
Flexible mixture modelling of stochastic frontiers

J. E. Griffin Æ M. F. J. Steel

Published online: 13 November 2007

� Springer Science+Business Media, LLC 2007

Abstract This paper introduces new and flexible classes of

inefficiency distributions for stochastic frontier models. We

consider both generalized gamma distributions and mixtures

of generalized gamma distributions. These classes cover

many interesting cases and accommodate both positively and

negatively skewed composed error distributions. Bayesian

methods allow for useful inference with carefully chosen

prior distributions. We recommend a two-component mix-

ture model where a sensible amount of structure is imposed

through the prior to distinguish the components, which are

given an economic interpretation. This setting allows for

efficiencies to depend on firm characteristics, through the

probability of belonging to either component. Issues of label-

switching and separate identification of both the measure-

ment and inefficiency errors are also examined. Inference

methods through MCMC with partial centring are outlined

and used to analyse both simulated and real data. An illus-

tration using hospital cost data is discussed in some detail.

Keywords Centring � Efficiency � Generalized

gamma distribution � Prior elicitation � Skewness

JEL Classifications C11 � C23 � D24

1 Introduction

The use of stochastic frontier models in productivity

analysis and efficiency measurement has seen a steady

increase in recent years. The basic idea of a frontier is a

characterization of best-practice technology in a particular

sector: production frontiers indicate the maximum amount

of outputs that can be produced by a certain technology

with a given amount of inputs; cost frontiers give the

lowest possible cost for the production of a certain amount

of outputs with a given level of input prices. Stochastic

frontier models refer to an unknown frontier, which has to

be inferred from the data. In addition, some firms will not

reach the best possible outcome given by the frontier,

displaying a lack of efficiency. Thus, one can think of

stochastic frontier models as models with unobserved

heterogeneity in the location captured through ‘‘individual

effects’’, specific to each economic unit and related to its

efficiency. In a random effects analysis the distribution

assumed for these (positive) effects becomes critical,

especially since there are usually only a few observations

available on every economic unit. In addition, these effects

(and in particular their transformations to efficiencies) are

typically the main purpose of the analysis, and inference on

efficiencies often depends heavily on these distributional

assumptions. In the literature a number of distributions

have been proposed for the individual effects. For example,

Aigner et al. (1977) assume a half-Normal distribution,

while Meeusen and van den Broeck (1977) adopt an

exponential. Later proposals include the truncated Normal

(Stevenson 1980) and the gamma distributions (Greene

1990). Griffin and Steel (2004) use a semiparametric

modelling technique to find a distribution-free estimate of

the efficiency distribution. They apply this model to the

analysis of a cost frontier using a panel dataset of 382 US

hospitals observed over 5 years, which will be described in

more detail in the application in Sect. 8. The same data

were previously analysed in Koop et al. (1997) through a

parametric model with an exponential distribution on the

individual effects. The results are very different, as shown
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in Fig. 1, where the predictive1 semiparametric and expo-

nential parametric efficiency distributions are overplotted.

Clearly, that sheds doubt on the exponential assumption for

these data. Semiparametric models, however, do need a

relatively large amount of data to give sensible results and

are somewhat harder to deal with, both computationally

and in terms of the interpretation of the results. Predictions

are also typically less precise than those of a well-chosen

parametric model. Consequently, we will view the semi-

parametric results as suggesting aspects of the efficiency

distribution that need to be modelled. Currently used dis-

tributions may struggle to capture some useful shapes and,

thus, a wider or alternative class needs to be considered.

The resulting stochastic frontier models can be further

analysed by either Bayesian or classical methods. It is

important to avoid overfitting these particular data by

‘‘data-snooping’’ and, thus, a second analysis using a dif-

ferent dataset is performed (reported briefly in the

concluding section), suggesting the general applicability of

the methods.

In this paper we propose parametric models which are

flexible enough to accommodate a wide range of efficiency

distributions and which can capture the possible skewness

and multimodality, such as displayed in Fig. 1. The gen-

eralized gamma class allows us to consider a wide range of

possible shapes in a unified analysis. Many popular choices

used in the literature turn out to be special cases and can

simply be tested against the more general model using

standard Bayesian or classical procedures. In addition, the

use of a mixture framework is a structural way to allow for

even greater flexibility and leads to a direct and meaningful

classification of economic units into efficiency-related

categories. Thus, this approach easily lends itself to the

identification of outlying firms. Our current two-compo-

nent mixture model will naturally highlight particularly

good firms, but an extension to a three-component model

could be used for identifying underperforming firms, e.g. in

the context of monitoring clinical performance.

Prior information is critical for stochastic frontier

models, where relatively little efficiency information is

provided by the data. We provide prior elicitation rules that

perform well with both simulated and real data and require

only minimal user input. We also design robust and effi-

cient Markov chain Monte Carlo (MCMC) algorithms for

Bayesian inference with these models. Previous work (e.g.

van den Broeck et al. 1994; Ritter and Simar 1997; Tsionas

2000; Greene 2003; Kozumi and Zhang 2005) has clearly

illustrated the challenges of both maximum-likelihood and

Bayesian inference even with the much less flexible

gamma inefficiency distribution. Given the large amount of

flexibility of the inefficiency distributions suggested here, it

is crucial to use priors that are moderately informative in

the critical directions.

In the process, we analyse wider issues of imposing

problem-specific structure through the prior on random

effects models and how to use this structure to tackle the

issue of label-switching in mixture models. We also

examine the critical role of centring in designing efficient

MCMC algorithms for these models.

Section 2 introduces the basic stochastic frontier model

with panel data and discusses the lack of flexibility of

commonly used distributions on the inefficiencies in cap-

turing the skewness of the data. Section 3 proposes a class

of generalized gamma inefficiency distributions as well as

an even more flexible class of mixtures of generalized

gamma distributions. The prior elicitation for the parame-

ters in these distributions is discussed in Sect. 4. Section 5

presents a decomposition model and also provides a

framework for the introduction of firm characteristics into

the inefficiency distribution. Inference with these models is

conducted through MCMC samplers, and Sect. 6 summa-

rizes some of the main features, with details referred to the

Appendix. Section 7 briefly discusses inference with sim-

ulated panel data. The hospital data mentioned above are

analysed in Sect. 8. A final section concludes.

2 Stochastic frontier models

Let us call the economic units ‘‘firms’’ and focus on a panel

context, where we denote by i = 1,…,n the firm index and

use subscript t = 1,…,Ti for the time period. Note that the

number of observations in time can differ per firm,

accommodating unbalanced panels. The typical stochastic

frontier model describes the logarithm of cost (or output, in
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Fig. 1 Predictive efficiency densities for the hospital data. Semi-

parametric: solid line; parametric exponential: dashed line

1 Predictive results are obtained by integrating out the parameters (of

the sampling model) using the posterior. In the case of Fig. 1, this

leads to the distribution of efficiencies for an unobserved firm in the

industry, given all the information in the data.
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which case the positive inefficiencies ui appear with a

negative sign in (1)) for firm i at time t, denoted by yit, as

yit ¼ aþ x0itbþ ui þ eit; ð1Þ

where xit is a vector of appropriate explanatory variables,

usually involving logarithms of outputs and prices for cost

frontiers and logarithms of inputs for production frontiers.

Two commonly used parametric specifications for a cost

(production) frontier are a Cobb-Douglas frontier, which is

linear in the logs of the outputs and prices (inputs), and a

translog frontier, which also includes squares and cross-

products of the latter. In addition, (1) allows for

measurement and specification error through an i.i.d.

symmetric error term eit assumed to be Normally

distributed

eit�Nð0; r2Þ;

and the main feature of interest of the model are the one-

sided ‘‘individual effects’’ ui, which measure inefficiency

(through the distance to the frontier) and are independently

distributed according to some distribution on <+. The fact

that the inefficiencies ui are assumed constant over time

allows us to exploit the longitudinal or panel structure of

the data. The latter assumption can be overly restrictive,

especially if Ti is large, and various ways of making the

efficiencies time-dependent have been proposed in the lit-

erature (see e.g. Cornwell et al. 1990, Kumbhakar 1990 or

Battese and Coelli 1992). In this paper, we will not use

time-varying inefficiency specifications, as we will allow

for quite flexible inefficiency distributions, requiring sub-

stantial data information, and we only deal with data that

were observed over short periods of time. However, given

sufficient data, this framework can be extended to time-

varying inefficiencies to accommodate longer panels.

Throughout, we assume independence between eit and ui.

Our preferred method of inference for these models will

be Bayesian. The sampling model is parameterized by an

intercept a, frontier regression parameters in the vector b
and the variance of the measurement error r2. Fernández

et al. (1997) examine the use of improper prior distribu-

tions for a,b and r2. They show that for panel data with

inefficiencies that are constant over time, the posterior

distribution exists under the prior

pða; b; r2Þ / r�2; ð2Þ

in combination with any proper inefficiency distribution.

Throughout this paper, we shall use the prior in (2).

Without any additional complexity, we can multiply the

prior above by an indicator function imposing economic

regularity conditions on the frontier. These conditions

impose economic theory constraints on b as e.g. we want to

exclude production frontiers in which more inputs lead

to less output. The prior (2) is invariant with respect to

location and scale transformations of the data and is a

convenient prior to use in the absence of strong prior

information or as a ‘‘benchmark’’ prior.

3 The generalized gamma distribution

For the inefficiency distribution, we propose to use a

generalized gamma distribution (Stacy 1962) which is

generated by assuming a gamma distribution for powers of

the inefficiency ui, i.e.

uc
i�Gað/; kÞ;

where Ga(a,b) denotes a gamma distribution with shape

parameter a and precision parameter b (i.e. with mean a/b).

This leads to the following inefficiency density function:

pðuijc;/; kÞ ¼
ck/

Cð/Þ u
c/�1
i expf�uc

i kg: ð3Þ

This three-parameter family includes a variety of simpler

distributions. In particular, the gamma distribution arises

when c = 1, the exponential distribution when / = c = 1,

the Weibull distribution for / = 1 and the half-normal

distribution for c = 2, / = 1/2. In general, if / = 1/c we

generate a class of ‘‘half-exponential power distributions’’,

which are univariate versions of exponential power

distributions (as in Box and Tiao 1973, Ch. 3) truncated

to the positive real line. The distribution in (3) has a bell-

shaped density function for c/ [ 1 and is reverse J-shaped

otherwise. Johnson et al. (1994, p. 389) state that the

distribution has positive skewness (as measured by the

Pearson skewness measure) for values of c \ c(/) where

c(/) depends on / and negative skewness for c [ c(/).

The ability to generate negative skewness with this

distribution contrasts with all the commonly used

inefficiency distributions. Carree (2002) reports that in

many empirical cases the estimated residuals of a

stochastic production frontier are positively skewed,

while all the usually adopted inefficiency distributions

induce negative skewness of the ‘‘composed error term’’

(inefficiency and measurement error). For cost frontiers

this problem arises when the residuals are negatively

skewed. In particular, the composed error term ui + eit in

(1) inherits a Pearson skewness coefficient

c1 ¼
E½ui � EðuiÞ�3

½r2 þ VarðuiÞ�3=2
;

which implies that the skewness has the same sign as that

of the inefficiencies and is, therefore, always positive for

the usual choices of inefficiency distributions. Thus, in

order to deal with both types of skewness in the estimated
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residuals, a flexible inefficiency distribution should be able

to account for both positive and negative skewness.

As a consequence of the logarithmic transformation of

cost or output in (1), the efficiency of firm i is denoted by

ri = exp{ - ui}. The distribution of the latter induced by

(3) has density on (0,1) given by

pðrijc;/; kÞ ¼
ck/

Cð/Þ
1

ri
ð� ln riÞc/�1

expf�ð� ln riÞckg:

ð4Þ

Figure 2 illustrates the wide range of shapes of this implied

efficiency distribution for various values of c and /, while

fixing k = 4. Note that the row / = 1 corresponds to an

efficiency distribution induced by a Weibull inefficiency,

the column c = 1 presents the gamma case (exponential

for / = 1) and the diagonal where / = 1/c displays some

half-exponential power cases (one of which corresponds to

the half-Normal).

3.1 Mixtures of generalized gamma distributions

The generalized gamma distribution offers more flexibility

than the gamma distribution and can capture both positive

and negative skewness of the efficiency distribution but

cannot capture any possible multimodality of this distri-

bution. In Fig. 1 we observe that the semiparametric model

leads to a multimodal efficiency distribution and such

behaviour could be modelled using a mixture of general-

ized gamma distributions. Here, we will adopt a mixture of

two components of generalized gamma form. The flexi-

bility of these component distributions will allow this

extension to accurately model many shapes. In principle, it

would be simple to extend the methods to mixture models

with more components, but restricting ourselves to two

components has the advantage that it is then rather natural

to give structural interpretations to the two possible modes:

one mode could correspond to highly efficient firms, and

c
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0 0.25 0.5 0.75 1
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Fig. 2 Densities of the efficiency distribution for k = 4 with various combinations of c and /
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the other to ‘‘mainstream’’ firms. The two groups could be

associated with differences in how effectively a basically

common technology is being used, for example by using

different management structures. We would expect the

mainstream firms to constitute the largest group by far: an

industry with a few very efficient firms (and the others

slowly catching up) is realistic, but in case there would

only be a few laggards, the latter would quickly disappear

from the market (at least in competitive situations).

If we denote by pGG(�|c,/,k) the generalized gamma

density function in (3), the mixed inefficiency distribution

is defined by

pðuijw;hÞ¼wpGGðuijc1;/1;k1Þþð1�wÞpGGðuijc2;/2;k2Þ;
ð5Þ

where w [ [0,1] is a weight parameter and

h = (c1,/1,k1,c2,/2,k2).

4 Prior distributions on the inefficiency parameters

Let us first focus on the single generalized gamma distri-

bution in (3). As is clear from Fig. 2, the values of the

parameters of the inefficiency distribution have a large

effect on the shape of the efficiency distribution. Since the

prior efficiency distribution is particularly critical for effi-

ciency inference, we need to carefully elicit the priors on c,

/ and k. van den Broeck et al. (1994) specify an infor-

mative prior distribution for the precision parameter k for

an Erlang distribution (a gamma with integer shape

parameter) through the prior predictive median efficiency,

say, rH. This approach can be extended to the generalized

gamma distribution proposed in Sect. 3. If we choose k|c,/
*Ga(/,k0), then after integrating out k the variable uc

i has

a gamma-gamma distribution (see Bernardo and Smith

1994, p. 120): uc
i�Ggð/; k0;/Þ. If we then make the

transformation to

hi ¼ 1þ uc
i

k0

� ��1

;

we can easily show that hi has a symmetric Beta

distribution, hi*Be(/,/). Since the transformation from

hi to the efficiency ri = exp{ - ui} is monotonic, we can

deduce for any a [ (0,1)

Pðhi\aÞ ¼ Iað/;/Þ ¼ P ri\ exp � k0

1� a

a

� �1=c
( ) !

;

ð6Þ

where Ia(/,/) is the incomplete Beta function. By using

the symmetry and choosing a = 1/2, we note that for any

value of / the prior median efficiency is rH ¼ expf�k1=c
0 g

and we can impose a prior median efficiency of rH by

simply choosing k0 ¼ ð�ln rHÞc in the prior for k, i.e. we

take

kjc;/�Ga /; ð� ln rHÞc
� �

: ð7Þ

In order to elicit reasonable priors for c and /, we consider

what happens for smaller values of a, say, a = 1/10 or

a = 1/5. Given the symmetry of the prior distribution on

hi, and substituting the chosen value for k0, we can also

write (6) as

Iað/;/Þ ¼ P ri\rHbðc;aÞ
� �

¼ P ri [ rH1=bðc;aÞ
� �

;

where bðc; aÞ ¼ 1� a

a

� �1=c

:

This makes it clear that prior independence between / and

c is not a very natural choice. In particular, for the

statement in (6) to make sense, we need to associate large

values of / with small values for c. Some experimentation

with ‘‘reasonable’’ values of rH suggests that / and c

should roughly be inversely related. We will build that into

our prior by adopting prior independence between c and

w:/c. In addition, we want a prior that allows for fairly

large values of c and /, while downweighing very small

values, which lead to unrealistic efficiency distributions. In

particular, we take the product prior

w�Igðd1; d1 þ 1Þ and c�Igðd2; d2 þ 1Þ; ð8Þ

where Ig(a,b) denotes the inverted gamma distribution with

mode b/(a + 1) (see Bernardo and Smith 1994, p. 119).

Thus, the prior on w centres the prior over the half-expo-

nential power case (/ = 1/c), while that on c centres the

prior over the gamma case. As a consequence, the prior in

(8) is centred over the exponential case (/ = c = 1), but

allows for considerable deviations if d1 and d2 are not

chosen to be too large. As d1? ? we will restrict our-

selves to the half-exponential power class and as d2? ?
the gamma class will be imposed. So we have a prior that is

centred over commonly used inefficiency distributions and

we only need to chose two hyperparameters that will

control the prior spread around these standard classes of

distributions. In the sequel, prior sensitivity analysis will be

conducted. Figure 3 displays the resulting prior predictive

efficiency distribution for rH ¼ 0:6 and 0.8 and two very

different values for d1 and d2. The prior predictive for

d1 = d2 = 10 is not far from the predictive generated by

an exponential inefficiency distribution, except for the

mass close to zero. Clearly, as d1 and d2 get smaller, the

prior distribution has more flexibility to deviate from its

exponential centring distribution. That is also illustrated in

Fig. 4 where the distribution of the prior predictive mass

assigned to the efficiency interval (0.8, 0.9) is displayed

(the right panel displays a truncated version to highlight the

tail behaviour). As shown in Griffin and Steel (2004), this
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mass is truncated to be less than 0.26975 in the case of the

exponential inefficiency distribution, which is the limiting

case as d1 and d2 tend to infinity. For our generalized

gamma model, there is no truncation of the mass on any

interval. As the values of d1 and d2 become smaller, the

flexibility of the efficiency distribution grows and more

mass is assigned to small probabilities for that interval. The

latter is hard to combine with a prior median of 0.8 if the

shape is close to exponential.

The parameterization in terms of (w,c) is found to lead

to better behaviour of the MCMC sampler, and the prior

dependence between k and c and between k and w induced

by the prior in (7) is quite small.

In summary, the full prior used here is given by the

product of (2) and the prior in (7), (8).

In the mixture of generalized gamma distributions in (5),

we could consider making the two components exchange-

able by assigning the same prior distribution to their

parameters, namely the one explained above. It would then

also be most natural to use a symmetric prior on the weight

parameter, w. In particular, we assume a beta distribution

a priori: w*Be(w0,w1), with w0 = w1. The resulting prior

predictive efficiency distribution is then, of course, the

same as that for the one-component case.

However, this prior is not really in keeping with a more

structural interpretation of these different components, and

leaves the door open for the labelling problem that is

associated with mixture modelling with symmetric com-

ponents (see e.g. Celeux et al. 2000). Thus, we shall

present a different, more structural, approach in the next

section.

5 A decomposition model

Here we formulate a two-component model which is

consistent with the structural interpretation of the two

components provided in Subsect. 3.1. This, so-called,

‘‘decomposition model’’ combines the mixture model in

(5) with a carefully chosen prior for the parameters. In

particular, we use the prior from Sect. 4 with a moderate

value for rH on the parameters of the second component,

which corresponds to mainstream firms. The first com-

ponent then reflects the inefficiency distribution of the

very efficient group of firms and for its prior we could

take e.g. rH ¼ 0:975, in combination with fairly large

values of d1 and d2. The latter make this component

behave somewhat like the exponential case, which puts a

r� = 0.6 r� = 0.8
d1 d2 = 3 d2 = 10 d2 = 3 d2 = 10
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Fig. 3 Prior predictive efficiency density functions with rH ¼ 0:6 (first two columns) and rH ¼ 0:8 (last two columns)
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substantial amount of mass close to full efficiency while

keeping a bounded density function at full efficiency, as

illustrated in Fig. 2. This brings this first component in

line with the commonly held economic interpretation of

the frontier behaviour of a group of (homogeneous) firms:

the pioneering contributions in this literature, Aigner et al.

(1977) and Meeusen and van den Broeck (1977) use half-

Normal and exponential efficiency distributions, respec-

tively. At the same time, this prior helps in distinguishing

between the components and in resolving the identifica-

tion issue mentioned in Sect. 6. This case would suggest

using an asymmetric prior for w, which has a relatively

large amount of mass close to zero, reflecting a prior

belief that only a minority of firms are in the very effi-

cient group. This decomposition prior implies two very

different groups of firms and this will make it difficult for

the model to fit data that were generated from a unimodal

inefficiency distribution. In order to make sure that the

model would not artificially introduce a bimodal structure

driven merely by the prior, we also allow for the

decomposition model to formally reduce to the one-

component version by putting prior mass at w = 0. Thus,

the resulting prior on the weight w for the decomposition

model is w*Be(w0,w1) with probability 1 - q and w = 0

with probability q, where we take w0 = 0.75 and

w1 = 6.75 (corresponding to a prior mean of 0.1 and a

prior standard deviation of 0.2, given the two-component

model) and q = 0.5 is the prior mass on the one-com-

ponent model.

Prior predictives for the decomposition mixture are

displayed in Fig. 5 for two different values of d = d1 = d2

corresponding to the second component, while for the first

component we fix d1 = d2 = 10. In addition, we use the

value rH ¼ 0:975 for the first component and rH ¼ 0:8 for

the second one, while for the weight w we take the prior

described above. Both prior predictives are quite similar to

the one obtained for the exponential inefficiency distribu-

tion in Fig. 2.

5.1 Efficiencies varying with firm characteristics

Often, it is reasonable to assume that certain characteristics

of the firms can influence the efficiency distributions. This

could be accommodated by allowing for groups of firms

with similar characteristics to have their own inefficiency

distributions, which are somehow related. A linear function

of such firm characteristics was used as the mean of a

truncated normal inefficiency distribution in Kumbhakar

et al. (1991) and Fernández et al. (2002), while Koop et al.

(1997) use such a linear function to parameterise the log of

the mean of an exponential inefficiency distribution. In a

semiparametric context, Griffin and Steel (2004) use a

separate Dirichlet process to model the inefficiency distri-

bution for each group of firms, where dependence is

introduced through a common parametric model for the

centring distributions, chosen as the inefficiency distribu-

tion of Koop et al. (1997), and a common mass parameter.

Here, we will explore the use of the mixture inefficiency

distributions (Subsect. 3.1) and, in particular, the decom-

position model in taking into account firm characteristics.

Our decomposition model already has two groups of firms,

one very efficient group and one mainstream group. Rather

than letting firm characteristics affect the distributions for

each of these groups, we will let the probability that a given

firm belongs to either group, i.e. the weight w in (5),

depend on its characteristics. As we will discuss in the

context of our application, the main route through which

learning about very high efficiency levels occurs in our

models is through the weight. This makes it natural to let

the weights depend on firm characteristics, rather than the

component parameters.

If we denote by vi the g-dimensional vector which

groups the characteristics of the i-th firm, we model the

weight w(vi) as wðviÞ ¼ f ðv0icÞ, where f(�) is a monotonic

function on (0,1) and c a parameter vector. A convenient

choice for f(�) is the cdf of a standard normal distribution,

leading to a probit model for the weights:
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Fig. 5 Prior predictive

efficiency density functions

for the decomposition mixture

model with for the first

component:

rI ¼ 0:975; d1 ¼ d2 ¼ 10,

and for the second component:

rI ¼ 0:8; d1 ¼ d2 ¼ d
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wðviÞ ¼ Uðv0icÞ: ð9Þ

The first element of vi will be equal to unity, so that the

case where g = 1 corresponds to the previous model,

where firm characteristics are not taken into account. The

continuous elements of vi will be standardized to have zero

sample mean and unit sample variance in order to facilitate

prior elicitation on the parameter c. The latter will be

assigned a normal prior chosen so as to induce a reasonable

prior on the weight for a practically relevant range of

values of vi. In particular, we take the elements of c to be

prior independent with c1�Nðm1; s
2
1Þ, where m1 and s2

1 are

chosen in such a way that the prior induced on w(vi) with

g = 1 mimics the Be(w0, w1) prior on w chosen for the

model with constant weights. If w0 = w1 = 1, this can be

done exactly by choosing m1 = 0 and s2
1 ¼ 1. In other

cases, we can match the median of w*Be(w0, w1), which

we denote by Med(w), by adopting

m1 ¼ U�1½MedðwÞ�;

irrespective of the choice for s2
1. The latter can be chosen

on the basis of the first quartile of w, Q1(w), which is

matched by taking

s1 ¼
U�1½MedðwÞ� � U�1½Q1ðwÞ�

0:6745
;

leading to quite an accurate approximation. The prior on

the other elements of c will be ci* N(0, s2), i = 2,…,g,

centred over the case where the characteristics have no

influence and with a common variance s2 which is chosen

to be relatively small, implying that we need substantial

sample information to conclude that a particular charac-

teristic affects the weights.

We will now not include a prior point mass at zero, since

the way in which we make the efficiency depend on firm

characteristics presupposes two groups. We recommend

that users first ascertain whether the two-component case is

adequately supported by the data before using the model in

this subsection.

Generally, the modeller has to choose whether to

introduce covariates into the specification of the frontier or

the inefficiency distribution.2 This is a wider issue that

touches upon the definition itself of the frontier: often

frontiers are restricted to possess economic regularity

conditions, whereas the influence of covariates in the

inefficiency distribution can usually be in either direction.

Typically, researchers will include covariates that can be

assigned regularity conditions (such as actual inputs in a

production process) in the frontier, but for other covariates

one has to decide whether they characterize the technology

or determine the efficiency. We feel this choice is very

much specific to each individual application. Of course,

these decisions will affect the definition of the frontier

(and, thus, of efficiency) and results should be interpreted

with the appropriate definition in mind.

6 Inference

Inference in these models will be based on MCMC meth-

ods. MCMC samplers for stochastic frontier models with

Erlang inefficiency distributions have been introduced in

Koop et al. (1995, 1997), and we shall focus on the main

differences with the samplers for these simpler models. For

the basic generalized gamma model the sampler will be run

over the parameters (a, b, r2, c, /, k) augmented with the

vector of inefficiencies u = (u1,…,un)0.
For successful inference on stochastic frontier models

with flexible inefficiency distributions we need to imple-

ment the idea of centring. Hierarchical centring was

introduced by Gelfand et al. (1995) in the context of nor-

mal linear mixed effects models in order to improve the

behaviour of maximisation and sampling-based (such as

MCMC) algorithms. For (cost) frontiers, it involves a

reparameterization from (a,u) to (a,z), where z = (z1,…,zn)0

and zi = a + ui. As these models imply that the data are

naturally informative on a + ui, identification of a and ui

separately relies on the distribution on ui. If the latter is

quite flexible and can accommodate situations with nearly

all the mass far from zero, the ‘‘usual’’ uncentred param-

eterization can lead to very slow convergence. With the

exception of Griffin and Steel (2004), all previous work in

stochastic frontiers has used the uncentred parameteriza-

tion, which can lead to problems even with gamma

inefficiency distributions, as used in Tsionas (2000). Ritter

and Simar (1997) discuss the problems caused by this

identification problem in the context of maximum-likeli-

hood estimation with gamma inefficiency distributions. We

avoid these problems by using a hybrid sampler which

randomly mixes updates from the centred and the uncen-

tred parameterizations and we find that this dramatically

improves the properties of the algorithm. More details on

the MCMC sampling procedure used can be found in the

Appendix.

As discussed in Sect. 3, the generalized gamma model

encompasses a number of commonly used special cases for

the inefficiency distribution. The standard Bayesian

approach to model selection (and model averaging) is

through the use of Bayes factors, defined as the ratio of

marginal likelihoods and summarizing the strength of the

data support for one model versus another. Typically,

calculation of Bayes factors from MCMC output is

2 Actually, from the point of view of statistical identification, they

could appear in both places, although this would perhaps be hard to

justify from an economic point of view (with the possible exception

of time variables).
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challenging, but they are easily computed in this case. In

particular, as these more restricted classes of inefficiency

distributions correspond to particular values for some of

the model parameters, we can compute Bayes factors

through the Savage-Dickey density ratio (the ratio of the

posterior and the prior density values at the restriction;

see Verdinelli and Wassermann, 1995). For example, the

Bayes factor in favour of the exponential distribution

over the generalized gamma distribution will be p(w = 1,

c = 1|data)/p(w = 1, c = 1). Posterior odds between any

two models are then immediately obtained by multiplying

the prior odds with the appropriate Bayes factor.

For the applications, the results are based on a Markov

chain of 330,000 drawings, thinned to every 30th, with a

burn-in of 30,000 drawings.

7 Simulated data

As stated before, the prior on the inefficiency distribution is

critical to conducting reasonable inference since a certain

amount of structure is needed to guide the data. The

decomposition case is the one that we considered most

promising in the previous sections, but we need to guard

against the prior driving the inference in the absence of

data information. Thus, we now study the decomposition

model in the context of simulated data with a unimodal

efficiency distribution. We simulate data for n = 382 firms

over T = 5 periods that are in line with the hospital

application. In particular, we use the design matrix of that

example as well as the posterior median value of r

obtained with the one-component model, and adopt a

gamma inefficiency distribution with suitably chosen

characteristics, namely a Ga(5,15) distribution. Figure 6

displays the posterior distributions of the parameters of

both components in the inefficiency distribution. Clearly,

the data do not provide much information on the efficient

component (component 1). Given the two-component

model, the weight on this first component is concentrated

around very small values (see Fig. 7(b)), while the weight

also gets a point mass at zero of 0.68. Thus, the (correct)

one-component model gets a higher posterior probability

than the two-component model. The resulting predictive

efficiency density in Fig. 7(a) is not far from the true

inefficiency distribution. The posterior mode and the lower

tail are very well reproduced. There is a bit more mass

close to full efficiency, but there is no evidence of a sub-

stantial second mode there, driven entirely by the prior. If

we wish to use the evidence on w for model choice, we

would choose the one-component model, which will lead to

a predictive that is even closer to the true distribution.

Given the fairly small values of n and T and the challenge

of calibrating a prior that should impose structure on the

problem in a wide variety of situations, we are quite happy

with the behaviour of our decomposition model for infer-

ence on these latent efficiencies.

8 Application to Hospital Cost Data

A translog cost frontier analysis for a balanced panel of

n = 382 nonteaching US hospitals, observed over the years
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decomposition prior and
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1987–1991 (T = 5) was presented in Koop et al. (1997) on

the basis of an exponential inefficiency distribution. Details

on the data and general issues of hospital cost function

specification can be found in the latter paper. Griffin and

Steel (2004) use the same data with a nonparametric

inefficiency distribution, modelled through a Dirichlet

process prior. Figure 1 already presented the overall pre-

dictive efficiency distributions resulting from both

analyses.

The cost frontier used here and in the previous papers

involves five different outputs: number of cases, number of

inpatient days, number of beds, number of outpatient visits

and a case mix index. It also has a measure of capital stock,

an aggregate wage index, and a quadratic time trend3. A

translog specification with linear homogeneity in prices,

normalized with respect to the price of materials is chosen.

In this section, the main findings are that for the one-

component model only the generalized gamma and Wei-

bull specifications are supported by the data, but, as

expected, that model leads to very little mass close to full

efficiency. The two-component models get much closer to

the nonparametric efficiency distribution, especially the

decomposition model. Letting the weight in the latter

model depend on firm characteristics (ownership status and

staff ratio4 with interactions) reveals that the probability of

being in the high efficiency group tends to be lowest for

non-profit hospitals with high staff ratios. The latter prob-

ability is highest for government-run hospitals with low

staff ratios.

8.1 The standard generalized gamma case

In the sequel, we shall denote by d a common value of d1

and d2 in (8). Throughout this subsection, we will use the

prior median efficiency rH ¼ 0:8. Figure 8 displays the

prior and posterior densities of c and w = c/. Clearly, the

data do not support values in the neighbourhood of unity

for either of these variables, and are thus in conflict with

the exponential (c = w = 1) over which the prior is cen-

tred. In addition, we see that d equal to ten is too large, as it
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Fig. 7 Results with the
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line: true efficiency distribution.
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of weight w in the two-

component model; solid line:

posterior; dashed line: prior
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Fig. 8 Prior and posterior densities for c and w = c/ with the hospital data; one-component model. Solid line: posterior. Dashed line: prior

3 Actually, the data do not contain an explicit price for materials, so

we assume that material prices are constant across hospitals but not

over time. The latter dynamics is then approximated by a quadratic

time trend.

4 This is the ratio of clinical personnel to average daily census,

transformed to a dummy variable.
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makes the prior too tight. Nevertheless, posterior results are

only moderately affected (mainly in the right-hand tail) and

they are very robust with respect to the choice of d. The

case with d = 3 leads to a much more reasonable prior,

which gives ample scope for the data to suggest departures

from the exponential inefficiency distribution. Choosing

d = 1 leads to an extremely diffuse prior, which was added

here for the purpose of prior sensitivity analysis. Support

from the data for the special cases of gamma, exponential,

half-exponential power, half-Normal and Weibull ineffi-

ciencies can be assessed by Bayes factors. The latter are

easily computed through Savage-Dickey density ratios (see

Sect. 6), and are given in Table 1. Clearly, all special

cases, except for the Weibull, are inappropriate for these

data.

The resulting predictive efficiency distribution is given

in Fig. 9 for the three different values for d. As the value of

d decreases, the mode is shifted from 0.68 to 0.64 and the

shape of the distribution changes from slightly left-skewed

to right-skewed. The left-skewness of the efficiency for

d = 10 is in line with the right skewness of the inefficiency

distribution which this tight prior is centred over. For

d = 1 and 3, the generalized gamma manages to move

away from the exponential and the gamma and generates

some right skewness for the efficiency. In view of the

relative tightness of the prior for d = 10, we assign more

credibility to the result for smaller d. The latter suggest a

slightly right-skewed efficiency distribution with most

mass in between 0.45 and 0.9. The small mass assigned to

efficiencies above 0.9 may well be considered suspicious.

This feature is not in line with the semiparametric pre-

dictive in Fig. 1 and could be an artifact of the model with

just one component in the efficiency distribution. Let us,

therefore, consider the mixture model with two compo-

nents in the next subsection.

8.2 The mixture case

8.2.1 Symmetric mixture

We first use the model in (5) with exchangeable priors and

a Be(1,1), i.e. a uniform, prior distribution on the weight w.

Posterior predictive results on the efficiencies are displayed

in Fig. 10(a), using the same values for d as in the previous

subsection.

From the raw posterior results on the weight w (not

presented) it is clear that label-switching occurs. This is a

common phenomenon in the case of exchangeable priors

on the components, where both the likelihood and the prior

are invariant to permutation of the labels (indices); see e.g.

Celeux et al. (2000). Figure 10(a) is consistent with the

assignment of only a minority of hospitals to the highly

efficient group: for values of w smaller than 0.5, the first

component corresponds to the efficient group, and for

values larger than 0.5, it is the second component that

captures the highly efficient firms. This can be inferred

Table 1 Hospital data: logarithms of the Bayes factors in favour of

the restricted models against the one-component generalized gamma

model

d 1 3 10

Gamma -7.7 -22.5 -12.1

Half-exp.power -28.5 -32.6 - 18.8

Weibull 2.1 -0.1 -6.5

Exponential -164.7 -151.6 -118.1

Half-normal -64.3 -53.8 -42.4
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Fig. 10 Posterior results with

the hospital data; symmetric
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from the predictive efficiency distribution, which is not

affected by the label switching, as (5) is totally invariant

with respect to changing the labelling (as long as w is

changed to 1 - w). In order to conduct inference on

component-specific parameters or the weight, we need to

take the label-switching issue into account. We impose the

identifiability constraint that the weight (1 - w) of the

mainstream group (corresponding to component 2) is larger

than 0.5 (so that w \ 0.5) and relabel the drawings

accordingly. This identifiability constraint is a natural

choice in our setting, where one would expect the ‘‘main-

stream’’ group to constitute a majority of firms, while the

first component refers to a (small) minority of very efficient

firms. Richardson and Green (1997) and Stephens (2000)

mention that the choice of the particular identifiability

constraint can critically change the inference, but here the

choice of the labelling convention is inspired by the con-

text. The posterior distribution of the weight w presented in

Fig. 10(b) is with this identifiability constraint imposed. In

comparison with the one-component model, the resulting

efficiency distributions in Fig. 10(a) have more mass close

to one now, and bear a stronger resemblance to the semi-

parametric predictive in Fig. 1.

An interesting finding is that the efficiency distributions

are slightly shifted to the right with respect to the one-

component case. This also makes them closer to the

semiparametric predictive. As the value of d ranges from 1

to 10, there is still a change in shape as before, but the

modal values are higher (the internal mode now ranges

from 0.67 to 0.71). This is connected to the fact that we

now have sufficient mass close to one to ‘‘anchor’’ the

efficiency distribution. If we have little mass in the right-

hand tail (as in the one-component case), it is very hard to

pin down the value of the intercept a and the modal effi-

ciency has a tendency to drift to lower values. This is

linked to the identifiability issue mentioned in Sect. 6. We

know from (11) in Appendix A.2 that a\ mini{zi}, where

the smallest zi will correspond to values of the inefficiency

ui close to zero. This immediately implies that if the

inefficiency distribution has little mass close to zero (i.e.

close to full efficiency), small zi values will correspond to

an area of very low probability and will thus be very vol-

atile. If, on the other hand, a reasonable amount of mass is

allowed close to full efficiency, it will help to pin down

mini{zi} and thus a. The one-component case without

strong prior information centring it over a case with mass at

full efficiency will be dominated by the main mass of firms

and will have a tendency to let the frontier ‘‘drift away’’

and, thus, underestimate the efficiencies. This tendency is

counteracted in the two-component case, where the frontier

is pinned down by the efficient component, while still

retaining the flexibility of accommodating a wide range of

shapes and capturing the main mass of less efficient firms.

In these and similar models, Hall and Simar (2002)

explore a classical nonparametric estimator of the frontier

which performs best when the inefficiency distribution is

flat close to zero. This is an alternative approach to dealing

with this identifiability issue.

Figure 11 displays the posterior densities for ci and

wi = /ici, i = 1,2, after imposing the identifiability con-

straint explained above (i.e. that w \ 0.5). The unimodal

shapes suggest that this relabelling convention is quite a
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good choice for this problem. Whereas the data clearly are

informative on the parameters of the second component

(i.e. c2 and particularly w2), they are less so for those of the

first component. Of course, the inference on the latter relies

on a relatively small number of firms (the posterior modal

value of w is under 0.05, as evidenced by Fig. 10(b)), and

the posterior for these parameters is close to the prior. In

combination with the efficiency distributions in Fig. 10(a)

this suggest a clear posterior separation between the two

components, with one corresponding to a typical main-

stream hospital and another to a very efficient one, even

without reflecting this in the prior.

8.2.2 Decomposition model

Rather than relying on identification through the weight in

order to solve the label-switching, an alternative strategy is

to avoid label-switching by making the problem suffi-

ciently asymmetric. This is the decomposition idea

mentioned in Sect. 5, which we implement by adopting

different priors for the components. In particular, we take

the prior on w to be a Be(0.75,6.75) in combination with

P(w = 0) = 0.5 and we fix the prior median efficiency for

the first (efficient) component at rH ¼ 0:975, while taking

rH ¼ 0:8 for the second component. Even if we allow for

substantial variation of the first component away from the

exponential case, we achieve clear identification of the two

components and no more label-switching occurs. Figure 12

shows the posterior results on the parameters in the case

with d = 10 for component 1 and d = 3 for the second

component. Results are relatively similar to the results

obtained with the symmetric prior, except that the posterior

for the parameters of the first component is even closer to

the (now tighter) prior and the right tails are now thinner

throughout. The posterior probability attached to the one-

component model is 0.22, so that, indeed, there is even less

data information to drive the inference on c1 and w1. This

also indicates that the data (moderately) favour the

decomposition model over the one-component model.

Figure 13(b) shows the continuous part of the posterior

density of the weight, which is more concentrated close to

zero than in the symmetric case (after relabelling), in line

with the non-uniform prior. Figures 12 and 13(b) suggest

that the learning about the highly efficient group in these

models occurs through the weight. Generally, there is a

trade-off between learning about the component properties

and the weight, which is more pronounced for components

with a small number of observations. The fairly tight prior

distribution used on the parameters of the first component

is in line with the basic economic concept underlying

stochastic frontier models. In addition, it fits our prior

beliefs and helps us to conduct inference on the weight w.

The predictive efficiency distribution in Fig. 13(a) is now

very close to its semiparametric counterpart in Fig. 1,

suggesting that the parametric model we use here is suffi-

ciently flexible to account for the main features of the

efficiency distribution.

As indicated in Subsect. 5.1, we can allow for firm

characteristics to affect the probability of belonging to the

efficient group. Following Koop et al. (1997) and Griffin

and Steel (2004), we explore the effect of hospital
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ownership status (for-profit, non-profit or government-run)

and the ratio of clinical personnel to average daily census.

For ease of presentation, the latter has been discretized into

a dichotomous variable ‘‘staff ratio’’, which takes the value

one if this ratio is above average and zero otherwise. In

contrast to Koop et al. (1997) we also use interactions of

these factors. Table 2 presents some posterior results on the

parameter c in (9) as well as Bayes factors5 against

including each particular explanatory variable. Clearly, the

data most support the inclusion of the staff ratio, the higher

value of which leads to lower probability of high effi-

ciency, in line with the results in Koop et al. (1997) and

Griffin and Steel (2004). There is some evidence (although

not clearly supported by the Bayes factor) that for-profit

hospitals are slightly less efficient. This was also found in

the previous studies, where it was suggested that such a

lack of cost efficiency could be related to such hospitals

hiring higher levels of staff. Table 3 sheds some light on

this and generally puts the results in Table 2 in a more

interpretable format by presenting the predictive proba-

bilities of a typical firm being in the efficient group for

each possible combination of ownership type and staff

ratio. Indeed, as the for-profit firms seem to perform the

worst with low staff ratios, they arguably do best when

staff ratios are higher than average. Table 2 suggests that

the probability of being in the high efficiency group is

lowest for non-profit hospitals with high staff ratios

and highest for government-run hospitals with low staff

ratios. The overall picture here is in accordance with the

predictive distributions of the probability that the (semi-

parametric) efficiency is in the interval (0.95,1) presented

in Figure 12 of Griffin and Steel (2004).

Finally, the sampler also immediately leads to proba-

bilities that a particular firm is assigned to the efficient

group, through the indicator variables si, i = 1,…,n men-

tioned in Appendix A.3. These probabilities are

graphically displayed in Fig. 14 for all 382 hospitals. It is

clear that there are very large differences between hospi-

tals: while the majority belong almost certainly to the

mainstream group, a few hospitals have high probabilities

of being in the efficient group. Interestingly, the effect of

the inclusion of explanatory variables is quite marked:

whereas the same firms are identified as efficient, the

explanatory variables generally allow for higher probabil-

ities of being in the efficient category. The latter suggests a

better separation of the two groups, which is not surprising

as we effectively use more information to help us in that

task.

This approach can be compared with the probabilities

that firms’ efficiencies are in each of the quintiles of the

predictive efficiency distribution, as presented in Griffin

and Steel (2004) for the first 40 hospitals in the sample.

This is a different way of classifying firms, based on a

different model, but results are not dissimilar: for example,

hospitals 28 and 31 were identified in Griffin and Steel

(2004) as being almost always in the highest quintile, and

these are indeed hospitals with unusually high probabilities

of being in the efficient group. The probability of belong-

ing to the efficient group can easily be used as a policy tool

to identify highly efficient hospitals. In the context of

applications where we are primarily interested in
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Fig. 13 Posterior results with

the hospital data; mixture with

decomposition prior. (a)

Predictive efficiency density.

(b) Prior and posterior density

of weight w in the two-

component model; solid line:

posterior; dashed line: prior

Table 2 Hospital data: probit coefficients for explanatory variables

in the weight and logarithms of the Bayes factors in favour of the

model without each explanatory variable

Median 95% credible

interval

log Bayes

factor

Intercept -1.7 (-2.8, -0.8)

For-profit -0.3 (-2.1, 0.9) 0.3

Government 0.4 (-0.8, 1.4) 0.3

Staff ratio = 1 -1.1 (-2.4, 0.0) -1.2

For-profit 9 staff ratio = 1 0.3 (-1.9, 1.9) 0.0

Government 9 staff ratio = 1 -0.4 (-2.1, 1.1) 0.1

Table 3 Hospital data: predictive medians and 95% credible inter-

vals (in parentheses) for the probability of being in the highly efficient

group

Staff ratio = 0 Staff ratio = 1

Non-profit 0.04 (0.00, 0.22) 0.00 (0.00, 0.04)

For-profit 0.02 (0.00, 0.29) 0.00 (0.00, 0.11)

Government 0.09 (0.00, 0.41) 0.00 (0.00, 0.09)

5 These Bayes factors are, again, computed through the Savage-

Dickey density ratio, as explained in Sect. 6.
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highlighting underperforming firms, such as in monitoring

clinical performance (see Spiegelhalter et al. 2003, for

discussion of the Bristol Royal Infirmary and the Harold

Shipman Inquiries), we could add a third group for par-

ticularly low efficiency firms and use the probability of

belonging to that group as an indicator of particularly bad

performance.

In practice, we are often interested in ranking units in

terms of efficiency, and Table 4 presents some results on

the posterior distribution of hospital rankings for various

models. Hospitals are selected according to percentiles of

the ranking distribution for the symmetric mixture model,

while Hospitals A and B reflect cases where the differences

in rankings between the models are relatively large. What

is clear from Table 4 is that inference on efficiency rank-

ings is fairly precise, especially for extreme firms, and that

rankings generally do not differ much between the models

proposed here. The use of firm characteristics in the effi-

ciency distribution (indicated in the table by the suffix

‘‘Cov.’’) does seem to have some effect on the ranking,

especially for the symmetric mixture model (see Hospital

B, in particular), and there are cases (for example, Hospital

A) where the decomposition model leads to somewhat

different results from the other models. However, as can be

expected, the choice of efficiency distribution has much

less of an effect on the relative ranking of firms than on the

characteristics of predictive efficiency.

9 Concluding remarks

This paper examines stochastic frontier models, which are

of particular empirical interest for efficiency measurement

in a wide variety of applications. In addition, they are of

theoretical interest as they constitute random effects

models where the user has a real interest in the random

effects and potentially a lot of prior information regarding

these effects, which are interpretable as inefficiencies.

We investigate new, more general, classes of ineffi-

ciency distributions for these models. In particular, we

consider generalized gamma distributions, which incorpo-

rate most previously suggested distributions as special

cases. We also propose the use of finite mixtures of gen-

eralized gamma distributions to allow for more flexible

multi-modal efficiency behaviour. The attraction of only

having a few components in the mixture is that they are

easily given an interpretation. We focus here on two

components, where one corresponds to (a minority of) very
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Fig. 14 Posterior probabilities

of hospitals to be in the efficient

group; mixture with

decomposition prior. The

hospitals are numbered from 1

to 382 on the horizontal axis. (a)

Without explanatory variables.

(b) With explanatory variables

Table 4 Hospital data: medians and first and third quartiles (in parentheses) for the efficiency ranks of selected firms. Models compared are the

one-component generalized gamma, the symmetric mixture model and the decomposition mixture model (the latter two also with covariates

affecting the mixture weight)

Gen. Gamma Symm. Mixture Symm. Mixt. Cov. Decomp. Decomp. Cov.

Min. 1 (1, 1) 1 (1, 2) 1 (1, 2) 1 (1, 2) 1 (1, 2)

12.5th perc. 49 (35, 68) 49 (34, 69) 53 (37, 72) 52 (36, 71) 51 (36, 69)

25th perc. 103 (83, 127) 102 (82, 126) 108 (87, 131) 103 (83, 128) 106 (85, 129)

37.5th perc. 140 (108, 173) 138 (107, 172) 146 (114, 179) 137 (107, 171) 135 (103, 168)

Median 191 (163, 219) 193 (166, 222) 189 (163, 217) 194 (167, 222) 195 (168, 222)

Hosp. A 232 (202, 263) 225 (193, 256) 234 (203, 262) 217 (185, 248) 215 (182, 247)

62.5th perc. 235 (209, 261) 237 (209, 260) 240 (213, 266) 235 (208, 259) 236 (209, 262)

Hosp. B 245 (213, 275) 239 (207, 272) 261 (228, 288) 240 (205, 271) 245 (211, 277)

75th perc. 284 (261, 303) 283 (259, 304) 281 (257, 301) 286 (263, 305) 283 (262, 304)

87.5th perc. 330 (316, 342) 331 (316, 343) 329 (314, 341) 331 (316, 343) 331 (316, 342)

Max. 382 (382, 382) 382 (382, 382) 382 (382, 382) 382 (382, 382) 382 (382, 382)
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efficient firms and the other to the mainstream group of

firms. This interpretation is reflected in the prior of our

decomposition model. In order to guard against spuriously

generating two quite different groups without much support

from the data, we build in a prior probability of reducing to

the one-component model. Within our mixture model, we

also suggest a novel way of introducing firm characteristics

into the efficiency distribution. The latter can be a critical

policy instrument as it indicates how efficiencies depend on

certain firm characteristics.

Throughout the paper, we focus on the importance of the

prior, particularly on the parameters of the inefficiency

distribution. Whereas we can use convenient improper

priors on the other parameters, prior structure on the inef-

ficiencies is critical in conducting sensible inference on the

latent efficiencies given the quite small amounts of data

information typically available. We believe the prior elici-

tation strategies outlined here to be sensible ways of

extracting information with a minimum of elicitation effort.

In particular, we recommend the use of the decomposition

model. The latter model produces very reasonable results in

the context of an application to hospital cost data. We have

also applied this model in the context of a production

frontier to an unbalanced panel of data on n = 613 highly

specialized dairy farms in the Netherlands, observed for

some or all of the years 1991–1994, which was previously

analysed by Reinhard et al. (1999) and Fernández et al.

(2002). Here we model a single output (an aggregate of milk

and non-milk production) as in Reinhard et al. (1999) and

use family labour, capital and a variable input (including

hired labour) as inputs in a translog frontier specification.

We use the same prior settings as for the hospital data. For

the single-component model the generalized gamma inef-

ficiency distribution again receives most support, with its

Weibull special case now in a more distant second place.

The data strongly favour a mixture model. The predictive

efficiency distribution resulting from the decomposition

model (without the weights depending on firm character-

istics) is shown in Fig. 15 and bears a striking similarity to

the hospital results, which suggests the general applicability

of these methods.

Random effects models have an inherent identification

problem, in that the data are naturally informative on the

composed error. This seriously complicates inference

whenever the random effects are not centred over zero, as

in stochastic frontier models or change-point analysis. For

stochastic frontier models, these problems are well-docu-

mented in e.g. Ritter and Simar (1997) and have led part of

the profession to believe there was little point in even

attempting to fit models with more flexible inefficiency

distributions. This issue is tackled here on two levels. At

the modelling level, we recommend a model with two

components, allowing for some mass close to the frontier.

At the inference level, we use partial centring to improve

the properties of the MCMC algorithm.

Mixture models are naturally prone to label-switching

issues. The structural interpretation of our components

allows for a natural way of relabelling the MCMC output.

In the decomposition model the structure induced through

the prior will typically introduce enough asymmetry to

avoid label-switching altogether and allows effective

inference on group membership. The probability of each

firm belonging to the efficient group is a useful policy tool

as it highlights particularly efficient firms. If the interest is

in identifying underperforming firms (say, in the context of

clinical performance) we could extend our model to three

components, with the added component corresponding to

unusually bad firms.
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Appendix: Some Details on the MCMC Sampler

A.1 Drawing the inefficiencies

The full conditional for the inefficiencies is, of course,

different from the one in the existing literature. The firm-

specific inefficiencies ui will be independent given all the

other parameters and the observations, with density

function:

pðuijrestÞ / uc/�1
i exp � 1

2r2
ðTiu

2
i þ 2liuiÞ þ kuc

i

� �	 

;

ð10Þ

where li ¼ Tiaþ b0X0ii� y0ii for a cost frontier and its

negative for a production frontier, if we define
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Fig. 15 Predictive efficiency density with the farm data; mixture

with decomposition prior. Solid line: d = 10 for the second compo-

nent; dashed line: d = 3 for the second component. For the first

component we always take d = 10
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yi ¼ ðyi1; . . .; yiTi
Þ0; Xi ¼ ðxi1; . . .; xiTi

Þ0 and i is a Ti-

dimensional vector of ones. We can easily show that the

conditional in (10) is log-concave if

uc [
1� c/

kcðc� 1Þ ;

which is always satisfied if c/[ 1 and c [ 1. For this

parameter combination, we use adaptive rejection sampling

(see Gilks and Wild 1992) to sample directly from (10). In

the other cases, we use random walk Metropolis-Hastings

with a lognormal candidate generator. Random walk

Metropolis-Hastings is also used to generate drawings for

the parameters / and c while k can simply be drawn from a

Gamma conditional. We use the reparameterization from

(/,c) to (w,c), where w = /c, since it leads to better

mixing properties of the sampler.

A.2 Centring

As indicated in Sect. 6, we use a sampler which randomly

mixes updates from the centred and the uncentred param-

eterizations. This basic idea is called ‘‘partial centring’’ in

Papaspiliopoulos et al. (2003), who show that this gener-

ally leads to more robust sampling algorithms. We choose

a centred update with probability 1/4, as we only need to

‘‘recentre’’ a once in a while. In addition, we found that

centring works best if we integrate out k while updating a
(i.e. we effectively draw a and k jointly). Thus, in the

centred parameterization we use a random walk Metropo-

lis-Hastings step to sample from the following conditional

for a\ mini{zi}:

pðajz; b;r2; c;/; y1; . . .; ynÞ /
Yn

i¼1

ðzi � aÞc/�1

Xn

i¼1

ðzi � aÞc þ ð� ln rHÞc
" #�/ðnþ1Þ

; ð11Þ

which can be shown to be log-concave whenever c/ [ 1 and

c [ 1. We use adaptive rejection sampling in the latter case

and a random walk Metropolis-Hastings step otherwise.

A.3 The mixture model

In the case of the mixture inefficiency distribution, as

described in Sect. 3.1, we extend the MCMC sampler of

the basic case by augmenting with an indicator variable

si,i = 1,…,n which can take the values 0 or 1 and assigns

firm i to one of the two efficiency groups (i.e. one of the

two inefficiency components). For the mixture model the

sampler will, thus, generate a chain on (a,b,r2,w,h,u,s),

where s = (s1,…,sn). Inference about the parameters of

each component (cj, /j, kj), j = 1,2 now only depends on

those firms for which si = j - 1. The full conditional

distribution for w will be

wjrest�Be w0 þ n�
Xn

i¼1

si;w1 þ
Xn

i¼1

si

 !
;

and the values of si are updated through

Pðsi ¼ 0jrestÞ

¼ wpGGðuijc1;/1; k1Þ
wpGGðuijc1;/1; k1Þ þ ð1� wÞpGGðuijc2;/2; k2Þ

:

For the decomposition case, where we have included a

prior probability of w = 0, the full conditional distribution

of w has the same form as above except when
Pn

i¼1 si ¼ n.

In this case w is zero with probability qH and w*Be(w0,

w1 + n) otherwise where

qH ¼ q

qþ ð1� qÞ Cðw0þw1ÞCðw1þnÞ
Cðw1ÞCðw0þw1þnÞ

:

Here we only considered switching to the one-component

model when
Pn

i¼1 si ¼ n, which worked well. However, in

applications with very large n it might be more efficient to

also consider jumps between the models when
Pn

i¼1 si is

relatively close to n.

In case we allow for the probability of being in the

efficient group to depend on firm characteristics, we can

use simple Gibbs sampling after data augmentation as in

Albert and Chib (1993) to update the probit regression

coefficients.
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