prior means would span the range

of mean efficiency found by DFA and SFA estimators. GME1 has the

widest range of support points {- 1.97, -0.015, -0.01, -0.005, 0},

and lowest prior mean efficiency (67.0%). GME2–5 have the same

prior mean efficiencies as in the cost function example.
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estimators. Although the magnitudes change, the technical

efficiency results are similar to cost efficiency when com-

pared across estimators. The GME models span the range

of DFA and SFA results, approaching the SFA results as

the range of the inefficiency component shrinks. Estimated

skewness follows the same pattern as for cost efficiency,

although here the degree of skewness for GME3–5 is very

near that of the half-normal estimator. Rankings provided

by SFA and GME estimators are also highly correlated as

before.

The DFA results seem to follow the pattern of the DEA

results for cost efficiency.10 The DFA results in terms of

efficiency and skewness are very close to the least

restrictive GME estimator (GME1). The same pattern can

be seen in Fig. 2. Turning to the rank correlations, the DFA

rankings have virtually the same correlation with SFA and

GME estimators as found in Table 3 for cost efficiency

between DEA, SFA, and GME. This result suggests that

the disparity between DEA and the SFA and GME

approaches is due to the sensitivity of the linear program-

ming approaches to outliers rather than the assumption

about functional form.

In sum, although the numerical estimates of efficiency

differ, the overall pattern of efficiency estimates is similar

for both technical and cost efficiency. GME can achieve

mean efficiency close to SFA, DEA, or DFA results, given

the assumption of the appropriate prior mean. In terms of

the distribution of efficiency estimates, GME yields results

closer to DEA/DFA, but as the range of u gets smaller, the

estimates become more negatively skewed like SFA esti-

mates. When firms are ranked according to efficiency, then

GME results are almost identical to SFA, regardless of the

choice of the prior mean.

6 Conclusions

One of the notable features of GME is the ability of the

researcher to impose a priori information on the estimated

parameters. An application in which this feature is espe-

cially useful is the area of efficient frontier estimation. For

these estimators, economic theory requires that the esti-

mated inefficiency component is bounded by zero (100%

efficiency) in one direction and can be bounded in the other

direction as well assuming a reasonable minimum effi-

ciency. In this paper, GME is used to estimate cost

efficiency and compared to estimates using the two most

common frontier estimators, SFA and DEA.

Mean efficiency as estimated by GME can approach

either SFA or DEA results, depending on the choice of the

prior mean. Turning to the distribution of efficiency esti-

mates, GME results exhibit a smaller degree of skewness,

much like DEA estimates. This outcome reflects the lack of

a distributional assumption about the inefficiency compo-

nent inherent to GME. However, when firms are compared

according to efficiency ranks, GME and SFA are virtually

Table 3 Cost efficiency estimates rank correlations

Half-normal Exponential Gamma DEA GME1 GME2 GME3 GME4 GME5

Half-normal 1.00000 0.99543 0.97878 0.64282 0.99512 0.99727 0.99821 0.99834 0.99808

Exponential 1.00000 0.98435 0.65718 0.99029 0.99230 0.99281 0.99194 0.99057

Gamma 1.00000 0.67025 0.97568 0.97727 0.97667 0.97567 0.97342

DEA 1.00000 0.65235 0.64948 0.64278 0.63527 0.62901

GME1 1.00000 0.99934 0.99852 0.99751 0.99662

GME2 1.00000 0.99960 0.99888 0.99813

GME3 1.00000 0.99956 0.99892

GME4 1.00000 0.99965

GME5 1.00000

Note: All correlations are significantly different from zero at a 1% level of significance

Table 4 Technical efficiency estimates summary statistics

(N = 123)

Model Mean Standard

deviation

Skewness Minimum Maximum

Half-

normal

0.851 0.077 -1.429 0.590 0.974

Exponential 0.887 0.103 -3.436 0.273 0.983

Gamma 0.915 0.112 -3.536 0.257 0.992

DFA 0.696 0.143 -0.660 0.192 1.000

GME1 0.665 0.088 -0.682 0.296 0.930

GME2 0.763 0.082 -1.141 0.382 0.968

GME3 0.811 0.073 -1.460 0.449 0.975

GME4 0.863 0.057 -1.968 0.552 0.978

GME5 0.920 0.030 -2.943 0.728 0.977

10 Estimates of technical efficiency from DEA were also constructed

but not reported here. The general results with DEA are similar

although firm rankings with DEA are uncorrelated with the rankings

from the other estimators.
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the same. Rankings using these two methods are positively

correlated with DEA rankings, but the correlation is much

weaker.

These results are not dependent on the structure of the

estimated frontier. By computing a DFA estimator with the

same functional form as GME and SFA, differences in the

error components of stochastic and LP-based estimators are

isolated. The results are robust to this change. GME results

are distributed more like the LP-based estimators, but give

very similar firm rankings to the other stochastic approach.

Further examination of results from the three techniques

suggests that GME efficiency estimates may provide a link

between SFA and LP-based approaches like DEA and

DFA. As the range provided for the inefficiency component

is made smaller, GME results approach SFA. As the range

for the inefficiency component is made larger, GME results

move toward the DEA results. One possibility this suggests

is a two-step estimation approach in which SFA or DEA is

estimated first to guide selection of a prior mean. Then,

using this prior mean to set bounds for the inefficiency

component, GME can be used to compute final estimates of

firm efficiency. However, examining the effectiveness of

this approach using Monte Carlo analysis on generated data

is left to future research. By including an explicit stochastic

component and not requiring an ad hoc assumption about

the distribution of inefficiency, GME effectively provides a

combination of these two estimators, utilizing the best

features of each.
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Färe R, Grosskopf S, Lovell CAK (1985) The measurement of

efficiency in production. Kluwer-Nijhoff Publishing, Boston

Farrell MJ (1957) The measurement of productive efficiency. J R Stat

Soc [Ser A] (General) (Part 3):253–281. doi:10.2307/2343100

Ferrier GD, Lovell CAK (1990) Measuring cost efficiency in banking:

econometric and linear programming evidence. J Econom

46:229–245. doi:10.1016/0304-4076(90)90057-Z

Golan A, Judge G, Miller D (1996) Maximum entropy econometrics:

robust estimation with limited data. Wiley

Table 5 Technical efficiency estimates rank correlations

Half-normal Exponential Gamma DFA GME1 GME2 GME3 GME4 GME5

Half-normal 1.00000 0.96469 0.87044 0.64494 0.98760 0.98670 0.98230 0.97357 0.95667

Exponential 1.00000 0.94823 0.67844 0.92697 0.92293 0.91365 0.89693 0.86838

Gamma 1.00000 0.68145 0.82385 0.81567 0.80311 0.78289 0.75126

DFA 1.00000 0.65709 0.63509 0.62145 0.61180 0.58788

GME1 1.00000 0.99906 0.99770 0.99493 0.98649

GME2 1.00000 0.99935 0.99689 0.98942

GME3 1.00000 0.99867 0.99285

GME4 1.00000 0.99689

GME5 1.00000

Note: All correlations are significantly different from zero at a 1% level of significance

Histogram of technical efficiency estimates by estimator 

0

10

20

30

40

50

60

70

80

90

N
u

m
b

er
 o

f 
fi

rm
s

0-10%
20%

20-10-
30%

30-
40%

40-
50%

50-
60%

60-
70%

70-
80%

80-
90%

90-
100%

Technical Efficiency

Half-normal

DFA

GME1

GME5

Fig. 2 Histogram of technical efficiency estimates by estimator

220 J Prod Anal (2008) 30:213–221

123

http://dx.doi.org/10.1016/0304-4076(77)90052-5
http://dx.doi.org/10.1016/S0148-6195(97)00072-6
http://dx.doi.org/10.1016/0377-2217(78)90138-8
http://dx.doi.org/10.1086/260470
http://dx.doi.org/10.2307/1906814
http://dx.doi.org/10.2307/2343100
http://dx.doi.org/10.1016/0304-4076(90)90057-Z


Greene WH (1990) A gamma-distributed stochastic frontier model. J

Econom 46(1/2):141–164. doi:10.1016/0304-4076(90)90052-U

Hjalmarsson L, Kumbhakar SC, Heshmati A (1996) DEA, DFA, and

SFA: a comparison. J Prod Anal 7:303–327. doi:10.1007/

BF00157046

Kneip A, Simar L, Wilson PW (2008) Asymptotics and consistent

bootstraps for DEA estimators in non-parametric frontier

models. Econom Theory, forthcoming

Koopmans TC (1951) An analysis of production as an efficient

combination of activities. In: Koopmans TC (ed) Activity

analysis of production and allocation. Wiley

Kumbhakar SC, Lovell CAK (2000) Stochastic frontier analysis.

Cambridge University Press

Lansink AO, Silva E, Stefanou S (2001) Inter-firm and intra-firm

efficiency measures. J Prod Anal 15:185–199. doi:

10.1023/A:1011124308349

Meeusen W, van den Broeck J (1977) Efficiency estimation from

Cobb–Douglas production functions with composed error. Int

Econ Rev 18(2):435–444. doi:10.2307/2525757

Miller DJ (2002) Entropy-based methods of modeling stochastic

production efficiency. Am J Agric Econ 84(5):1264–1270. doi:

10.1111/1467-8276.00388

Pukelsheim F (1994) The three sigma rule. Am Stat 48:88–91. doi:

10.2307/2684253

Rezek JP, Campbell R (2007) Cost estimates for multiple pollutants: a

maximum entropy approach. Energy Econ 29:503–519. doi:

10.1016/j.eneco.2006.01.005

Sengupta JK (1992) The maximum entropy approach in production

frontier estimation. Math Soc Sci 25:41–57. doi:10.1016/0165-

4896(92)90024-Y

Sengupta JK (1995) Estimating efficiency by cost frontiers: a

comparison of parametric and nonparametric methods. Appl

Econ Lett 2:86–90. doi:10.1080/758529808

Sharma KR, Leung P, Zaleski HM (1997) Productive efficiency of the

swine industry in Hawaii: stochastic frontier vs data envelop-

ment analysis. J Prod Anal 8:447–459. doi:10.1023/A:

1007744327504

Shephard RW (1953) Cost and production functions. Princeton

University Press

Simar L, Wilson PW (2000) Statistical inference in nonparametric

frontier models: the state of the art. J Prod Anal 13:49–78. doi:

10.1023/A:1007864806704

Wadud A, White B (2000) Farm household efficiency in Bangladesh:

a comparison of stochastic frontier and DEA methods. Appl

Econ 32:1665–1673. doi:10.1080/000368400421011

Weill L (2004) Measuring cost efficiency in European banking: a

comparison of frontier techniques. J Prod Anal 21:133–152. doi:

10.1023/B:PROD.0000016869.09423.0c

J Prod Anal (2008) 30:213–221 221

123

http://dx.doi.org/10.1016/0304-4076(90)90052-U
http://dx.doi.org/10.1007/BF00157046
http://dx.doi.org/10.1007/BF00157046
http://dx.doi.org/10.1023/A:1011124308349
http://dx.doi.org/10.2307/2525757
http://dx.doi.org/10.1111/1467-8276.00388
http://dx.doi.org/10.2307/2684253
http://dx.doi.org/10.1016/j.eneco.2006.01.005
http://dx.doi.org/10.1016/0165-4896(92)90024-Y
http://dx.doi.org/10.1016/0165-4896(92)90024-Y
http://dx.doi.org/10.1080/758529808
http://dx.doi.org/10.1023/A:1007744327504
http://dx.doi.org/10.1023/A:1007744327504
http://dx.doi.org/10.1023/A:1007864806704
http://dx.doi.org/10.1080/000368400421011
http://dx.doi.org/10.1023/B:PROD.0000016869.09423.0c

	Efficient frontier estimation: a maximum entropy approach
	Abstract
	Introduction
	Review of the literature on efficiency estimation
	Data and methodology
	Stochastic frontier analysis
	Data envelopment analysis
	Generalized maximum entropy

	Results
	SFA and DEA results
	GME results
	Comparison of GME with SFA and DEA

	Production frontier example
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


