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Abstract

In a production technology, the type of returns to scale (RTS) associated with
an efficient decision making unit (DMU) is indicative of the direction of mar-
ginal rescaling that the DMU should undertake in order to improve its produc-
tivity. In this paper a concept of global returns to scale (GRS) is developed as an
indicator of the direction in which the most productive scale size (MPSS) of an
efficient DMU is achieved. The GRS classes are useful in assisting strategic deci-
sions like those involving mergers of units or splitting into smaller firms. The two
characterisations, RTS and GRS, are the same in a convex technology but gener-
ally different in a non-convex one. It is shown that, in a non-convex technology,
the well-known method of testing RTS proposed by Färe et al. is in fact testing for
GRS and not RTS. Further, while there are three types of RTS: constant, decreas-
ing and increasing (CRS, DRS and IRS, respectively), the classification according
to GRS includes the fourth type of sub-constant GRS, which describes a DMU
able to achieve its MPSS by both reducing and increasing the scale of operations.
The notion of GRS is applicable to a wide range of technologies, including the
free disposal hull (FDH) and all polyhedral technologies used in data envelopment
analysis (DEA).

JEL Classification: C61, C67

Keywords: efficiency, returns to scale, most productive scale size, data envelopment analysis, free dis-
posal hull

1. Introduction

The concept of returns to scale has been studied extensively in production econom-
ics (see, e.g., Färe et al., 1983, 1985). On the practical side, the returns to scale
(RTS) classification is often used in data envelopment analysis, most often in rela-
tion to the BCC model of Banker et al. (1984). For an overview of the results
in this area see, e.g., Seiford and Zhu (1999), Cooper et al. (2000), Thanassoulis
(2001) and Banker et al. (2004).

The classes of RTS are indicative of the type of marginally small resizing that
an efficient unit should undertake in order to see an immediate improvement of
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its average productivity. For example, if a unit exhibits increasing returns to scale
(IRS), it should benefit by marginally increasing the scale of its operations, pro-
vided it remains located on the efficient frontier.

As shown by Banker (1984), in the polyhedral production technology of the
BCC model, the type of RTS also serves as a global indicator of the direction
towards the most productive scale size (MPSS). More precisely, if a decision mak-
ing unit (DMU) exhibits constant returns to scale (CRS), it operates at MPSS. If
it exhibits IRS, it does not operate at MPSS but would achieve it by scaling its
operations up. If the DMU exhibits decreasing returns to scale (DRS), it would
achieve its MPSS by scaling its operations down.

This dual role of the RTS classification as a local improvement indicator and
direction to MPSS is preserved in any convex technology,1 which is formally estab-
lished in Theorem 7 below. However, in a general non-convex technology the RTS
classes no longer play a role of global indicators.2 This observation is illustrated
by a number of examples throughout this paper.

The method developed by Färe et al. defines the type of RTS exhibited by a
particular DMU by comparing its radial efficiency in the production technology T

with its efficiency in the CRS, or cone, reference technology. If the two are equal,
the DMU is said to exhibit CRS. Otherwise there is scale inefficiency, and the
non-increasing returns-to-scale (NIRS) reference technology is used to investigate
its nature. If the radial efficiency of the DMU in the NIRS technology is not equal
to that in the CRS technology, the scale inefficiency is explained by the fact that
the DMU is exhibiting DRS, otherwise the reason of scale inefficiency must be
IRS. A modification of this method was developed by Kerstens and Vanden Ee-
ckaut (1999).

Neither Färe et al. nor Kerstens and Vanden Eeckaut assume that the produc-
tion technology T is convex. In this paper we show that this assumption is, how-
ever, essential for obtaining the correct classification of RTS by the above methods.

Further, we show that, if the technology T is not convex, the types of RTS pro-
duced by these methods, although generally incorrect, are still “almost” correct as
the global characteristics indicating the direction to MPSS. In other words, the
above methods test for the types of global resizing guiding an efficient DMU to
its MPSS. This leads to the concept of global returns to scale (GRS), which was
first investigated in Podinovski (2002, 2004b).

The fact that the methods of Färe et al. and Kerstens and Vanden Eeckaut do
not produce the correct classification of RTS in non-convex technologies should
not be surprising. The obvious fundamental problem here is that the type of RTS
exhibited by a unit is fully defined by its marginally small neighbourhood. At the
same time, the two methods relate the type of RTS to the efficiency of DMU0 in
the reference technologies, which are generally defined by some “global players”,
like the MPSS units in the CRS reference technology. We can therefore conclude
that the reference technology methods are suitable for testing local RTS in a con-
vex technology only because, in such a technology, the local and global indicators
of improvement coincide. In a general non-convex technology, these methods only
test for the global indicators.
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In this paper, we develop the notion of GRS under an extremely weak set of
assumptions about the production technology. Namely, we only assume a variant
of the “no free lunch” assumption, which states that positive outputs cannot be
produced from a zero input vector.

The notion of MPSS is the starting point in this development. We show that
for any efficient DMU there are only four options, regarding the types of resiz-
ing leading to its MPSS. These four options become the basis of the definition of
GRS as an indicator of the direction in which the MPSS can be achieved. In a
convex technology, three of these options coincide with the traditional CRS, DRS
and IRS classes of local RTS, but in a non-convex technology the classification is
generally different.3 More, in a non-convex technology, the fourth type of GRS,
which we call sub-constant, can also be identified. This corresponds to the case in
which an efficient DMU can achieve its MPSS in two ways: by scaling its opera-
tions down or, alternatively, up.

From the managerial perspective, the four types of GRS should be useful in
aiding strategic decisions like those concerning merging or splitting of produc-
tion units, where the notion of local RTS could be misleading. It is also worth
emphasizing that the GRS classification can be applied to virtually any technol-
ogy, including the free disposal hull (FDH) (Deprins et al., 1984), where the local
RTS classification is, strictly speaking, undefined.

In order to test for GRS, we modify the method of Färe et al. by replacing the
CRS by the non-decreasing returns-to-scale (NDRS) reference technology in the
troika of technologies used in the method. We are then able to prove that the four
different configurations, which the efficiencies in the troika can form, correspond
to the four types of GRS.

We proceed as follows. The basic assumptions and definitions of reference tech-
nologies are given in Section 2. The concepts of efficiency and MPSS are then
defined in Sections 3 and 4. In Sections 5–7, starting with illustrative examples,
the concept of GRS is developed. In Section 8, the relation between the GRS and
RTS is discussed. The relevance of the GRS classes to the neoclassical notion of
multiproduct scale economies is also outlined. A method of testing GRS is then
introduced in Section 9. The concept of GRS for inefficient units is discussed in
Section 10. In Section 11, the GRS and RTS classifications are compared in the
case of a convex technology.

2. Definitions

Let T be the PPS of a production technology with m inputs and s outputs. Any
member of T is referred to as a DMU and represented by a pair (X, Y ), where X

is the m-dimensional vector of inputs and Y the s-dimensional vector of outputs.
The set T is assumed to be a non-empty subset of the non-negative orthant Rm+s

+ .
For any X, define P(X)={Y |(X,Y )∈T }, the set of all output vectors Y obtain-

able from X in technology T . Similarly, for any Y define L(Y )={X|(X,Y )∈T }, the
set of all input vectors X, from which Y can be obtained.
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Throughout this paper the set T is assumed to satisfy the following two assump-
tions, where ‖·‖ is the Euclidean norm:

(A1) For any X, either P(X)=Ø or sup {‖Y‖|Y ∈P(X)}<+∞.

(A2) For any Y �=0, either L(Y )=Ø or inf {‖X‖|X ∈L(Y )}>0.

The assumption (A1) ensures that there is a finite upper bound on the level of
outputs, which can be produced from any given vector of inputs. Similarly, the
assumption (A2) ensures that there is a non-zero lower bound on the level of
inputs necessary to produce any non-zero vector of outputs. This obviously implies
that no positive outputs can be produced from zero inputs. The latter is often
referred to as the “no free lunch” assumption. Further discussion on this theme
is included at the end of this section.

Throughout this paper, the following three reference technologies generated by
T are frequently used:

C ={(X,Y )|(X,Y )=α(X′, Y ′); (X′, Y ′)∈T ,α ≥0},
H ={(X,Y )|(X,Y )=α(X′, Y ′); (X′, Y ′)∈T ;0≤α ≤1},
G={(X,Y )|(X,Y )=α(X′, Y ′); (X′, Y ′)∈T ;α ≥1}.

Although C,H and G are generally neither convex nor closed, we preserve their
conventional names used in the convex case. Thus C is referred to as the CRS, H

as the NIRS, and G as the NDRS technologies.
Note that technologies C,H and G may not satisfy the assumptions (A1) and

(A2), even though this is assumed about T . In Figure 1, the convex PPS T is
defined by the correspondence 0 ≤Y ≤√

X, and the reference technologies C and
G coincide with the set R2+\OY+, where OY+ is the strictly positive part of the OY
axis. Thus C and G do not satisfy (A1) and (A2).

In Figure 2, the non-convex T is defined as 0≤Y ≤X2. Clearly, the technologies
C and H coincide with R2+\OY+ and do not satisfy (A1) and (A2).

Our final remark is of purely academic interest. Let C̄ be the closure of C. Then
C̄ is the minimal closed (possibly non-convex) cone technology generated by T .
Consider the following statement (“no free lunch” in C̄):

[(X,Y )∈ C̄ and X =0] implies Y =0. (1)

Lemma 1. If statement (1) is true, then T satisfies (A1) and (A2).

It is interesting to note that the converse to Lemma 1 is not true. (A
counter-example is the technology T in Figure 1.) Therefore, the assumptions (A1)
and (A2) together are weaker than (1). This completely justifies the title of our
paper.
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Figure 1. Infinite productivity at the origin.

3. Efficiency

Most results in this section may appear to be a repetition of well-known facts. Our
purpose is, however, to show that these definitions, models and approaches remain
valid under the extremely weak assumptions (A1) and (A2) only, which is a less
obvious statement. This is in line with the overall approach adopted in this paper,
where only these two conditions are assumed unless otherwise stated.

The concept of efficiency in DEA is so basic that even the weak assumptions
(A1) and (A2) about the PPS T are not needed for its definition.

Figure 2. Infinite productivity at infinity.
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Definition 1. DMU (X,Y ) is called efficient if it is not dominated by any other
DMU from T , that is, if (X′, Y ′)∈T , then X′ ≤X and Y ′ ≥Y implies X′ =X and
Y ′ =Y . Otherwise, DMU (X,Y ) is called inefficient.

Let DMU0 = (X0, Y0) be any DMU from T such that X0 �= 0 and Y0 �= 0. (This
convention about DMU0 is maintained throughout this paper without mention.)
The input radial efficiency of DMU0 is defined as Ei

T (X0, Y0)= θ i, where

θ i = inf θ (2)

subject to (θX0, Y0)∈T .

Similarly, the output radial efficiency of DMU0 is defined as Eo
T (X0, Y0) = 1/θo,

where

θo = sup θ (3)

subject to (X0, θY0)∈T .

Both programs (2) and (3) are obviously feasible. Due to assumptions (A1)
and (A2), we have 0 < θ i ≤ 1 and 1 ≤ θo < +∞. Consequently, in both cases,
0<Eo

T (X0, Y0)≤1.
Substituting T by C,H and G in models (2) and (3) we obtain, respectively, the

input radial efficiency measures Ei
C(X0, Y0), Ei

H (X0, Y0) and Ei
G(X0, Y0), and out-

put radial efficiency measures Eo
C(X0, Y0), Eo

H (X0, Y0) and Eo
G(X0, Y0).

As noted, technologies C,H and G may not satisfy (A1) and (A2). Therefore,
with T substituted by C,H or G in model (2), the infimum θ i and, consequently,
the input radial efficiency of DMU0 in the respective technology may be equal to
zero. Similarly, in model (3) θo may be equal to +∞, in which case the correspond-
ing output efficiency of DMU0 is also equal to zero.

In the case of any of the technologies T ,C, H or G, the infimum θ i in (2) and
supremum θo in (3) are not generally attained. If, however, θ i = 1, it is obviously
attained because DMU0 ∈T . Similarly, if θo = 1, it is also attained.

Theorem 1.

(i) for any DMU0 ∈T ,Ei
C(X0, Y0)=Eo

C(X0, Y0),

(ii) if DMU0 is efficient in T , then Ei
H (X0, Y0) = Eo

H (X0, Y0) and Ei
G(X0, Y0) =

Eo
G(X0, Y0).

As an unconventional illustration to Theorem 1, consider the efficient DMU A

in Figure 1. Clearly, the input and output radial efficiencies of this DMU in tech-
nology H =T are equal to 1. At the same time, both radial efficiencies in technol-
ogies C and G are equal to zero.

Theorem 1 allows us to use the same generic notation EC(X0, Y0) for both the
input and output radial efficiencies of DMU0 in technology C.
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To test whether DMU0 is efficient in the sense of Definition 1 and, if not, iden-
tify its efficient target, we may perform the second optimisation stage in which the
sum of component slacks is maximised (Ali and Seiford, 1993). Although this tech-
nique was originally developed for the CCR (Charnes et al., 1978) and BCC mod-
els, it is easy to see that it remains robust under the weak assumptions (A1) and
(A2). Further details of this can be found in Podinovski (2002).

4. The Most Productive Scale Size

Following Banker (1984), the most productive scale size for DMU0 can be defined
in a way, which is invariant with respect to the orientation of the model.

Definition 2. DMU0 operates at MPSS if for all DMUs (δX0, γ Y0) ∈ T , where δ,
γ >0, the ratio δ/γ ≥ 1.

Clearly, DMU0 operates at MPSS if and only if the infimum in the following
program is equal to 1 (in which case it is attained at δ =γ =1):

m∗ = inf δ/γ (4)

subject to (δX0, γ Y0)∈T , δ >0, γ >0.

Banker (1984) uses an equivalent formulation to (4), in which the reciprocal
ratio γ /δ is maximised. We prefer (4) because its optimum is always finite, which
ensures notational uniformity and reduces the amount of technical detail in our
development.

Noting that the infimum m∗ in (4) is not changed if T is replaced by C and γ

set equal to 1, we obtain

m∗ =EC(X0, Y0).

If DMU0 operates at MPSS, its input and output radial efficiency in technology
C, and therefore in T , is equal to 1. DMU0 may, however, be inefficient in these
technologies in the sense of Definition 1 because of possible non-proportional
improvements (residual slacks) in its inputs and outputs. Such DMUs exhibit mix
inefficiency and are specifically excluded from the definition of MPSS by Cooper
et al. (2000). We are not, however, excluding such DMUs from the definition of
MPSS (see Section 10 for a further discussion of this issue).

5. Global Returns to Scale: Motivational Examples

In this section, we outline the concept of GRS using two examples: one of an
FDH technology and the other involving its smooth analogue.

Consider the single input and single output FDH technology T in Figure 3.
There are six efficient DMUs: A,B,D,E,F and K.
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Figure 3. An FDH technology.

Define the average productivity of any DMU (X,Y ) ∈ T as the ratio Y/X. We
now constrain our attention to the horizontal parts of the boundary of T in Fig-
ure 3, that is to those DMUs (X,Y ) in which Y is the maximum level of output
obtainable from X. The average productivity of such DMUs is a function of one
variable X only. This function will be denoted as ϕ(X) and is shown in Figure 4,
where ϕ∗ is the maximum of ϕ(X).

The six efficient DMUs in T can now be referred to the following four different
categories, which are logically exhaustive.

(1) The average productivity of DMUs b and E is equal to its maximum ϕ∗.This
is equivalent to the fact that B and E operate at MPSS. We shall say that
these two DMUs exhibit global constant RTS (G-CRS).

(2) DMUs F and K are larger than any DMU, at which ϕ∗ is attained. This
means that DMUs F and K will have to reduce the scale of operations to
achieve MPSS. We shall say that these two DMUs exhibit global decreasing
RTS (G-DRS).

Figure 4. Average productivity φ(X) as a function of X.
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(3) DMU A is smaller than any DMU, at which ϕ∗ is attained. Consequently, A

has to increase the scale of operations to achieve MPSS and therefore exhibits
global increasing RTS (G-IRS).

(4) The average productivity of DMU D is less than the maximum ϕ∗, and D is
between the units B and E at which ϕ∗ is attained. This means that DMU0
does not operate at MPSS but can choose whether to increase or reduce the
scale of its operations in order to achieve MPSS. We shall say that DMU D

exhibits global sub-constant RTS (G-SCRS).

These four types of GRS are not, of course, specific to the FDH technology. In
Figure 5, a smooth variant of the previous technology is presented. According to
the GRS classification, the DMUs B and E operate at MPSS and exhibit G-CRS.
Any DMU on the boundary above E, which includes F and K, exhibits G-DRS.
Any DMU on the boundary below B, which includes A, exhibits G-IRS. Finally,
any boundary DMU between B and E, including D, exhibits G-SCRS.

The above characterisation of GRS can be transferred from our two examples
to any technology T , which satisfies assumptions (A1) and (A2). This will be dealt
with in the sections below.

To conclude this preliminary outline, two comments should be made. First, if
technology T is convex, the first three types of GRS are exhaustive. (This for-
mally follows from Theorem 4.) Therefore, G-SCRS can occur only in a non-con-
vex technology.

Second, if technology T is convex, the average productivity of an efficient DMU
would gradually improve as it moves towards its MPSS (see Section 11). If T is
not convex, as in Figure 3, this observation is generally not valid. For example, if
DMU K reduces its input to that of DMU F , which is on the way to the MPSS
unit E, its average productivity will decrease. This is hardly surprising because
the types of GRS are defined as indicators of the direction in which the global

Figure 5. A smooth analogue of the FDH technology.



236 PODINOVSKI

maximum of the average productivity is achieved, and local improvements in this
direction in a non-convex technology are not guaranteed.

6. Global Returns to Scale: The General Case

Consider any production technology T , which satisfies assumptions (A1) and (A2)
and, generally, has multiple inputs and outputs, and assume that DMU0 is efficient
in T . By maximising the ratio γ/δ as long as (δX0, γ Y0) remains a member of T ,
the maximum average productivity for the given mixes X0 and Y0 can be identified.
This, of course, leads to model (4), in which the reciprocal ratio δ/γ is minimised.
Therefore, the DMUs that have the maximum average productivity are the DMUs
that operate at MPSS.

The above suggests that, as in Section 5, the type of GRS exhibited by DMU0 can
be identified by comparing the size of MPSS units having the structure (δX0, γ Y0) with
the size of DMU0. This will identify the direction(s) towards the global maximum of
the average productivity and lead to the four possible types of GRS.

Due to the fact that assumptions (A1) and (A2) about T are extremely weak,
we have to overcome certain difficulties with the attainability of MPSS, as illus-
trated by Figures 1 and 6. In Figure 1 there is no unit, which operates at MPSS,
although the average productivity is decreasing as the efficient DMUs become
larger, and therefore GRS should be classed as decreasing. In Figure 6, the only
unit operating at MPSS is B, which is larger than DMU A. At the same time
the average productivity of the efficient units close to the origin approaches that
of DMU B, although never attains it. (The straight line through the origin and
point B is tangent to the boundary of the PPS at the origin.) It would, therefore,
be counter-intuitive to class A as a G-DRS unit because, by significantly reduc-
ing the scale of its operations, DMU A could achieve the average productivity infi-
nitely close to that of B. Therefore, A should be classed as exhibiting G-SCRS.

Definition 3. DMU (δ̂X0, γ̂ Y0)∈T is called a scale reference unit (SRU) of DMU0
if δ = δ̂ and γ = γ̂ is an optimal solution to program (4), that is δ̂/γ̂ = m∗. Fur-
ther, for any ε ≥0, DMU (δεX0, γεY0)∈T , where δε, γε >0, is called an ε-SRU of
DMU0 if δε/γε ≤m∗ + ε.

Since m∗ is the infimum in (4), an ε-SRU of DMU0 exists for any ε>0. If ε is
small, the ratio δε/γε is very close to m∗ and the ε-SRU “almost” represents the
lowest ratio m∗ between the input mix X0 and output mix Y0 available in technol-
ogy T . Obviously, any SRU of DMU0 is its ε-SRU with ε =0. A SRU of DMU0
exists if and only if the infimum m∗ in program (4) is attained.

Lemma 2. Assume that DMU0 is efficient in T . Suppose (δX0, γ Y0) ∈ T for some
δ > 0 and γ > 0 such that δ/γ < 1. (In this case DMU0 obviously does not operate
at MPSS.) Then either both δ and γ are greater than 1 or both are smaller than 1.
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Figure 6. A case of S-CRS with only one SRU.

Suppose that an efficient DMU0 does not operate at MPSS, that is m∗ < 1. If
we take any small ε>0 (such that m∗ +ε<1), then for any ε-SRU (δεX0, γεY0) we
will have, according to Definition 3, δε/γε <1. By Lemma 2, this implies that either
δε >1 and γε >1, or δε <1 and γε <1 (but not, e.g., δε <1 and γε >1). This means
that, for such an ε, any ε-SRU is either larger than DMU0 (if δε >1 and γε >1) or
smaller than DMU0 (if δε <1 and γε <1). This characterisation of ε-SRUs enables
us to define the four types of GRS:

Definition 4. Let DMU0 be efficient in T . Then it exhibits:

(i) G-CRS if DMU0 operates at MPSS;

(ii) G-DRS if all of its ε-SRUs are smaller than DMU0 for all sufficiently small
ε, (that is for all ε ∈ (0, ε̄), where ε̄ is some positive number);

(iii) G-IRS if all of its ε-SRUs are larger than DMU0 for all sufficiently small ε;

(iv) G-SCRS if, for any ε > 0, some of its ε-SRUs are smaller, and some larger,
than DMU0, but DMU0 itself does not operate at MPSS.

As an illustration to the above definition, consider DMU A in Figure 1. For
all sufficiently small ε, all ε-SRUs of A are close to the origin and, consequently,
smaller than A. Therefore, DMU A exhibits G-DRS. For DMU A in Figure 6, the
ε-SRUs smaller than A can be found close to the origin. At the same time, a larger
unit B is a SRU and thus also an ε-SRU of A for any ε>0. Consequently, DMU
A exhibits G-SCRS.

It is worth noting that the GRS types introduced by Definition 4 are not related
in any way to a particular measure of efficiency (input or output radial, additive,
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etc.), which may be used in the analysis. Therefore, the GRS classification is invari-
ant with respect to the choice of such a measure as long as the PPS is unchanged.

7. Global Returns to Scale: a Special Case

In this section we identify an important and sufficiently large class of technolo-
gies for which the concept of ε-SRUs is not required for the definition of GRS.
Namely, assume that the PPS T can be represented as the finite union of sets
Tk:

T =
⋃

k=1,...,K

Tk, (5)

where, for every k, (1) the set Tk satisfies (A1) and (A2) and is convex, and (2) the
corresponding CRS technology Ck generated by Tk is closed. It is easy to see that
the set T defined by (5) satisfies (A1) and (A2).

It is easy to see that the above assumptions (1) and (2) always hold if every
set Tk is a polyhedral (hence convex) set which satisfies (A1) and (A2). In this
case the sets Ck are also polyhedral (and therefore, closed). Obvious examples
of this include the PPS of the BCC model and the FDH technology, of which
the latter is the finite union of polyhedral sets. Further examples include a
range of technologies based on the assumption of selective convexity (Podinovski,
2005).

The following theorem classifies GRS using only the SRUs of DMU0.

Theorem 2. Suppose that DMU0 is efficient in T defined by (5). Then DMU0 has
at least one SRU. Further, DMU0 exhibits

(i) G-CRS if and only if DMU0 operates at MPSS,

(ii) G-DRS if and only if all of its SRUs are smaller than DMU0,

(iii) G-IRS if and only if all of its SRUs are larger than DMU0,

(iv) G-SCRS if some of its SRUs are smaller, and some larger, than DMU0, but
DMU0 itself does not operate at MPSS.

As noted, the FDH technology can be represented in the form (5). Therefore,
Theorem 2 can be used for the classification of GRS of its efficient units. If applied
to the efficient DMUs in Figure 3, it produces the same characterisation of GRS
as discussed in Section 5. Note, however, that the technology in Figure 6 cannot
be represented in the form (5) and Theorem 2, if applied to DMU A, would erro-
neously class its GRS type as G-IRS.
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8. Further Discussion

8.1. Global vs. Local RTS

In this section we compare the traditional concept of RTS with the concept of
GRS. The former suggests the type of marginal resizing (increasing or decreasing)
of the efficient unit, which guarantees improvements in the average productivity
of the unit. Conceptually, the unit is said to exhibit IRS if changing (increasing
or decreasing) its inputs by a small margin leads to its outputs being changed
(increased or, respectively, decreased) in a larger proportion. The DRS type is
defined in a similar way. These two definitions are refined below for our specific
purposes.

The GRS classification suggests the type of resizing which the efficient unit
should implement in order to achieve the global maximum of the average produc-
tivity. Regarding the resizing problem as an optimisation problem with the aim of
increasing the average productivity as a function of the size factor, one can envis-
age that the difference between the concepts of RTS and GRS is the same as the
difference between local search and global optimisation. For example, from the
local perspective the function of average productivity may be increasing when the
unit marginally increases its size (hence the IRS type), while the global optimum
might be in the opposite direction (hence the G-DRS type).

In a practical context, the RTS and GRS classifications address different issues.
The RTS classes are indicative of the type of resizing of the unit which should
result in immediate improvements of its average productivity. The GRS classes indi-
cate the direction of change necessary to achieve the global maximum of the aver-
age productivity. This is obviously useful in assisting strategic decisions like those
involving mergers of units or splitting into smaller firms.

It is worth noting that the concept of GRS is well defined under extremely weak
assumptions about the production technology, while the traditional definition of
RTS is less universal. For example, the RTS classification of the efficient DMUs
in the FDH technology in Figure 3 is unclear.

Consider the case in which the concept of RTS is well defined. For simplicity, we
shall limit our discussion to the case of one input and one output, but the same
conclusions could be reached in the general case.

As an illustration, refer to Figure 7, where the boundary of the technology T is
defined by a differentiable function Y =Y (X).

From the global perspective, the only DMU operating at MPSS is DMU A,
which therefore, exhibits G-CRS. All the other DMUs B,C,D,E and F are effi-
cient and larger than A, and hence all exhibit G-DRS.

From the local perspective, the classification of RTS is different. Whether the
average productivity of an efficient DMU increases, decreases or remains constant
to the first degree of approximation depends on the ratio of the marginal produc-
tivity of the unit to its average productivity. The former is equal to slope of the
boundary dY (X)/dX. The latter is the ratio Y/X, that is the slope of the line pass-
ing though the origin and the point representing the unit on the graph. The ratio
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Figure 7. The difference between RTS and GRS.

of these two measures is known as the scale elasticity and is commonly expressed
as

S(X,Y )= X

Y

dY

dX
. (6)

Consider, e.g., DMU D in Figure 7. As seen in the graph, a marginal increment
of its input would result in more than proportional increment of the average pro-
ductivity, provided the unit continues to operate efficiently. In this case the scale
elasticity S(X,Y ) is greater than 1, and DMU D is classed as exhibiting IRS. The
same type of RTS is exhibited by any other unit on the boundary between C and
E. For similar reasons, the scale elasticity at any unit on the boundary between A

and C and also to the right of E, is smaller than 1. Consequently, all these units,
including B and F , exhibit DRS.

The scale elasticity at three DMUs, A,C and E, is equal to 1, and these units
are classed as exhibiting CRS. It is interesting to point out that, although E can
be said to operate at the locally most productive scale size, DMU C operates at
the locally least productive scale size.

To illustrate the relation between RTS and GRS further, rewrite the derivative
of the average productivity Y (X)/X in the following form:

d(Y/X)

dX
= Y ′X −Y

X2
= (X/Y )Y ′ −1

(X2/Y )
= S(X,Y )−1

(X2/Y )
(7)

where S(X,Y ) is the scale elasticity as defined by (6).
As follows from (7), the set of DMUs, at which the derivative of the function of

average productivity is zero, is the set of DMUs exhibiting CRS (where the elastic-
ity is equal to 1). This means that the DMUs exhibiting CRS (more precisely, the
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inputs X of such DMUs) are stationary points of the function of average produc-
tivity. (Similarly, the IRS type corresponds to the areas of strict growth, and DRS,
the areas of strict decline, of the average productivity.)

In other words, the condition that an efficient DMU exhibits CRS is a necessary
condition for this DMU to exhibit G-CRS (and operate at MPSS). As proved in
Section 11, this condition is also sufficient if the technology T is convex (although
the function of average productivity may not be concave). In a general non-convex
technology this condition is not sufficient. The latter is demonstrated by the tech-
nology in Figure 7, in which three DMUs, A,C and E, exhibit CRS, but only A

operates at MPSS and is classed as G-CRS.

8.2. GRS and Multiproduct Scale Economies

In this section we link our development of GRS to the neoclassical concept of
multiproduct scale economies based on the consideration of the cost function (see,
e.g., Baumol et al., 1982).

For simplicity, we first refer to the case of a single-product technology depicted
in Figure 7, where we shall now assume that X is the total cost of resources mak-
ing the production of Y possible. The boundary of this technology, represented by
the curve AW, defines the cost function X = c(Y ). For every Y the correspond-
ing value c(Y ) is equal to the minimum cost sufficient for the production of Y .
The interior points of the technology T in Figure 7 represent inefficient produc-
tion units, that is those whose cost of production is higher than the cost function
indicates.

For any member (X,Y ) of this technology T , the average production cost is
defined as X/Y = c(Y )/Y . This is obviously reciprocal to the average productivity
of the unit defined as Y/X. On the boundary of technology T , if the average pro-
ductivity is increasing, the inverse ratio, that is the average cost, is decreasing, and
vice versa. For example, at the point B in Figure 7, the average productivity is
decreasing while the average cost is increasing. Further, both functions of average
productivity and average cost have the same sets of stationary points, where their
derivatives are equal to zero and the CRS type is observed. In Figure 7, these sets
consist of the three points: A,C and E.

The above equivalence implies that the classification of local RTS is identical
whether the cost function or average productivity approach is used for the defi-
nition of scale economies. This equivalence extends to the case of a multiproduct
technology where the scale elasticity does not depend on whether the ray average
cost or productivity are used for its definition.

Provided the cost is the only input, the M locus of a multiproduct technology is
defined as the set of all product mixes Y , each of which minimises the average cost
along the corresponding ray.4 Since the ray average cost and ray average produc-
tivity are mutually reciprocal, the concepts of M locus and MPSS are equivalent.
More precisely, the M locus of technology T is equal the set of all output mixes
Y such that the unit (c(Y )), Y ) operates at MPSS.
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We can now restate our main conclusions of this section in terms of the cost
function. Namely, the types of GRS are indicative of the direction towards the M
locus of the technology, more precisely, its members on the ray under consider-
ation. Mathematically it is possible that there could be a few isolated members of
the M locus on a given ray, in which case the function of average costs is obvi-
ously not U-shaped. For example, if X in Figure 5 is the production cost, the units
B and E represent the M locus (as well as MPSS) and exhibit G-CRS. The other
units on the boundary are classed into the remaining three GRS types, which indi-
cate the direction to the M locus.

Further, the local characterisation of RTS is generally not indicative of the relative
position of the M locus. For example, as discussed, unit D in Figure 7 exhibits IRS in
the local sense and, consequently, its average production cost will decrease if the unit
moves towards E, but the M locus is found in the opposite direction, at unit A.

Finally, if the technology T is convex, then, as established in Section 11, the
G-SCRS type is impossible and the local RTS classification is consistent with the
GRS classification. Therefore, in a convex technology, the local RTS classes are
themselves indicative of the direction to the M locus (and MPSS).

9. Testing for Global Returns to Scale

If technology T is convex, the method of testing RTS, as suggested by Färe et al.
(1983, 1985), is equally applicable to testing GRS, because the two characterisa-
tions of RTS, local and global, are identical (see Theorem 7).

If technology T is not convex, this method should not be applied for testing
RTS. As an illustration, refer to the technology T in Figure 7. The correspond-
ing CRS technology C is the closed cone between the ray OA and the X-axis. The
NIRS technology H is the area below the consecutively joined segment OA, curved
segment AB, segment BE and curved segment EW.

Consider DMU D. Since Ei
T (D)=1 and Ei

C(D)<Ei
H (D), unit D is erroneously

classed as exhibiting DRS, while, as discussed in Section 8.1, it exhibits IRS. The
same applies to the units C and E, which exhibit CRS but are erroneously classed
as exhibiting DRS. In fact, any DMU on the efficient boundary above A, which
includes B,C,D,E and F , is classed as DRS, which suggests that the method of
Färe et al. is, in fact, classifying the units according to the GRS classification, and
not RTS.

This is not, however, an entirely accurate observation, as the method does not
account for the G-SCRS type and would confuse it with G-IRS. (If the method
used the NDRS reference technology instead of the NIRS one, it would confuse
the G-SCRS type with G-DRS.) As an illustration consider the FDH technology
T in Figure 3. The corresponding CRS technology C is the closed cone between
the ray OW and the X-axis. The NIRS technology H is the area below the broken
line OEPKV. As discussed, DMU D exhibits G-SCRS. However, since Ei

T (D) =
1 and Ei

H (D) = Ei
C(D) < 1, DMU D would erroneously be classed as exhibiting

G-IRS, if the method of Färe et al. were used for this purpose.
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Similarly, DMU A in the technology T in Figure 6 exhibits G-SCRS but would
be classed as exhibiting G-IRS, if the same method were applied.

From these examples we can conclude that, in a non-convex technology, the
method of Färe et al., first, does not test for RTS, and, second, appears to be more
consistent with the GRS classification but misses out the G-SCRS type.

Below we suggest a slightly modified approach to testing GRS, equally applica-
ble to convex and non-convex technologies. The difference with the approach of
Färe et al. is that, instead of reference technologies C and H , we use G and H ,
which allows us to distinguish between all four possible types of GRS. The same
two reference technologies were used by Kerstens and Vanden Eeckaut (1999) in
their modification of the method of Färe et al.5

Theorem 3 is formulated in terms of the input radial efficiencies of DMU0 in technol-
ogies T ,H and G, where T needs to satisfy only (A1) and (A2). Since DMU0 is assumed
efficient, in each of the four inequalities the term Ei

T (Xo, Yo) can be substituted by 1.
Also, according to Theorem 1, the statement below remains valid if all of the input
efficiencies of DMU0 are substituted by their output analogues.

Theorem 3. Suppose DMU0 is efficient in T. Then it exhibits:

(i) G-CRS if and only if Ei
G(X0, Y0)=Ei

H (X0, Y0)=Ei
T (X0, Y0),

(ii) G-DRS if and only if Ei
G(X0, Y0)<Ei

H (X0, Y0)≤Ei
T (X0, Y0),

(iii) G-IRS if and only if Ei
H (X0, Y0)<Ei

G(X0, Y0)≤Ei
T (X0, Y0),

(iv) G-SCRS if and only if Ei
G(X0, Y0)=Ei

H (X0, Y0)<Ei
T (X0, Y0).

To see that Theorem 3 classes the GRS type of DMU D in Figure 3 correctly, note
that the NDRS technology G is the area below the broken line UAQBW. Since Ei

G(D)=
Ei

H (D)<1=Ei
T (D), DMU D is correctly classed as exhibiting G-SCRS.

As another illustration, consider DMU A in Figure 1. Since Ei
T (A)=Ei

H (A)=1
and Ei

G(A)= 0, according to Theorem 3, A exhibits G-DRS. Similarly, for DMU
B in Figure 2, Ei

T (B)=Ei
G(B)=1 and Ei

H (B)=0. Therefore, B exhibits G-IRS.
We conclude this section by a practical remark concerning the use of Theorem 3

with the FDH technology. Mixed integer non-linear programming models for the
assessment of efficiency of DMU0 in the reference technologies H and G induced
by the free disposal hull were developed by Kerstens and Vanden Eeckaut (1999)
and Briec et al. (2000). Computationally simpler linear analogues were later sug-
gested by Podinovski (2004a).

10. Global Returns to Scale for Inefficient Units

The issue of MPSS and GRS for inefficient DMUs is, with one notable exception,
a matter of definition, and different definitions may, in some cases, lead to differ-
ent characterisations.
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Definition 5. DMU0 is called R-efficient (R stands for the radial nature of effi-
ciency), if Ei

T (X0, Y0)=Eo
T (X0, Y0)=1.

Any efficient DMU is R-efficient but the converse is generally not true. As follows from
Definition 2, any unit operating at MPSS is R-efficient, but not necessarily efficient, in
technologies T and C. Consequently, any SRU of a DMU0 is an R-efficient DMU.

Revisiting the proof of Lemma 2, it is easy to see that it remains valid for any DMU0,
which is R-efficient. Therefore, the classification of the types of GRS based on this
lemma, as given by Definition 4, is equally applicable to any R-efficient DMU0.

Further, as the proofs of Theorems 1, 2 and 3 really use only the fact of R-efficiency
of DMU0, and not its efficiency in the sense of Definition 1, their statements remain
valid for any R-efficient DMU0. In summary, there is no difference between efficient
and R-efficient DMUs as far as the definition and testing of GRS are concerned.

If an inefficient DMU0 is not R-efficient, it is possible that it has a SRU
(δX0, γ Y0), where δ<1 and γ >1, which is neither larger nor smaller than DMU0.
Consequently, the GRS as an indicator of the direction leading to MPSS is unde-
fined. An example of this type is DMU L in Figure 3, which has two SRUs, B

and E, the latter being neither smaller nor larger than L.
Further classification rules can be added to the definition of GRS, similar to

those used to classify RTS of inefficient DMUs, in order to expand its applicability
to some, or even all, inefficient units. For example, DMU P in Figure 3 could be
classed as exhibiting G-DRS because both of its SRUs B and E could be regarded
as being smaller than P. Another approach, leading to a generally different char-
acterisation, was used by Färe et al. (1994) and Cooper et al. (2000). According to
it, an inefficient DMU is first projected on the efficient frontier of T , and the type
of GRS (or RTS, as in Färe et al. and Cooper et al.) is defined at this projection.
If this were applied to DMU P, it would be classed as exhibiting G-CRS.

Since the classification of the GRS types of inefficient units is a matter of defi-
nition, we are not taking this issue any further.

11. Returns to Scale in a Convex Technology

Suppose that, in addition to assumptions (A1) and (A2), T is a convex set. The
aim of this section is twofold. First, we prove that the case of G-SCRS is impos-
sible in T . Second, we show that the types of GRS in technology T are consistent
with the classification of local RTS.

11.1. Impossibility of the G-SCRS Type

Theorem 4. If technology T is convex, the case of G-SCRS is impossible.

This theorem6 and the obvious equality EC(X0, Y0)=min(Ei
G(X0, Y0),E

i
H (X0, Y0))

imply that, in a convex technology, the original method of Färe et al. and its modi-
fication stated in Theorem 3 are equivalent.
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Further, consider the convex technology of the BCC model. As Banker et al.
(1996) shows, in this technology, the original method of Färe et al. is equivalent to
the primal (also known as the CCR RTS) and dual (BCC RTS) methods of testing
local types of RTS. This has two implications.

First, if according to Theorem 3 the method of Färe et al. classes DMU0 as
exhibiting, say, G-IRS, then DMU0 also exhibits local IRS, and vice versa. In the
same way, G-DRS corresponds to the type of local DRS, and G-CRS to local
CRS. In other words, in the BCC model the local and global RTS classes are iden-
tical. Below, this result is extended to any closed convex technology.

Second, several methods have been developed for the testing of types of RTS in
the BCC model (see, e.g., Banker et al., 2004). Since the local and global RTS clas-
ses are identical in the BCC model, all such methods, including the one based on
the sign of the dual variable of the convexity constraint, are also testing for the
types of GRS.

11.2. Ray Average Productivity

The assumptions (A1) and (A2) are too weak for our further development. In this
and the following sections we shall additionally assume that the convex PPS T is
a closed set. Some of the results below or their analogues can be formulated with-
out the assumption of closedness, but the overall development becomes excessively
technical.

Consider any efficient7 DMU0 in the technology T . This DMU becomes a base
unit in the development below. Define �, the set of all δ > 0 such that, for some
γ >0, (δX0, γ Y0)∈T . Since the PPS T is convex, � is also a convex set. In other
words, � is an interval, which may be bounded or unbounded, or a single-point
set.8 The set of all vectors δX0, where δ >0, is the ray in the input space induced
by the input vector X0, and the interval {δX0|δ ∈�} is its subset.

For every δ ∈�, introduce the function γ̄ (δ) as

γ̄ (δ)=max{γ |(δX0, γ Y0)∈T }. (8)

Due to assumption (A1), γ̄ (δ) is finite for every δ ∈�. Since T is closed, γ̄ (δ) is
attained and represents the maximum proportion of output Y0 obtainable in tech-
nology T for the vector of inputs δX0. In particular, since DMU0 is efficient,

γ̄ (1)=1. (9)

Lemma 3. The function γ̄ (δ) is concave and continuous on �.

It is worth noting that the unit

(δX0, γ̄ (δ)Y0). (10)

where δ ∈�, is not necessarily efficient in technology T , although, by definition of
γ̄ (δ), its output radial efficiency is always equal to one. For example, suppose that,
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in the FDH technology in Figure 3, we have selected unit A as the base DMU0,
so that δ=1 corresponds to A and �= [1,+∞). Then, of all the units in the form
(10), only six of them: A,B,D,E,F and K, are efficient, while the rest are not.

Definition 6. The ray average productivity (RAP) of the unit (δX0, γ̄ (δ)Y0), where
δ ∈�, is

ϕ(δ)= γ̄ (δ)

δ
. (11)

The definition of RAP relates the quantity γ̄ (δ) of the fixed output bundle Y0 to
the quantity δ of the fixed input bundle X0. This generalises the notion of average
productivity discussed in Section 8.1 for the simple case with one input and one
output. Since, obviously, ϕ(1)= 1, the RAP ϕ(δ) is the factor by which the aver-
age productivity of the unit (10) differs from the average productivity of DMU0.

Lemma 4. The function ϕ(δ) is continuous and quasiconcave on �, that is

ϕ(δ2)≥min(ϕ(δ1), ϕ(δ3)) (12)

for any δ1, δ2 and δ3 ∈� such that δ1 <δ2 <δ3. Further, if ϕ(δ1) �=ϕ(δ3), the inequal-
ity in (12) is strict.

It is worth emphasising that, although the technology T is assumed convex and
the function γ̄ (δ) is concave on �, the ray average productivity ϕ(δ) is generally
not concave. For example, refer to the technology shown in Figure 1 and define
X0 =1. Then Y0 =1, and for every efficient unit (10) we have ϕ(δ)=√

δ/δ =1/
√

δ,
which is not a concave function.

In the above development, DMU0 was used as the base unit to define the inter-
val � and functions γ̄ (δ) and ϕ(δ). Suppose that, instead of DMU0, another unit

(X̃, Ỹ )= (δ̃X0, γ̄ (δ̃)Y0) (13)

from the same ray is chosen as the base unit. This redefines the interval � and the
functions γ̄ (δ) and ϕ(δ). In particular, δ =1 will now correspond to DMU (X̃, Ỹ ).
Further, the RAP of any unit on the ray changes by the positive factor δ̃/γ̄ (δ̃),
where δ̃ and γ̄ (δ̃) are as in (13). Since this factor is constant, the general behaviour
of the function of RAP remains unchanged on the ray. More specifically, the RAP
at any DMU (X,Y ) is increasing or decreasing irrespective of the base unit (13),
and the sign of the derivative ϕ(δ) is also invariant in this respect.9 In our develop-
ment below this means that the characterisation of GRS and local scale economies
on any ray does not depend on the choice of the base unit DMU0.
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11.3. The Structure of Ray Average Productivity

Let φ∗ be the supremum10 of ϕ(δ) on the interval �. Define �∗, the set of all δ∈�

such that ϕ(δ)=ϕ∗. If the supremum φ∗ is not attained, �∗ =Ø

Lemma 5. Provided �∗ �=Ø, the set �∗ is closed and convex.

According to Lemma 5, the set �∗ may be a single-point set or a sub-interval11

of �. Consequently, the interval � can be represented as the union of three inter-
vals:

�=�+ ∪�∗ ∪�−, (14)

where �+ is the set of all δ ∈� such that δ < δ′ for any δ′ ∈�∗. Similarly, �− is
the set of all δ ∈� such that δ >δ′ for any δ′ ∈�∗.

In representation (14), each of the three sub-intervals �+, �∗ and �−, but obvi-
ously not all of them, can be empty sets.12 The only impossible nontrivial case is
where the set �∗ is empty but both sets �+ and �− are not. This fact is estab-
lished in Theorem 5.

Theorem 5. The ray average productivity ϕ(δ) is strictly increasing on �+ and
strictly decreasing on �− (provided these sets are not empty). If �+ �= Ø and
�− �=Ø, then �∗ �=Ø.

As an illustration to Theorem 6, refer to the technology T whose efficient
boundary is defined by the equation Y = ln(X + 1), as shown in Figure 8. To be
specific, let point A be DMU0. In this case �= (0,+∞) and the average produc-
tivity ϕ(δ) is strictly decreasing on the entire interval �, so that �− =�. The max-
imum (supremum) of average productivity ϕ(δ) is not attained, and �∗ =�+ =Ø.
Obviously, for all sufficiently small ε >0, the ε-SRUs of any efficient DMU0 in T

will be located close to the origin.

11.4. GRS, RTS and Scale Economies

As an immediate implication of Theorem 5 we see that, in a closed convex tech-
nology T , the notion of GRS is consistent with the notion of scale economies. In
particular, scale economies are present on the interval �+ where all units belong
to the G-IRS type. Similarly, diseconomies of scale are observed on the interval
�−, where all units exhibit G-DRS. Finally, economies of scale are exhausted on
the interval �∗, where the MPSS is achieved and G-CRS are observed.

We shall now investigate a more subtle correspondence between the GRS and
RTS classifications. As we were able to see, in a closed convex technology, the for-
mer is equivalent to the notion of scale economies. However, as highlighted by
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Figure 8. Unattained finite maximum productivity at the origin.

Baumol et al. (1982), scale economies do not necessarily imply IRS, as well as
scale diseconomies do not imply DRS.

The discrepancy between the two notions arises because the strict monotonic-
ity of the function of ray average productivity ϕ(δ) does not in principle preclude
its derivative from taking on a zero value. The corresponding DMU would exhibit
CRS and economies of scale at the same time. Lemma 6 shows that, in a convex
technology, this cannot happen.

Lemma 6. Let δ̃ be any interior point of the set �. Assume that the function γ̄ (δ)

and, therefore, ϕ(δ) are differentiable in some neighbourhood of δ̃. If ϕ(δ) is strictly
increasing at δ̃, then ϕ′(δ̃)>0. If ϕ(δ) is strictly decreasing at δ̃, then ϕ′(δ̃)<0.

We now need to translate the above statement to the language of RTS. Sup-
pose that the boundary of the PPS T , on which the efficient DMU0 is located, is
described, at least in some neighbourhood of DMU0, by the equation F(X,Y )=0,
where X ∈Rm and Y ∈Rs . Since all units (10) are located on the boundary of T ,
we have

F(δX0, γ̄ (δ)Y0)=0 (15)

for all δ∈� which are sufficiently close to δ=1 (the latter corresponds to DMU0).
In particular, for DMU0 we have F(X0, Y0)=0.

We should now assume that the standard assumptions of the implicit function
theorem13 are satisfied for equation (15) at its solution (δ, γ̄ ) = (1,1), or simply
at DMU0. These assumptions are a standard requirement for the definition of the
types of local RTS using the notion of scale elasticity14. Eventually, this leads to
the main result of this section, Theorem 7, which establishes the equivalence of the
GRS and RTS classifications.
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The type of RTS exhibited by DMU0 depends on the scale elasticity (see, e.g.,
Panzar and Willig, 1977)

S(X0, Y0)=−〈X0,∇XF(X0, Y0)〉
〈Y0,∇Y F (X0, Y0)〉

, (16)

where ∇XF(X0, Y0) and ∇Y F (X0, Y0) are the partial gradients of the function
F(X,Y ) by, respectively, X and Y at DMU0, and 〈, 〉 denotes the scalar product.

Lemma 7. Assume that the production correspondence (15) satisfies the assumptions
of the implicit function theorem at DMU0. Then

S(X0, Y0)= ϕ′(δ)
∣∣
δ=1 +1. (17)

Lemma 7 links the scale elasticity to the derivative of the function of ray average
productivity at DMU0 and explains the rationale behind the following definition
of RTS.

Definition 7. DMU0 is said to exhibit IRS, CRS and DRS if, respectively,
S(X0, Y0)>1, S(X0, Y0)=1 and S(X0, Y0)<1.

Taking into account Lemma 7, the definition of RTS is equivalent to the fol-
lowing classification: DMU0 exhibits IRS, CRS and DRS if, respectively, ϕ′(1)>0,
ϕ′(1) = 0 and ϕ′(1) < 0. This is consistent with the single-input and single-output
case discussed in Section 8.1.

Combining Lemmas 6 and 7, and taking into account representation (14), we
can equate the types of GRS to the corresponding types of RTS.

Theorem 7. Assume that the production correspondence (15) satisfies the assump-
tions of the implicit function theorem at DMU0. Then DMU0 exhibits G-IRS,
G-DRS or G-CRS if and only if it exhibits, respectively, IRS, DRS or CRS.

If the implicit function theorem does not apply to DMU0, the scale elastic-
ity and based on it classification of RTS are undefined, and Theorem 7 becomes
invalid. However, as shown at the beginning of this section, the GRS classes
remain consistent with the notion of economies of scale, as they always are in a
closed convex technology.

An example of this situation is the polyhedral technology of the BCC DEA
model. Since the efficient boundary of such a technology is not smooth at the
edges formed by the intersection of hyperplanes, the scale elasticity, and therefore,
type of RTS, is undefined at any DMU on the edge. For example, in technology T

depicted in Figure 9, the scale elasticity and, therefore, local types of RTS based
on it are undefined at units A,B and C. In practice, however, the units A and B

would be classed as exhibiting IRS, and unit C as exhibiting CRS. This is consis-
tent with the fact that units A and B exhibit scale economies, and at unit C the
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scale economies are exhausted. This extension of the RTS classification is entirely
consistent with the notion of GRS because the latter is equivalent to the notion
of scale economies.

From the practical perspective, Theorem 7 implies that, if DMU0 gradually
changes the scale of its operations towards its MPSS and produces the maximum
output for every intermediate vector of inputs throughout this process, its average
productivity strictly increases until the MPSS is reached.

12. Conclusion

In this paper a concept of global returns to scale was developed as an indicator of
the direction in which an efficient DMU should change the scale of its operations
in order to achieve the global maximum average productivity without changing its
input and output proportions. The GRS classification includes constant, increas-
ing, decreasing and sub-constant types of global RTS. In a convex technology, the
first three of these coincide with the traditional local RTS types, while the sub-con-
stant type is impossible. In a non-convex technology the GRS and RTS classifica-
tions are generally different.

It was shown that, if the technology is not convex, the well-known method of
Färe et al. for testing RTS is, in fact, testing for GRS although not account-
ing for the sub-constant type of GRS. In the convex case this difference is not
observed, as the concepts of GRS and RTS are identical. A simple modification
of this method was suggested, which made it suitable for the identification of all
four types of GRS.

It was demonstrated that the concepts of efficiency, MPSS and GRS are so
fundamental that can be correctly defined and tested under an extremely weak
assumption about the production technology. In particular, the production tech-
nology is not required to be convex, smooth, closed or exhibit any kind of

Figure 9. The polyhedral technology of the BCC model.
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disposability of inputs and outputs. This contrasts with the traditional concept of
RTS, which is based on the notion of scale elasticity and requires the production
correspondence to be differentiable at the unit under consideration.

From a practical point of view, the GRS classes should be useful in strategic
decision situations, as they indicate the global maximum of the average produc-
tivity. In contrast, the traditional local classification of RTS does not, unless the
technology is convex, indicate the direction to the MPSS. The RTS classification
should be useful in assisting decisions concerning relatively minor changes in the
scale of operations.

Appendix: Proofs

Additional Notation for the Appendix
To simplify notation, we denote Ei

T =Ei
T (X0, Y0) and define Ei

H , Eo
H , Ei

G, Eo
G

and EC in a similar way.

Proof of Lemma 1. To prove (A1), assume X �= 0 and there exists a sequence
{(X,Yk)} ⊂ T such that ‖Yk‖ → ∞ as k → ∞. Define X(k) = X/‖Yk‖ and Y(k) =
Y/‖Yk‖. Clearly, (X(k), Y(k))∈ C̄ and

∥∥Y(k)

∥∥=1 for every k. Since all Y(k) are on the

unit sphere, without loss of generality, {(Xk, Yk)}→ (0, Ŷ ), where
∥∥∥Ŷ

∥∥∥=1. Since C̄

is closed, (0, Ŷ )∈ C̄, which is impossible due to (1). Finally, if the infimum in (A2)
is zero, it is attained in C̄ at X =0, and (1) is false.

Proof of Theorem 1. Part (i) follows from the fact that (θX0, Y0) ∈ C if and only
if (X0, (1/θ)Y0) ∈ C, for any θ > 0. (ii) For any ε > 0, there exist θ ∈ (0,Ei

H + ε),
(X′, Y ′)∈ T and α ∈ (0,1] such that (θX0, Y0)=α(X′, Y ′). Then θ/α ≥ 1, as other-
wise (X′, Y ′) dominates (X0, Y0). Then (X0, (1/θ)Y0)= (α/θ)(X′, Y ′)∈H and Eo

H ≤
θ ≤Ei

H + ε. Since ε is arbitrarily small, Eo
H ≤Ei

H .

Similarly, for any ε >0, there exist θ ≤min(Eo
H + ε,1), (X′, Y ′)∈T and α ∈ (0,1]

such that (X0, (1/θ)Y0)=α(X′, Y ′). Since θα ≤ 1, (θX0, Y0)= θα(X′, Y ′)∈H . Then
Ei

H ≤ θ ≤Eo
H + ε. Since ε is arbitrarily small, Ei

H ≤Eo
H . Thus Ei

H =Eo
H .

The equality Ei
G =Eo

G is proved in a similar way.

Proof of Lemma 2. Since δ/γ < 1, the case δ ≥ 1, γ ≤ 1 is impossible. If δ ≤ 1 and
γ ≥1, DMU0 is dominated and thus inefficient.

Proof of Theorem 2. Without loss of generality, for any ε>0 such that m∗ + ε <1
there exists an ε-SRU (δεX0, γεY0) ∈ T1 smaller than DMU0. Let us prove that
there also exists a SRU of DMU0 in T1. Since C1 is closed,

m∗ = inf{δ/γ |(δX0, γ Y0)∈T1, δ, γ >0}=min{δ|(δX0, Y0)∈C1, δ ≥0}
and m∗ is attained at some δ∗. By definition of C1, (δ∗X0, Y0)=α∗(X∗, Y ∗), where
(X∗, Y ∗) ∈ T1 and α∗ ≥ 0. Since Y0 �= 0, we have α > 0. Define δ̂ = δ∗/α∗ and γ̂ =
1/α∗. Then m∗ is attained at (δ̂X0, γ̂ Y0)∈T1, which is a SRU of DMU0.
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Let us prove that this SRU is smaller than DMU0. Assume that this is not true,
that is δ̂ >1, and let λ= (γ̂ −1)/(γ̂ − ε). Then λ∈ (0,1) and

λ(δεX0, γεY0)+ (1−λ)(δ̂X0, γ̂ Y0)= (δ′X0, Y0)∈T ,

where δ′ =λδε + (1−λ)δ̂<1, which contradicts the efficiency of DMU0. Thus δ̂ <1.
Similarly, if for any ε > 0 there exists an ε-SRU larger than DMU0, then there

exists a SRU larger than DMU0. Applying these two observations to the condi-
tions for G-DRS, G-IRS and G-SCRS in Definition 4, we obtain the statement of
the theorem.

Proof of Theorem 3. (i) If Ei
G = Ei

H = Ei
T , then, since Ei

T = 1, m∗ = EC =
min(Ei

G,Ei
H )=1, and DMU0 exhibits G-CRS.

(ii) If m∗ =EC =Ei
G <Ei

H ≤1, let m∗ + ε̄ <Ei
H . Then for any ε∈ (0, ε̄), δε/γε <1.

If δε ≥ 1, then γε > 1 and ((δε/γε)X0, Y0) ∈ H . Then Ei
H ≤ δε/γε < Ei

H . Contradic-
tion. Thus δε <1 and DMU0 exhibits G-DRS.

(iii) If m∗ =EC =Ei
H <Ei

G ≤1, let m∗ + ε̄ <Ei
G. Then for any ε∈ (0, ε̄), δε/γε <1.

If δε ≤1, then (X0, (γε/δε)Y0)∈G and Ei
G ≤δε/γε <Ei

G. Contradiction. Thus δε >1
and DMU0 exhibits G-IRS.

(iv) If m∗ =Ei
G =Ei

H <1, let m∗ + ε̄ <1 and ε∈ (0, ε̄). Since Ei
H =m∗, there exist

θ ≤m∗ +ε and (X′, Y ′)∈T such that (θX0, Y0)=α(X′, Y ′). Since θ <Ei
T and Y0 �=0,

α ∈ (0,1). Then (X′, Y ′)= ((θ/α)X0, (1/α)Y0) is the ε-SRU larger than DMU0.
Similarly, since Ei

G = m∗, there exist θ ≤ m∗ + ε and (X′, Y ′) ∈ T such that
(θX0, Y0) = α(X′, Y ′). Since θ < Ei

T , α > 1, thus 1/α < 1. Then ((θ/α)X0, (1/α)Y0)

is the ε-SRU smaller than DMU0. Therefore, DMU0 exhibits G-SCRS.

Proof of Theorem 4. Assume DMU0 exhibits G-SCRS. Then, by Theorem 3,
(θ ′X0, Y0)=α(X′, Y ′) and (θ ′′X0, Y0)=β(X′′, Y ′′), for some (X′, Y ′), (X′′, Y ′′)∈T , θ ′,
θ ′′ < Ei

T and α < 1 < β. Let λ = (β − 1)/(β − α). Then λ(X′, Y ′) + (1 − λ)(X′′, Y ′′) =
(θ̂X0, Y0)∈T , where θ̂ <Ei

T , which contradicts the definition of Ei
T .

Proof of Lemma 3. This follows immediately from Lemma 10 proved below.

Proof of Lemma 4. The continuity of ϕ(δ) follows from the continuity of γ̄ (δ). To
simplify notation, for any δk ∈� and λ∈ [0,1] define

γk = γ̄ (δk), δλ =λδ1 + (1−λ)δ2, γ λ =λγ1 + (1−λ)γ2. (A.1)

To be specific, assume that ϕ(δ3) ≥ ϕ(δ1), that is γ3/δ3 ≥ γ1/δ1. (The proof in the
case ϕ(δ3)<ϕ(δ1) is similar.) Using notation (A.1), we have γ2 = γ̄ (λδ1 + (1−λ)δ3),
where λ= (δ3 − δ2)/(δ3 − δ1). By Lemma 3, γ̄ (δ) is concave and, therefore,

γ2 ≥ δ3 − δ2

δ3 − δ1
γ1 + δ2 − δ1

δ3 − δ1
γ3. (A.2)

Dividing both parts by δ2, subtracting γ1/δ1 from them and rearranging the terms,
we obtain

γ2

δ2
− γ1

δ1
≥ δ2 − δ1

δ1δ2(δ3 − δ1)
(δ1γ3 − δ3γ1). (A.3)
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Since γ3/δ3 ≥ γ1/δ1, we have ϕ(δ2) ≥ ϕ(δ1), and (12) follows. If ϕ(δ1) �= ϕ(δ3), the
inequality in (A.3) is obviously strict.

Proof of Lemma 5. Since ϕ(δ) is a concave function, the set �∗ is convex. Since
ϕ(δ) is continuous, the set �∗ is closed.

Proof of Theorem 5. Choose any δ3 ∈ �∗ and δ1, δ2 ∈ �+ such that δ1 < δ2 < δ3.
Since ϕ(δ1)<ϕ(δ3), by Lemma 4, ϕ(δ2)>ϕ(δ1). Therefore, ϕ(δ) is strictly increas-
ing on �+. The case of �− is considered in the same way.

Suppose that �+ �=Ø and �− �=Ø. Choose any δ1 ∈�+ and δ2 ∈�−. Since γ̄ (δ)

is continuous on [δ1, δ2], it attains its maximum at some δ∗ ∈ [δ1, δ2]. The point
δ∗ cannot be interior to �+ and �−. This is only possible if δ∗ ∈ �∗, and, con-
sequently, �∗ �=Ø.

Proof of Lemma 6. Suppose ϕ(δ) is strictly increasing at δ̃. By definition, there
exists a neighbourhood (δ̃ − ε, δ̃ + ε) ⊂ � of δ̃, where ε > 0, such that, for any
δ1 ∈ (δ̃ − ε, δ̃) and δ2 ∈ (δ̃, δ̃ + ε),

ϕ(δ1)<ϕ(δ̃)<ϕ(δ2). (A.4)

Without a loss of generality, γ̄ (δ) and ϕ(δ) are differentiable on (δ̃−ε, δ̃+ε). From
(11),

ϕ′(δ)= δγ̄ ′(δ)− γ̄ (δ)

δ2
. (A.5)

By Lemma 11 proved below, the numerator δγ̄ ′(δ)− γ̄ (δ) of (A.5) is not increasing
on the interval (δ̃−ε, δ̃+ε). Since ϕ(δ) is strictly increasing at δ̃, ϕ′(δ̃)≥0. Suppose
that ϕ′(δ̃)= 0. Then ϕ′(δ)≤ 0 for all δ ∈ [δ̃, δ̃ + ε), which contradicts (A.4). There-
fore, ϕ′(δ̃)>0.

The case where ϕ(δ) is strictly decreasing at δ̃ is proved in a similar way.

Proof of Lemma 7. By the implicit function theorem, γ̄ (δ) is differentiable on
some interval δ ∈ (1− ε,1+ ε)⊂�, where ε >0, and

γ̄ ′(δ)=− ∂F/∂δ

∂F/∂γ̄
=−〈X0,∇XF(δX0, γ̄ Y0)〉

〈Y0,∇Y F (δX0, γ̄ Y0)〉
.

Taking into account (9) and (16), we have S(X0, Y0)= γ̄ ′(1), and (17) follows from
(A.5).

Proof of Theorem 7. Under the conditions of the implicit function theorem, δ =
1 is interior to the interval �. Suppose DMU0 exhibits G-IRS. Then 1 ∈�+. By
Theorem 5 and Lemma 6, ϕ′(1)>0, which implies that DMU0 exhibits IRS. Con-
versely, if DMU0 exhibits IRS, by Definition 7 and Lemma 7, ϕ′(1)> 0, which is
only possible if 1 ∈�+. Then DMU0 exhibits G-IRS. Similarly, the G-DRS class
coincides with the DRS class. If DMU0 exhibits G-CRS, it cannot exhibit IRS or
DRS, as this equates to G-IRS and G-DRS. Therefore, DMU0 exhibits CRS, and
the theorem follows.
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Lemma 8. Suppose that the PPS T is closed, convex and satisfies assumption (A1).
Define

�0 ={δ ≥0|∃γ : (δX0, γ Y0)∈T } (A.6)

(Note that � = �0/{0}.) Consider any bounded subset �̃ of �0. (This means that
there exists an R > 0 such that δ < R for any δ ∈ �.) Then there exists an M > 0
such that γ̄ (δ)<M for every δ ∈ �̃, that is the function γ̄ (δ) is bounded above on �̃.

Proof of Lemma 8. Assume that the statement is false. Then there exists an infinite
sequence of pairs (δk, γk), k =1,2, . . . , such that, for every k, δk ∈ �̃, (δkX0, γkY0)∈
T and γk →+∞ when k →+∞. Due to the boundness, the sequence {δk} can be
assumed converging to some δ̃ and the corresponding {γk} strictly increasing. By
taking an infinite subsequence of {δk} to one side of δ̃, we can assume, without
loss of generality, that {δk} is strictly increasing.

For every k ≥3, define lk, the line segment joining (δ1, γ1) with (δk, γk), and γ ∗
k

such that (δ2, γ
∗
k ) ∈ lk. Since T is convex, (δ2, γ

∗
k ) ∈ T . The slope of segments lk

tends to infinity as k increases. (This follows from the inequality (γk − γ1)/(δk −
δ1)≥ (γk −γ1)/R, where R is defined in the formulation of the Lemma.) Then γ ∗

k

also tends to infinity, and the norm ‖γ ∗
k Y0‖ is unrestricted at the input δ2X0, which

contradicts the assumption (A1) about T .

Lemma 9. If the PPS T is closed, convex and satisfies assumption (A1), then the set
�0 defined in (A.6) is closed.

Proof of Lemma 9. Consider any sequence {δk}, where δk ∈ �0 for k = 1,2, . . . ,
which converges to some δ∗. We need to show that δ∗ ∈ �0. For every k, there
exists a γk such that (δkX0, γkY0)∈T . The sequence {δk} is a bounded subset of �0.
By Lemma 8, the sequence {γk} and, therefore {(δkX0, γkY0)}, is also bounded. The
latter implies that there exists a subsequence of units {(δkX0, γkY0)} which, from
the definition of δ∗, converges to (δ∗X0, γ

∗Y0) for some γ ∗. Since T is a closed
set, the limit unit is in T , which implies that δ∗ ∈�0.

Lemma 10. If the PPS T is closed, convex and satisfies assumption (A1), then the
function γ̄ (δ) is concave and continuous on the set �0 defined in (A.6).

Proof of Lemma 10. Consider any δ1, δ2 ∈�0 and λ∈ [0,1]. Then (δ1X0, γ̄ (δ1)Y0)∈
T and (δ2X0, γ̄ (δ2)Y0)∈T . (Here definition (8) includes the case δ =0.) Since T is
a convex set, the unit (δλX0, γ

λY0)∈T (see definition (A.1). Since γ̄ (δλ)≥γ λ, γ̄ (δ)

is concave on �0.
Further, as a concave function, γ̄ (δ) is continuous at any interior point of the

interval �0. To prove the continuity at the boundary points, we first prove that
the hypograph hypo γ̄ (δ) = {(δ, γ )|δ ∈ �0, γ ≤ γ̄ (δ)} is a closed set. Consider any
sequence {(δk, γk)}, k =1,2, . . . , such that (δk, γk)∈hypo γ̄ (δ) for all k, which con-
verges to some pair (δ∗, γ ∗).
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For every k, (δkX0, γ̄ (δk)Y0) ∈ T and, by (8), γk ≤ γ̄ (δk). Since the sequence
of δk converges, it is bounded and, by Lemma 8, the corresponding sequence of
γ̄ (δk) is also bounded. Then there exists a subsequence of {γ̄ (δk)} which con-
verges to some γ̄ ∗. Since T is closed, (δ∗X0, γ̄

∗Y0) ∈ T . Since γ ∗ ≤ γ̄ ∗, we have
(δ∗, γ ∗)∈ hypo γ̄ (δ).

The continuity of function γ̄ (δ) on the interval �0 now follows from the fact
that γ̄ (δ) is concave on �0 and its hypograph is a closed set.15

Lemma 11. Let any function f (t) of a scalar argument t be concave and differentia-
ble on the interval t ∈ (a, b). Then the function h(t)= tf ′(t)−f (t) is not increasing
on this interval.

Proof of Lemma 11. Consider any t1, t2 ∈ (a, b) such that t1 <t2. We need to prove
that h(t1)−h(t2)≥0. Rearranging the terms,

h(t1)−h(t2)= t1
[
f ′(t1)−f ′(t2)

]+ [
f (t2)−f (t1)−f ′(t2)(t2 − t1)

]
. (A.7)

Since f (t) is concave, the two terms in square parentheses in (A.7) are nonnegative
and the lemma follows. (This proof is simpler if the function f (t) is twice differ-
entiable on (a, b), as in this case h′(t)=f ′′(t)≤0, and the lemma follows immedi-
ately.)

Notes

1. In this and similar statements throughout the paper we implicitly assume that the RTS classes can
be correctly defined. If the boundary of the technology is given by the production correspondence
F(X,Y ) = 0, the standard conditions needed for the definition of RTS are those of the implicit
function theorem. In Section 11 we deal with this issue in greater detail.

2. In the last few years there has been significant interest to the development of non-convex technol-
ogies and their practical use. In addition to the well established FDH technology and the non-con-
vex models of Petersen (1990), among the recent developments in this area we find Bogetoft (1996),
Bogetoft et al. (2000), Dekker and Post (2001), Kuosmanen (2001) and Podinovski (2005).
Non-convex technologies are relevant when the divisibility (e.g., time divisibility) of operations
cannot be assumed. This may be due to significant start-up times and costs needed for a partic-
ular production pattern. Further, even if the divisibility of operations can be accepted, the non-
convexity may still be an issue for a variety of different reasons. Agrell et al. (2002) identify a few
such reasons, including the specialisation of units and economies of scope, and the different cost
of resources depending on quantities. The same view is upheld in the discussion incorporated in
Kuosmanen (2003).

3. This equivalence of the local and global classes of RTS is, as highlighted in Note 1, subject to
some additional assumptions.

4. In a multiproduct economy each nonzero output vector Y generates the ray γ Y , where γ >0. The
ray average cost of vector γ Y is defined as c(γ Y )/γ (see, e.g., Baumol et al., 1982). Then Y mini-
mises the ray average cost if the minimum of the ratio c(γ Y )/γ is attained at γ ∗ =1. The same γ ∗
maximises the reciprocal value γ /c(γ Y ), which is the average productivity.

5. Podinovski (2004b) highlights an example of a non-convex technology in which the methods of
Färe et al. (1983) and Kerstens and Vanden Eeckaut (1999) produce different classifications of the
types of local RTS, neither of which is correct. The same effect can be observed in our Figure 5.
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The method of Färe et al. classes any unit on the boundary strictly between points B and D as
exhibiting IRS because their efficiency in the CRS and NIRS reference technologies is the same
and, at the same time, smaller than in the original technology T . The method of Kerstens and
Vanden Eeckaut classes such units as exhibiting CRS. The true type of local RTS of all such units
is DRS. At the same time, their global type is G-SCRS.

6. If the PPS T is a closed set, Theorem 4 becomes a simple corollary to Theorem 5.
7. For our purposes it suffices that DMU0 is only R-efficient in the sense of Definition 5.
8. The value δ = 0 is specifically excluded from � because the ray average productivity ϕ(δ) is unde-

fined at this δ. If the PPS T does not include the zero DMU, the interval � is a closed set. Other-
wise it is not. For details, see Lemma 9 in the Appendix.

9. This takes into account the fact that the same DMU (X,Y ) is represented by different values of δ

in the case of a different base unit (13).
10. Obviously, ϕ∗ =1/m∗, where m∗ is defined by program (4).
11. It is easy to see that δ ∈�∗ if and only if unit (10) is a SRU of DMU0. Since γ̄ (δ)=ϕ∗δ for every

δ ∈ �∗, any SRU of DMU0 can be represented in the form (δX0, (ϕ
∗δ)Y0). Therefore, taking into

account Lemma 5, the set of all SRUs of DMU0 is either a linear interval or a single point on the
boundary of T .

12. Since �∗ is a closed subset of the interval �, the sets �+ and �− cannot consist of a single point.
Therefore, each of these two sets is either empty or has a non-empty interior.

13. For a standard formulation of this theorem see, e.g., Courant (1967). In our context, this theorem
requires that (1) the partial derivatives Fδ and Fγ̄ be continuous in some neighbourhood of the
point δ = γ̄ =1, and (2) Fγ̄ �=0 at δ = γ̄ =1. The proof of Lemma 7 illustrates the use of this theo-
rem.

14. See, e.g., the regularity assumption R3 in Panzar and Willig (1977).
15. For details, see Theorem 7.1 and Corollary 7.5.1 in Rockafellar (1970).
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