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Abstract

We derive the relationships between the net and gross elasticities of substitu-
tion and complementarity (i.e., the elasticities that refer either to the conditional
or unconditional, direct or inverse demand system) in the general case of non-
homothetic, variable-returns-to-scale technologies. We also show that the so-called
Hicks Elasticity of Complementarity (Hicks, Oxford economic Papers 22, 289–296
(1970)) is dual to a full-fledged elasticity of gross input substitution that we call
the Hotelling/Lau Elasticity of Substitution (Lau, Production Economics: A Dual
Approach to Theory and Applications. Amsterdam: North-Holand (1978)). The for-
mer is, in fact, the proper elasticity of substitution in the case of the inverse,
unconditional input demand. Our results should clarify some issues about the
input substitutability classification.

JEL Classifications: D11, D24, D33

Keywords: elasticity of substitution and complementarity, inverse demand, returns to scale, homo-
theticity

1. Introduction

All economists are familiar with the concept of a demand function, and know that
it can be defined conditionally (i.e., assuming that output or utility or some other
quantity is somehow kept constant), or unconditionally (i.e., without presuming
any “compensating variation”). It is also well known that demand systems can be
direct, i.e., having quantities as a function of prices, or inverse, with prices as a
function of quantities. Indeed, the inverse demand system, which played a histor-
ical role in the development of microeconomic theory (see the vast literature on
the so-called integrability problem), is theoretically relevant to the analysis of the
competitive equilibrium (see e.g., Seidman, 1989) and obviously of the monopolis-
tic and oligopoly choices. Moreover, it is becoming an established tool of empirical
economics (most applications are to agricultural and natural resources markets):
see e.g., Barten and Bettendorf (1989), Eales (1994), Eales and Unnevehr (1994),
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Holt (2002) and the other references to the literature given in Park and Thurman
(1999, p. 950) and Kim (2000, p. 246). However, when it comes to the prop-
erties of inputs (or commodities),1 the previous four-way distinction gets some-
what confused, and it is sometimes unclear in the literature which concept is
referred to.

In particular, according to standard terminology (see e.g., Mas-Colell et al.,
1995, p. 70), net input substitution refers to changes along an isoquant, while gross
substitution accounts also for the output change. That is, net substitution refers
to a conditional (“compensated”) demand system, while gross substitution uses
unconditional (“uncompensated”) demand. Moreover, Hicks (1956) made a funda-
mental step towards a clear classification by distinguishing between p-substitutes,
according to the direct demand system, and q-substitutes, according to the inverse
demand system. Now, it is well known that even inputs that are, say, direct, net
substitutes, are not necessarily direct, gross substitutes, and conversely (see e.g.,
Chambers, 1988, Sec. 3.1). This notwithstanding, it is common to refer only to net
substitutability, even when the distinction between direct and inverse measures is
taken into account (see e.g., Kim, 2000).

One reason is perhaps that in the special but important case of constant returns
to scale direct gross substitution is not well defined (this is so because in this case
the profit-maximizing input vector is multiple or null or even undefined; i.e., it
is not a continuous function of factor prices). Another is that in principle gross
substitution can be characterized in terms of the conditional demand (see e.g.,
Bertoletti, 2001 in the case of the direct demand system). But more important
seems the fact that the dual properties of the inverse demand systems in pro-
duction theory, as far as we know, have not yet been fully established (see e.g.,
Anderson, 1980; Barten and Bettendorf, 1989; Kohli, 1985 for the relevant con-
sumer demand theory). Actually, the relationships among direct and inverse and
gross and net demand systems do not appear to be understood in the general
case, i.e., when the technology may be non-homothetic and may also have variable
returns to scale (again see Kim, 2000; Park and Thurman, 1999).

For example, consider the elasticity of complementarity, often so-called the Hicks
Elasticity of Complementarity (HEC: see e.g., Kim, 2000). Hicks (1970) proposed
it as a measure of q-substitutability dual to the well-known Allen/Uzawa Elasticity
of Substitution (AUES: Allen and Hicks, 1934), a measure of net p-substitutabil-
ity. Indeed, the two elasticities are intimately related, but as Sato and Koizumi
(1973) showed for k-factor production functions, with k ≥3 their duality rela-
tionship becomes rather awkward. In particular, the latter authors demonstrated,
still assuming constant returns to scale (their analysis was extended to the gen-
eral case by Syrquin and Hollender, 1982), that the HEC measures the cross-
elasticity of the inverse conditional input demand, with marginal cost held constant.
So characterized, the HEC does not clearly show its dual nature (i.e., its being
a measure of gross complementarity), and in fact it has been convincingly crit-
icized (Kim, 2000) for not being equivalent (except under constant returns to
scale) to the so-called Antonelli Elasticity of Complementarity (AEC: Blackorby
and Russell, 1981),2 which is perfectly dual to the AUES. A second undesirable
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by-product of the original HEC characterization has been the creation of a some-
what inconsistent input classification. In fact, in a growing empirical literature (see
references in Kim, 2000, p. 246) inputs are stratified as q-substitutes or q-comple-
ments either according to the sign of the HEC or to the sign of the AEC, and
these signs need not to coincide.

In this paper, we show that, exploiting the duality between the direct produc-
tion function and the profit function, the HEC can be characterized as a sound
measure of gross q-complementarity, perfectly dual to a known elasticity of gross
p-substitution that we call the Hotelling/Lau Elasticity of Substitution (HLES: see
Lau, 1978, p. 197). Then, using this gross substitution approach3 and by deriv-
ing some novel duality results concerning the inverse demand systems, we can
establish the relationships between the net and gross elasticities of substitution
and complementarity in the general case. These also make clear the obvious point
that an input taxonomy should carefully distinguish between direct and inverse
demand systems, and between gross and net substitution or complementarity. Thus,
our results should be helpful in settling some issue in the long-standing questions
about the proper input substitutability classification.

Finally, we would like to justify our concern with the AUES and related mea-
sures. We use them as a suitable tool to discuss input substitutability (they can
also be used to investigate the functional features of the underlying technology:
e.g., see Kim, 1997 on separability issues). But, while it is still common among
practitioners to use the sign of those elasticities to stratify inputs (eventhough to
some extent inconsistently, as argued above), we have to mention that Blackorby
and Russell (1989) forcefully criticized the use of the AUES. These authors stated
(p. 884) that: “In fact, the elasticity-of-substitution concept, as originally conceived
by Hicks, has nothing to do with the substitute/complement taxonomy”. In addi-
tion, they argued that, in contrast to the cross partial derivative of the demand
function (which would serve the same purpose), the AUES is not a meaningful
quantitative measure to assess input substitutability. However, our gross substitu-
tion perspective suggests that the AUES and the AEC play a role in the com-
parative statistics of the unconditional demand functions (see Sections 4 and 5),
and provide interesting quantitative information for that purpose (to be interpreted
jointly with the one provided by the relevant “size” elasticities of the cost and dis-
tance functions: also see Bertoletti, 2001). Accordingly, we believe that those elas-
ticities deserve some attention and to be the subject of empirical investigation. Of
course, to classify inputs one could directly refer to the sign of the cross second
derivatives of the profit and of the production function, but it seems to us that
they provide a (hopefully interesting) dual characterization of the gross substitu-
tion properties.

The paper is organized as follows: Section 2 illustrates the basic duality between
the direct production function and the (normalized) profit function. Section 3
presents our fourfold input taxonomy, and shows the duality between the HEC
and the HLES. Section 4 recalls some results concerning net and gross substitution
effects in direct demand systems. Section 5 establishes the corresponding results
concerning the inverse demand systems. Section 6 concludes.
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2. Direct Versus Inverse Unconditional Demand System

Consider a (concave) production function y =f (x) relating a vector of inputs x to
the output y. Given a vector w of (positive) input price, and a (positive) output
price p, the normalized profit function (see e.g., Chambers, 1988: Chapter 4) is

π(w)=max
x≥0

(f (x)−wx), (1)

where w=w/p is the vector of normalized input prices. To get well-defined uncon-
ditional demand functions, we assume that there are (at least locally) increasing
marginal costs. The solution of the previous optimization problem is then given
by the system x(w) of the so-called unconditional (i.e., profit-maximizing) input
demands, and satisfies the first-order conditions:

w =Dxf (x), (2)

where Dxf (x) indicates the vector of the first derivatives of f(x).
The demand system x(w) has several well-known properties: in particular, it has

a symmetric negative semi-definite Jacobian and satisfies the derivative property:

x(w)=−Dwπ(w), (3)

known as Hotelling’s lemma. At the same time (2) also characterizes the system
of the so-called inverse unconditional input demand functions, w(x), which gives
the normalized input prices w of the input vector x (i.e., the relative input prices
that would induce a competitive firm to adopt the input vector x). Given the profit
function (1), a basic duality result is given by the following way to recover the
original production function (again, see Chambers, 1988, pp. 144–145)

f (x)=min
w≥0

(π(w)+wx). (4)

Clearly, w(x) solves (4) and satisfies (2), which also expresses its derivative prop-
erty.

To complete the duality, note that of course (in matrix form):

Dxw(x(w))=Dwx(w)−1 =D2
xf (x(w)), (5)

where D2
xf(x) indicates the Hessian matrix of f(x) and we make the “regularity”

assumption4 that it is invertible (of course this is not the case if there are con-
stant returns of scale: see Section 3). As is indicated in Section 1 and discussed
in next section, as far as gross substitutability is concerned inputs can be consis-
tently classified according to the signs of the cross-derivatives of either of the two
Jacobians in (5). In general, those signs need not coincide (matrix inversion is a
rather involved operation). Note, however, that if all the off-diagonal elements of
the Hessian matrix D2

xf (x(w)) are non-negative, a clear-cut conclusion concern-
ing the substitutability properties of x(w) follows. In fact, it is well known that in
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that case Dwx(w) must be a non-positive matrix (see e.g., Takayama, 1985, Chap-
ter 4, and in particular Theorem 4.D.3, p. 393). Thus, all inputs would be gross
p-complements and, at the same time, gross q-complements (see next section). For
the same reason, if the off-diagonal elements of Dwx(w) are all non-negative,
Dx w(x(w)) must be non-positive, and all inputs are both gross p-substitutes and,
at the same time, gross q-substitutes. While considering gross substitution, we are
thus implying that such global properties are not assumed to hold.

3. Elasticities

Proper input classifications should carefully distinguish between the reference to
direct and to inverse demand systems, and between gross and net substitution or
complementarity. For example, in terms of the cost function, c(y, w) (subscripts
indicate partial derivatives), the AUES between inputs i and j, σij (y,w), can be
written:

σij (y,w)= cij (y,w) c(y,w)

Cij(y,w) cj (y,w)
= ε̃ij (y,w)

θj (y,w)
, (6)

where ε̃ij (y,w) = ∂ ln x̃i(y,w)/∂ ln wj is the cross-elasticity of the conditional (output-
“compensated”) demand of input i with respect to input price j,5 and θj (y,w) =
wj x̃j (y,w)/c(y,w) is the cost share of input j. Because the AUES is defined in
terms of the conditional factor demand, inputs should be stratified as net p-sub-
stitutes if and only if σij (y,w)≥0, and net p-complements otherwise.

Analogously, the AEC, ρij (y,x), is a measure of complementarity (see Blackorby
and Russell, 1981, Section 4) which can be stated by making use of the distance
function d(y,x) (see e.g., Cornes, 1992 Sections 3.5 and 5.8; Deaton, 1979) as
follows:

ρij (y,x)= dij (y,w)d(y,x)

di(y,x)dj (y,x)
= η̃ij (y,x)

τj (y,x)
, (7)

where η̃ij (y,x)=∂ ln ai(y,x)/∂ ln xj is the cross-elasticity of the inverse conditional
demand of input i, and τj (y, x)=xjaj (y,x)/d(y,x) is the distance share of input j
(it may be worth reminding the careful reader that a(y, x) gives the input price vec-
tor that would induce a cost-minimizing firm to adopt an input vector proportional
to x when producing y, normalized by total cost; i.e., c(y, a) = 1).6 Accordingly,
inputs i and j should be said to be net q-complements if and only if ρij (y,x)≥0,
and net q-substitutes otherwise (see e.g. Kim, 1997).

Gross substitutability, as noted in Section 1, is somewhat less emphasized in
the literature. Perhaps one reason is that the direct unconditional demand system
x(w) is not well defined in the theoretically important case of constant returns to
scale7 (but note that the inverse demand system is well defined even in that case).
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However, an obvious elasticity of gross substitution is the following HLES:

σH
ij (w)=−πij (w)π(w)

πi(w)πj (w)
= εij (w)

ωj (w)
, (8)

where εij (w) = ∂ ln xi(w)/∂ ln wj is the cross-elasticity of the unconditional input
demand and ωj (w)=wjxj (w)/π(w) is the profit share of input j. The HLES was
proposed by Lau (1978, p. 197): inputs i and j should be called either gross p-
substitutes or p-complements according to the sign of σH

ij (w).
Finally, a measure of gross complementarity is defined by the following HEC

(Hicks, 1970):

ρH
ij (x)= fij (x)f (x)

fi(x)fj (x)
= ηij (x)

γj (x)
, (9)

where ηij (x) = ∂ ln wi(x)/∂ ln xj is the cross-elasticity of the inverse unconditional
input demand (see e.g., Kim, 1997, p. 1178) and γj (x)=xjwj (x)/f (x) is the (nor-
malized) output share of input j. The HEC is usually characterized in terms of the
cost-minimization problem alone, by noting that the input price vector is implic-
itly changed so as to keep marginal cost constant (see Sato and Koizumi, 1973;
Syrquin and Hollender, 1982). However, inputs should clearly be stratified either as
gross q-complements or q-substitutes according to its sign (see Kim, 2000, p. 248).

The dual nature of the HLES and HEC follows immediately from (5): note that
in matrix form ε(w)−1 =η(x(w)). Moreover, ωj (w)(1− ξ(x(w)))=γj (x(w)), where
ξ (x) = ∂ ln f (λx)/∂ ln λ|λ=1 is the elasticity of scale (a standard local measure of
the returns to scale). Thus, with γ̂ (x) being the diagonal matrix whose generic
(diagonal) element is γj (x), we have that

γ̂ (x)σH (w(x))γ̂ (x)ρH (x)= (1− ξ(x))I , (10)

where I is the identity matrix (note that all matrices in (10) are symmetric).8 The
duality between the HEC and HLES expressed in (10) should be compared with
Syrquin and Hollender (1982), whose results found that the relationship between
the HEC and AUES was not perfectly dual. Indeed, it would seem that the
HLES/HEC dual relationship is the final piece Hicks (1970, p. 289) felt missing
in the “Elasticity of Substitution Story” and thought he had found. In Sections
4 and 5 we establish the general relationships between the previous net and gross
elasticities of substitution and complementarity.

4. Gross Versus Net Substitution

To illustrate the relationship between gross and net substitution, it can be shown
that (see Appendix A and Bertoletti, 2001):

σH
ij (w)= (n(y,w)−1)

[
σij (y,w)− ε̃iy(y,w)

n(y,w)

ε̃jy(y,w)

ζ(y,w)

]
, (11)
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where ε̃iy(y,w) = ∂ ln x̃i (y,w)/∂ ln y is the output elasticity of the conditional
demand of input i; n(y, w)= ∂ ln c(y,w)/∂ ln y is the output elasticity of cost; and
ζ (y,w)=∂ ln cy(y,w)/∂ ln y is the output elasticity of marginal cost.9 These “size”
elasticities are related to the scale properties of technology. In fact, as is well
known, n(y,w) = ∑

j θj (y,w)ε̃jy(y,w) is equal to the reciprocal of the elastic-
ity of scale (i.e., n(y,w) = ξ(x(y,w))−1; notice that under decreasing returns to
scale n(y,w) > 1) and it is sometimes called “the elasticity of size”.10 In addi-
tion, ζ (y,w) = n(y,w) − ∂ ln ξ(x̃(y,w))/∂ ln y − 1, where ∂ ln ξ (x(y,w))/∂ ln y is a
straightforward measure of the change in the returns to scale along the output
expansion path (see e.g., Hanoch, 1975).

It can be shown that ε̃jy(y,w)=−ζ (y,w)
∑

i εji(w), i.e., the output elasticity of
input j is given by the sum of the elements of the jth row of the elasticity matrix
ε(w), multiplied by the (negative) size elasticity of marginal cost. In matrix form:
ε̃y(y,w) = −ζ (y,w)ε(w)ı, where ε̃y(y,w) is the vector of the output elasticities
of the direct conditional demand, and ı′ = [1, . . .,1] is the unit vector. It is also
worth noticing the following duality result, which can be obtained by computing
γ (x(w))′ε̃y(y,w), where γ (x(w)) is the output share vector:11

− 1
ζ(y,w)

=γ (x(w))′ε(w)ı = w′Dwx(w)w

y
= ı′ρH (x(w))−1ı. (12)

(the right-hand side of (12) follows from (10)).
From (11), inputs need not have the same p-classification according to σH

ij (w)
and σij (y,w). However, as is well known, two inputs can revert from net substi-
tutes to gross complements only if they are both normal or both inferior, while
they may revert from net complements to gross substitutes only if one is nor-
mal and the other inferior (this is so because two inputs can change their sub-
stitutability status when account is taken of the variation in output only if the
output effect does not strengthen the substitution effect). Also notice that, since∑

j θj (y,w)σij (y,w)= 0 (by homogeneity of degree zero with respect to w of the
conditional demand), it follows that:

∑
j

θj (y,w)σH
ij (w)=−ε̃iy(y,w)

n(y,w)−1
ζ(y,w)

. (13)

A number of special cases of (11) emerge. Suppose for example that the out-
put change per se generates no input bundle reallocation; i.e., that the isoclines are
(locally) linear. This means that the technology is (locally) ray-homothetic. Since
in this case ε̃iy(y,w)=n(y,w), i =1, k, no input plays a special role and thus (11)
simplifies to:

σH
ij (w)= (n(y,w)−1)

[
σij (y,w)− n(y,w)

ζ(y,w)

]
. (11′)

Note that, in this case, inputs that are net p-complements will also be gross
p-complements, but net p-substitutes may revert to gross p-complements (see e.g.,
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Bertoletti, 2001). Suppose that, in addition, a movement along the output expan-
sion path (which is in this case also a movement along a ray in the input space)
does not change (locally) the degree of returns to scale, an assumption that as
a global property characterizes the sub-class of ray-homogenous production func-
tions. It must then be that ζ (y,w)=n(y,w)−1, and (11′) reduces to:

σH
ij (w)= [n(y,w)−1]σij (y,w)−n(y,w). (11′′)

Finally, it is known that under weak “regularity assumptions” a ray-homothetic
production function is also (simple) homothetic (see e.g., Färe, 1975). In this case
the cost function is separable (i.e., c(y, w)= h(y)g(w)), and (11′′) further specializes,
since the AUES comes to depend only on the input prices, while the elasticity of
size depends only on the output level: i.e., in (11′′) we have n(y) and σij (w). In
the familiar sub-case of a homogeneous production function of degree r, we get
n=1/r; the HLES can thus be immediately computed from the AUES, and con-
versely:

σH
ij (w)= 1

r

[
(1− r)σij (w)−1

]
. (11′′′)

5. Gross Versus Net Complementarity

It can be shown that (see Appendix B):

ρH
ij (x)= [

1+ρij (y,x)+µj (x)
]
ξ(x)−1 + δi(y,x), (14)

where µj (x) = ∂ ln wj(λx)/∂ ln λ|λ=1 = ∑
i ηji(x) –which is sometimes called the

“scale elasticity” of input j (see e.g., Anderson, 1980)— expresses the unconditional
proportionate effect on wj of a ray movement in the input space, and δi(y,x) =
∂ ln ai(y,x)/∂ ln y is the output elasticity of the inverse conditional demand of
input i. It is intuitive that δi(y,x) is closely related to the scale elasticity µi(x),
since, with different normalization, both express the price effect of an output
expansion along a ray in the input space. In fact (see Appendix B):

δi(y,x)= ξ(x)−1(µi(x)−1−µ(x)), (15)

where µ(x) = ∑
j τj (y,x)µj (x) is the “average” scale elasticity value (note that

τi(y,x) = θi(y,w(x))). Also note that
∑

i τi(y,x)δi(y,x) = −1/ξ(x), and thus
δi(y,x)=−1/ξ(x) if the scale elasticities are all equal.12

According to (15), (14) can be rewritten as:

ρH
ij (x)= (ρij (y,x)+µi(x)+µj (x)−µ(x))ξ(x)−1, (16)

which gives the general relationship between the AEC and the HEC in terms of
the inverse demand system. In fact, it can be easily proved that ∂ ln d(y,x)/∂ ln y =
−1/ξ(x). Thus, the size elasticity of the distance function (evaluated at y =f (x))
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gives the (negative) elasticity of size. Moreover, by differentiating the identity
dy(y,x)≡−d(y,x)cy(y,a(y,x)),13 after some computations we get that �(y,x)=
∂ ln dy(y,x)/∂ ln y = −(2 + µ(x))/ξ(x), which provides a simple way to obtain
µ(x)14 and suggests that this quantity is related to the returns-to-scale change
along a ray in the input space. By homogeneity of degree zero of the inverse con-
ditional demand, it also follows immediately that:

∑
j

τj (y,x)ρH
ij (x)= µi(x)

ξ(x)
. (17)

Note that (16) exhibits the expected interaction of a (net) substitution and an
output effect, with the latter dependent on the “size” properties of the technology,
summarized by the scale elasticities. Once again, inputs need not conserve the same
q-classification when moving from the net to the gross measure. In particular, note
that (in matrix form): µ(x)=η(x)ı, where µ(x) is the vector of the scale elastici-
ties. It follows that:

µ(x)ξ(x)=γ (x)′η(x)ı = x′Dxw(x)x

f (x)
= (1− ξ(x))ı′σH

(x)−1ı (18)

(notice the duality with (12)). By negative definiteness of D2
xf (x) (18) shows that

the scale elasticities are on average negative. Thus, net q-complements can revert
to gross q-substitutes, but only if the sum of their scale elasticities is negative and
sufficiently larger in absolute value than the average scale elasticity, −µ(x); and net
q-substitutes may revert to gross q-complements only if the sum of their scale elas-
ticities is not negative and larger in absolute value than −µ(x). (18) also implies
that µ(x) = ξ(x) + ∂ ln ξ(λx)/∂ ln λ|λ=1 − 1, where ∂ ln ξ(λx)/∂ ln λ|λ=1 (sort of a
“second-order elasticity of scale”) is a straightforward measure of the change in
the returns to scale along a ray in the input space.

Also note that in the system of inverse demand scale elasticities play a role simi-
lar to that of output elasticities in that of direct conditional demand. In particular,
we have seen in Section 4 that the output elasticity of input j, ε̃jy(y,w), is given by
the sum of the elements of the jth row of the elasticity matrix ε(w), multiplied by
−ζ (y,w). It follows from (5) that the scale elasticity of input i,µi(x(w)), is given
by the sum of the elements of the ith row of the inverse of ε(w). In matrix form:
−ε(w)2µ(x(w)) = ε̃y(y,w)/ζ (y,w).15 However, the signs and sizes of the single
scale elasticities are not, in general, related to those of the single output elastic-
ities. For this reason, we believe that the temptation to class inputs according to
the sign of their scale elasticities should be resisted, at least until these signs are
shown to convey useful information (see e.g., Kohli, 1985, in the context of con-
sumer demand).16 Moreover, as suggested by (12) and (18), the dual relationship
is actually between ∂ ln f (x(w))/∂ ln wi =−ε̃iy(y,w)/ζ(y,w) (also see footnotes (9)
and (11)) and ∂ ln wi(λx)/∂ ln λ|λ=1 =µi(x), and this is not, in general, given by
simple scalar inversion.

A rather special case of (16) arises if, i = 1, k, either ε̃iy(y,w) = n(y,w) or
µi(x)=µ(x), which are equivalent conditions. In fact, in that case −n(y,w)/ζ (y,w)
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is an eigenvalue of ε(w) whose associated eigenvector is the unit vector ı, and
then µ(x(w)) = −ζ (y,w) /n(y,w) must be the eigenvalue of η(x(w)) associated
with the same eigenvector, and conversely. Thus, a fortiori, ∂ ln f (x(w))/∂ ln wi

= −µi(x(w))−1. Of course, this is so if the technology is (locally) ray-homothetic,
in which case (16) simplifies to:

ρH
ij (x)= ξ(x)−1(ρij (y,x)+µ(x)). (16′)

Note the nice duality between (11′) and (16′). In this case, inputs that are net
q-substitutes will also be gross q-substitutes, but net q-complements may still revert
to gross q-substitutes.

Similarly to what we have seen in Section 4, if in addition a movement along
a ray in the input space (which is in this case also a movement along the out-
put expansion path) does not change (locally) the degree of returns to scale (16′)
reduces to:

ρH
ij (x)= ξ(x)−1(ρij (y,x)−1)+1, (16′′)

since in that case µ(x) = ξ(x) − 1. Finally, in the simple case of a homogeneous
production function of degree r ≤1, we get:

ρH
ij (x)= ρij (x)−1

r
+1. (16′′′)

Notice that (16′′′) encompasses the particular case of constant returns to scale,
for which the equality ρH

ij (x)=ρij (x) holds (i.e., there is no output effect). How-
ever, other cases in which the HEC and the AEC are equal are clearly possi-
ble: for example, according to (16′) this happens under (local) ray-homotheticity if
ρij (y,x)=µ(x)/(ξ(x)−1). Note that, by (11′), in the same case the HLES is equal
to the (negative)17 AUES if σij (y,w) = (n(y,w) − 1)/ζ (y,w). For example, for a
Cobb–Douglas technology we get ρH

ij =ρij =σij =1=−σH
ij (whenever the HLES is

defined), i �=j . Thus, all inputs are in such a case gross and net q-complements, net
p-substitutes and gross p-complements. Finally, since Deaton (1979) has shown that
the Slutsky matrix (i.e., the matrix whose generic element is given by cij (y,w)) is a
generalized inverse of the Antonelli matrix (i.e., the matrix whose generic element
is given by dij (y,x)) (16′′′) implies that the same relationship exists under constant
returns to scale between (in matrix form) γ̂ (x)ρH (x) and γ̂ (x)σ (y,w(x)),18 which
is perhaps where Hicks started more than seventy years ago.

6. Conclusion

There are at least four consistent ways to classify inputs according to their substi-
tutability. They can be stratified according to the sign of the relevant cross-effects
of either the direct or the inverse, the conditional or the unconditional demand
functions. In this paper we have stressed the gross classification, based upon
the unconditional demand. In particular, by deriving the familiar decomposition
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between a (net) substitution effect and an output effect, we have shown, in the gen-
eral case of non-homotheticity and variable returns to scale, the relationships of
the HLES and the HEC (two measures of gross substitution already used in the
literature, although the former is less frequently referred to) with two well-known
measures of net substitution, the dual AUES and AEC. Our approach, which uses
the duality between the direct production function and the normalized profit func-
tion, also shows the perfect duality between the former two elasticities.

This paper suggests a way to reconcile some work on the elasticity of sub-
stitution by Allen and Hicks (1934), Hicks (1970), Sato and Koizumi (1973),
Blackorby and Russell (1981), Syrquin and Hollender (1982) and, more recently,
Kim (2000) and Bertoletti (2001). However, while our focus has been on elastici-
ties of substitution or complementarity, this paper also provides a further explo-
ration of the theoretical properties of the inverse demand systems in production
theory. In particular, we have derived a number of (novel, as far as we know)
findings concerning the scale elasticities, the output elasticity of the inverse con-
ditional demand and the way the distance function can be used to account for the
changes in returns to scale. As it turns out, not surprisingly an especially nice dual-
ity between direct and indirect demand systems exists under homotheticity.

It may also be worth noting that one reason a previous attempt (Kim, 2000)
to asses input substitution failed to recognize the role of the HEC is because it
was based too closely on some well-known analogy with consumer demand (i.e., it
used the indirect production function: on this see also Park and Thurman, 1999).
Indeed, as far as gross substitution/complementarity is concerned, there are signifi-
cant differences between production and consumer theory, since in the latter there
is no returns-to-scale analog (and in the former no “Giffen” input can exist).19 It
is hoped that the results of this paper will be useful in clarifying some issues in
the debate on the proper input substitutability classification.

Appendix A

Differentiating the identity xi(w)≡ x̃i (f (x(w)),w) gives:

xij (w)= ∂x̃i(f (x(w)),w)

∂y

∑
i

fi(x(w))
∂xi(w)

wj

+ ∂x̃i(f (x(w)),w)

∂wj

. (A.1)

By using the first-order condition 1 = cy(f (x(w)),w), it is easy to see that
x̃jy(y,w) = −(cyy(y,w)/cy(y,w))

∑
i xji(w)wi , where y = f (x(w)). Then (A.1)

becomes

xij (w)=p

[
x̃ij (y,w)− x̃iy(y,w)x̃jy(y,w)

cyy(y,w)

]
, (A.2)

which stresses the familiar decomposition between a (net) substitution and an out-
put effect. By using ωj (w)=θj (y,w)/(n(y,w)−1) (11) immediately follows in elas-
ticity terms.
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Appendix B

Differentiating the identity ai(f (x),x) ≡ wi(x)/c(f (x),w(x)) (which can also
be written ai(f (x),x) ≡ wi(x)/(w(x)x) and directly derived by differentiating
y ≡ f (x/d(y,x))20 with respect to xi and evaluating at y = f (x)) and using
cy(f (x),w(x))=1 gives:

aij (y,x)+aiy(y,x)fj (x)

= wij (x)ai(y,x)

wi(x)
− ai(y,x)(fj (x)+∑

i wij (x)x̃i(y,w(x)))

c(y,w(x))
, (B.1)

where y =f (x). Since d(f (x),x)=1, (14) follows.
In (15), δi(y,x) is computed by differentiating the identity ai(y,x) ≡

wi(λx)/c(f (λx),w(λx)) with respect to y, where λ is implicitly defined by y =f (λx),
and evaluating at y =f (x) (i.e., at λ=1).
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Notes

1. To classify goods (inputs) according to their substitutability is a popular exercise in empirical
investigations, which also serves as a check on the economic implications of the various models:
for a recent example see Holt (2002, Section 4.6). Obviously, it is also theoretically important (see
e.g. Seidman, 1989).

2. Blackorby and Russell (1981, p. 152) gallantry attributed the AEC to Hicks (1970). However, even
if the HEC and the AEC have the same value under the constant-returns-to-scale assumption (see
Section 4) made in that paper, Hicks (1970) appears concerned with the former concept (see Sato
and Koizumi, 1973).

3. Our approach is closely related to those of Kim (2000) and Bertoletti (2001). However, the latter
does not deal with the inverse demand system, while the former uses the indirect production func-
tion (see e.g., Cornes, 1992, Section 5.1) to model “gross” complementarity, and thus fails to derive
the general relationship between the HEC and the AEC.

4. That is, we assume that the Jacobian of x(w) is negative definite, which implies that the production
function is (locally) strictly concave.

5. It is well known that x̃i (y,w) is homogeneous of degree zero with respect to w: the “size” (i.e.,
with respect to output) properties of this conditional demand are recalled in Section 4, where they
are extensively exploited.

6. The distance function can be stated as follows: d(y,x) = mina{ax: c(y,a) = 1}. ai (y,x) is then
homogeneous of degree zero with respect to x: its “size” properties at y =f (x) are investigated in
Section 5.
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7. This has led some authors (e.g., Kim, 2000) to use the “unconditional” demand system that can be
derived by the indirect production function (see e.g., Cornes, 1992, Section 5.1) and retains a closer
formal analogy to the system of uncompensated (or Marshallian) demand in consumer theory. It
turns out that our approach is in this case more fruitful.

8. It should be clear that expressions differing from (10) only for a scalar multiplication can be
obtained by using instead of γ̂ either ω̂ or θ̂ or τ̂ (where the latter diagonal matrices are analo-
gously defined).

9. Thus ζ is a measure of the cost function curvature. It can be shown that 1/ζ = ∂ ln y/∂ ln p and
ε̃iy/ζ = (ciyc)/(cicy) = ∂ ln xi/∂ ln p, where y(p, w) and xi (p,w) are, respectively the (non-normal-
ized) output supply function, and the (non-normalized) unconditional demand function of input i.
Also note that ζ =n(cyyc)/(cycy) provides a simple way of computing it.

10. It is also easily shown that
∑

j γj ε̃jy =1 and
∑

j γj =1/n.
11. It is easily seen that γi

∑
j εij = ∂ ln y/∂ ln wi .

12. Notice that all computations are performed at y = f(x).
13. This follows, by using the Envelope Theorem, from the first-order conditions that define the dis-

tance function (see footnotes 6 and 20). In particular, one can prove that the value of the distance
function is equal to the relevant Lagrangean multiplier.

14. � is, by construction, a measure of the distance function curvature with respect to output. Note
that −ε�=µ+2= (dyyd)/(dydy).

15. Park and Thurman (1999) argue in the context of consumer demand that income elasticities and
what they call “scale flexibilities” are fundamentally different measures, contending that the latter
are equivalent to the scale elasticities considered in the literature. It appears that in production the-
ory, as far as the inverse unconditional demand system is concerned, those elasticities are related
just by matrix inversion.

16. Note that, instead of concentrating on the scale elasticities, we might focus on the output elastici-
ties of the inverse conditional demand system: in fact, since µi =εδi +1+µ=εδi −1−ε� (16) can
be rewritten as ρH

ij =n[ρij +2+µ]+ δi + δj =nρij −�+ δi + δj .
17. The original Lau’s definition of HLES (Lau, 1978, p. 197) was actually equal to −σH

ij : we have
chosen to change the sign to conform to standard terminology concerning p-substitutes.

18. Again (see footnote 8), similar results apply when γ̂ is replaced either by τ̂ or θ̂ or ω̂.
19. Since the “income effect”, as stated by the Slutsky equation, is not necessarily symmetric (unless

under homothetic preferences), in consumer theory gross substitutability does not appear well
defined. An exploration of this issue is left for future work.

20. Alternatively, to confirm that a ( f(x),x) ≡ ŵ(x)/c(f(x),ŵ(x)), one might consider the FOCs which
uniquely define (given concavity) its left-hand side (see footnote 6). They are: x − βx̃(f (x),a) = 0
and ax̃(f(x),a) = 1, where β = 1 is the relevant Lagrangean multiplier. It is obvious that the right-
hand side of the previous expression does satisfy them. The economic intuition is also straightfor-
ward: once normalized in order to provide a unit cost, the (“inverse”) unconditional (i.e., profit-
maximizing), input relative (with respect to the output price p) price vector function ŵ(x) is then
equivalent to the (“inverse”) conditional (to the output level), input price vector function a(y, x),
if f(x) = y.
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