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Abstract
Prevention science has increasingly turned to integrative data analysis (IDA) to combine individual participant-level data 
from multiple studies of the same topic, allowing us to evaluate overall effect size, test and model heterogeneity, and exam-
ine mediation. Studies included in IDA often use different measures for the same construct, leading to sparse datasets. We 
introduce a graph theory method for summarizing patterns of sparseness and use simulations to explore the impact of differ-
ent patterns on measurement bias within three different measurement models: a single common factor, a hierarchical model, 
and a bifactor model. We simulated 1000 datasets with varying levels of sparseness and used Bayesian methods to estimate 
model parameters and evaluate bias. Results clarified that bias due to sparseness will depend on the strength of the general 
factor, the measurement model employed, and the level of indirect linkage among measures. We provide an example using 
a synthesis dataset that combined data on youth depression from 4146 youth who participated in 16 randomized field trials 
of prevention programs. Given that different synthesis datasets will embody different patterns of sparseness, we conclude 
by recommending that investigators use simulation methods to explore the potential for bias given the sparseness patterns 
they encounter.
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Prevention scientists have increasingly turned to integra-
tive data analysis (IDA: Curran & Hussong, 2009) to assess 
whether findings from multiple studies show consistent pre-
ventive intervention effects or consistent etiologic impact of 
risk or protective processes across a set of studies. A recent 
special issue of Prevention Science presented 21 papers on 
this topic (Morgan-López et al., 2023). IDA (also referred 
to as IPD or individual participant data meta-analysis) com-
bines individual participant-level data from multiple studies 

of the same topic, allowing us to evaluate an overall sum-
mary statistic, such as effect size across randomized trials, 
to test for and model heterogeneity due to study, population, 
or contextual characteristics, and to examine mediation. IDA 
has many advantages over standard meta-analysis. Tests of 
heterogeneity have much greater statistical power (Dagne 
et al., 2016; Hussong et al., 2013), and IDA allows for tests 
of measurement assumptions, including conditional inde-
pendence and measurement invariance, that are difficult or 
impossible with meta-analysis (Howe et al., 2019).

Both IDA and meta-analysis assume construct equiva-
lence across studies, defined as the cross-study and cross-
measure equivalence of measurement methods used to assess 
the same construct (Howe et al., 2019). Both often require 
harmonization of different measures. When measuring a 
construct such as depression, the goal of harmonization is 
to create a valid score, or index of a construct state, that 
has the same meaning for each participant across all studies 
regardless of which measures they complete. Such scores 
need to be on the same quantitative scale.
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When all studies in an IDA dataset use the same measure 
or set of measures, we can use item-level data and employ 
well-established methods such as Item Response Theory 
(IRT) modeling to create equivalent scores, evaluate whether 
construct equivalence is compromised due to violations of 
conditional independence (left-over covariation among indi-
cators in the same measure) or causal invariance (variation 
in item loadings across samples or studies), and adjust for 
those violations if necessary (Curran et al., 2008). When dif-
ferent studies use different measures of the same construct; 
however, information about empirical associations among 
items can become sparse and indirect, raising questions 
about the accuracy of estimates from measurement models.

For example, when Brown et al. (2018) combined indi-
vidual participant data on youth depression from 19 rand-
omized prevention trials, their dataset included item-level 
data from eight different measures of youth depression from 
three different types of reporters. One study included three 
measures, ten included two measures, and six used only one 
measure. The example in Fig. 1 illustrates several possible 
patterns of sparseness in the outcome measure of a synthesis 
dataset combining data from 18 prevention trials. Sparseness 
is often used to refer to datasets involving categorical items 
where some categories have very low response frequencies 
(Bainter, 2017), and sometimes to study-level missing data. 
Here we use the term sparseness to refer to cases where at 
least some studies do not use all measures of a construct 
found in the full set of studies. We use the term measure 

to refer to sets of indicators, often questionnaire items, that 
have been validated as a set and are administered together. 
We use general notation to reference measures (A, B, C, 
D) here, as this representation can be applied to any con-
struct in a prevention science IDA that is measured in more 
than one way across combined studies, including outcomes, 
mediators, moderators, risk factors, or protective factors. In 
the empirical example we provide later, these include four 
self-report measures of youth depression.

In this example, patterns 1a and 1f reflect two extremes. 
In pattern 1a, all trials included all 4 measures of the con-
struct. In 1f, 12 trials employed only measures A and/or B, 
while 6 trials employed measures C and/or D. Pattern 1a has 
empirical information concerning the association of each 
measure and its items with every other measure and items, 
while pattern 1f has no empirical information concerning the 
association of items from measure A or B with those from 
measure C or D. The intermediate patterns have empirical 
information about the association among every pair of meas-
ures, although this information grows increasingly indirect 
as we move from 1b to 1d. For example, pattern 1b has direct 
information about the association of items from every pair of 
measures, and we could calculate correlations among every 
pair of items both within and across all measures, although 
those correlations would be based on data from different 
subsets of studies. Pattern 1e has direct information only 
for three pairs of measures (A with B, B with D, C with D), 
and only indirect empirical information about associations 

Fig. 1   Example of matrix representation of different patterns of 
sparseness across 18 trials using four measures of the same construct. 
Note: Colors distinguish sets of trials that include different combina-

tions of more than one measure. Definitions of direct linkage, indirect 
linkage, and clique are presented later in the section on graphical rep-
resentation
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among other pairs (A with D indirectly through the associa-
tion of A with B and B with D).

Judging from the papers presented in the IDA special 
issue, sparseness appears very common in IDA datasets 
combining data from multiple studies. Two strategies have 
been used to harmonize scores across measures in the face of 
sparseness: Howe and Brown (2023) refer to these as empiri-
cal and semantic methods. Empirical methods use statistical 
modeling based on the entire dataset, and appear tractable as 
long as all measures have at least indirect information about 
associations among items. Semantic methods use expert 
judges to evaluate whether pairs of items have equivalent 
meaning, even if they use different words and scale anchors, 
and can be employed when no empirical evidence of cross-
measure association is available.

The current study focuses on empirical harmonization. It 
examines whether and how the sparseness of cross-measure 
and cross-study associations among items can affect the 
accuracy of measurement models used to harmonize those 
measures and achieve construct equivalence across meas-
ures and across studies. We first present a framework for 
describing different patterns of sparseness based on graph 
theory (Valente, 2008; Wilson, 1996). In the context of IDA, 
graph theory is useful for characterizing patterns of direct 
and indirect associations among different measures intended 
to assess the same construct. We then identify several poten-
tial patterns of sparseness, ranging from complete datasets 
where all studies include all measures to datasets where sub-
sets of measures are found only in some studies but never 
found in others. Considering sparseness as a missing data 
problem, we use Monte Carlo methods to simulate datasets 
based on several different sparseness patterns and evalu-
ate whether and how parameter estimates in three common 
measurement models become biased as sparseness increases. 
We then apply lessons from these simulations to an existing 
dataset having four measures of depression reported by 4146 
youth participating in 16 randomized trials of prevention 
programs (Brown et al., 2018).

Measurement Models

Modern quantitative measurement methods provide a well-
established technology for specifying and estimating meas-
urement models using a set of items designed to capture 
information about the same construct. These include con-
firmatory factor analysis (CFA) for items with continuous 
scales and its extension to items with categorical or ordinal 
scales, often referred to as IRT models. Here we focus on  
the most common measurement models using reflective indi- 
cators, assuming that construct states are latent and unob-
servable but can be inferred through their causal impact on 
observable indicators (Bollen & Lennox, 1991).

We can apply common measurement models directly to 
the analysis of IDA datasets that combine data from multiple 
studies, referred to as synthesis datasets by Brincks et al. 
(2018). When all studies use the same measure, we can test 
measurement assumptions such as conditional independence 
or measure invariance for the full dataset. With multilevel 
models, we can also test whether measurement is consistent 
across different studies (Curran et al., 2014).

The same approaches can be applied to synthesis datasets 
where all studies use all measures, or where different studies 
use more than one measure of the same construct (as illus-
trated in Fig. 1a). These approaches also provide a means of 
equating latent factor metrics when measures have different 
scales. For example, when considering measures of youth 
depression, the Youth Self Report (YSR) scale includes 
the item “I felt lonely,” with a 3-point rating scale having 
anchors of “not true (as far as you know),” “somewhat or 
sometimes true,” “very true or often true,” rated “within 
the past 6 months.” The Center for Epidemiologic Survey-
Depression (CESD) scale includes an item “I felt lonely” 
with a 4-point rating scale having anchors of “rarely or none 
of the time,” “some or a little of the time,” “occasionally or 
a moderate amount of time,” or “most or all of the time,” 
rated over the past week. Including both items as indicators 
of a latent variable provides estimates of item loadings and 
thresholds (item discrimination and item difficulty param-
eters, in IRT terminology) that allow those items to contrib-
ute information to a latent variable with a common metric.

Figure  2 presents three common measurement mod-
els that can be used with multiple measures of the same 
construct. All items from all measures can be considered 
separate indicators of the same construct in a Single Com-
mon Factor Model (Fig. 2a). However, item sets in different 
measures may be shaped somewhat by unknown nuisance 
factors such as those due to different modes of administra-
tion, leading to measure-level violations of the conditional 
independence assumption. Hierarchical Models, illustrated 
in Fig. 2b, can be used to reduce these violations by mod-
eling separate latent variables for each measure. Items from 
all measures are used as indicators of a higher-order latent 
variable reflecting the construct they all have in common. 
Systematic measurement error unique to each measure is 
modeled in the residual of each measure’s latent variable. 
Bifactor Models, illustrated in Fig. 2c, present a third more 
general alternative. These models include a single common 
latent variable with loadings on all items, and separate latent 
variables for each measure, all forced to be independent. 
These models partition item-level residual variation into that 
unique to each item and that held in common across items 
within the same measure.

Bifactor models reflect the most general case, and include 
the most loading parameters, as they allow each indicator to 
load separately and with different strengths on the common 
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factor, as well as on a measure-specific factor. Because of  
this extra complexity they are often harder to fit, and may 
require larger sample sizes. Hierarchical models also sepa-
rate overall common variance from measure-specific vari-
ance. However, they include fewer loading parameters as 
cross-measure associations are modeled through single 
parameters for loadings of the measure-specific latent vari-
able on the common latent variable, rather than through the 
association of each item with the common latent variable. 
This simplifying assumption may not be accurate, although 
hierarchical models may be the only option for evaluating 
and adjusting for measure-specific variance when bifac-
tor models fail to converge. Single common factor models 
ignore measure-specific variation, assuming that all indica-
tors will be independent of one another after accounting for 
variance due to the common latent variable.

Sparseness as a Missing Data Problem

Although the synthesis dataset illustrated in Fig. 1a includes 
all measures from all studies, it is common to have missing 
data within each study and within each measure. Modern 
quantitative methods allow for using all item information 
when data are missing at random given covariates (MAR: 
Enders, 2010). These methods include full information max-
imum likelihood (FIML), multiple imputation, and Bayes-
ian estimation methods. We can think of these methods 

as “filling in” the absent data for a variable based on the 
associations of existing data on that variable with all other 
observed data, taking into account uncertainty due to miss-
ing data.

Turning to the sparser datasets illustrated in Fig. 1, we 
can consider the measures that are absent for a particular 
study as a type of missing data. Assuming MAR for miss-
ingness of such absent measures, their items, and individual 
values of these items, these quantitative methods allow us 
to “fill in” those scores based on the associations of those 
items with items from other measures in studies where both 
are used. Assuming MAR, these methods should produce 
asymptotically unbiased estimates of factor parameters 
based on only a subset of measures available for each par-
ticipant, although estimates based on fewer items will have 
more unsystematic errors. We will see that things get more 
complicated as sparseness increases. Before addressing this 
issue, we take up the question of how to characterize pat-
terns of sparseness.

Graphical Representation of Sparseness

We can represent a synthesis dataset that combines data 
from several studies employing different measures of the 
same construct in either matrix or graph form. In matrix 
form, we reference each study as a row and each column 
as a measure, placing a marker in each cell when a specific 

Fig. 2   a–c Measurement models
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measure was used in a particular study. Figure 1 provides 
examples of matrices for several synthesis datasets from 18 
trials with 4 different measures, ranging from a complete 
dataset (all trials include all measures and items) to a dataset 
with two isolated subsets (one set of studies uses only meas-
ures A and/or B, a second set only measures C and/or D).

Concepts from graph theory (Wilson, 1996) provide 
another means of summarizing patterns of sparseness in 
terms of information about empirical associations among 
measures or item scores. Graphs consist of nodes (also 
referred to as vertices) and the links between pairs of nodes, 
referred to as edges. Figure 3 presents graphs for the same 
synthesis datasets represented in matrix form in Fig. 1. 
Graphs range from being fully connected (3a: all nodes are 
linked to all other nodes) to having two isolated subsets (3f: 
nodes A and B are connected, as are nodes C and D, but 
there are no cross-subset connections).

A node in a measurement graph refers to a measure and 
its associated items for all studies using that measure. For 
example, the node for measure A in graph 3b subsumes all 
item data for that measure across trials 1 through 9 (as indi-
cated in matrix 1b). We can pool data from the same meas-
ure across studies based on the assumption that the measure 
operates in the same way across all studies. This assump-
tion is often based on consistency in measurement: measures 

usually employ a set of instructions common to all items, 
as well as the same rating scale and anchoring labels. It is 
also testable using measurement models such as moderated 
nonlinear factor analysis (Curran et al., 2014).

An edge or line between two nodes refers to cross-
measure associations available because two measures are 
employed in the same study. IDA datasets usually have much 
less evidence available concerning the association of items 
across measures. Measurement error in those associations 
may also be greater because of differences in instruction 
sets, timeframe for ratings, number of scale points, or scale 
anchors. Although edges reflect the presence of information 
about cross-measure cross-item association, the amount of 
information can vary, depending on how many trials have 
both measures. For example, the edge connecting measures 
A and B in graph 3a reflects data from all 18 trials, but the 
same edge in graph 3b reflects data from only 3 trials. As an 
added visual guide, we can vary the width of the edge line 
to reflect differences in the amount of information available. 
The graphs for datasets in 3a and 3b have identical graph 
structures, but the latter is based on much sparser data for 
both the nodes and edges.

Nodes can have both direct and indirect linkages with 
other nodes. For example, in graph 3c the node A has direct 
links with nodes B and C, but no direct link with node D. 

Fig. 3   a–e Graph representation 
of forms of sparseness
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Measure A never occurs in the same study as measure D, 
so we have no way of estimating how strongly their items 
are associated based on simple measures of pairwise asso-
ciation. However, measure A is indirectly associated with 
measure D through three indirect paths: ABD, ACD, and 
ABCD. Indirect linkages can carry information about the 
strength of pairwise associations, although the amount of 
information will depend on the strength of the direct asso-
ciations making up those indirect links and the number of 
participants involved. Nodes in graphs 3a and 3b have all 
possible direct and indirect linkages, while those in graphs 
3c, 3d, and 3e have decreasing numbers of direct links and 
increasing numbers of indirect links. Although information 
about direct or indirect associations is present in the matrix 
representation of an IDA dataset, it is more obvious in a 
graph representation.

A graph’s full set of nodes and edges provides a complete 
description of all direct and indirect associations among 
measures and their items. We use the term clique, taken 
from network models that employ graph theory (Valente, 
2008), to describe a set of measures where each measure 
co-occurs with at least one other measure in the set. That is, 
all measures within a clique have either a direct or indirect 
association with all other measures in that clique. Graphs 3a 
through e all represent single cliques, given that all measures 
are connected through edges, either directly or indirectly.

Finally, some synthesis datasets involve subsets of nodes 
that are internally linked but not linked with other subsets, as 
illustrated in graph 3f. Network models that use graph theory 
refer to these as separate isolated cliques. Graph 3f illustrates 
an IDA dataset with two isolated cliques. One clique repre-
sents a set of trials that use only measures A and B, while 
the second clique represents trials that use only measures C 
and D. There are no direct or indirect links between these 
cliques, and so there is no information available for empiri-
cal estimation of loadings or thresholds, and no way to har-
monize within a common metric across these two cliques 
using empirical evidence, without added assumptions. These 
situations require other information for harmonizing, such as 
semantic content, and can require strong assumptions about 
what constitutes semantic equivalence (Howe & Brown, 
2023). Graph 3f reflects an IDA dataset where we may be 
able to combine empirical harmonization within cliques 
with semantic harmonization across cliques, an approach 
we return to later in the Discussion.

The Effects of Sparseness on Measurement 
Modeling

When a synthesis dataset is complete or all edges are pre-
sent (Fig. 3a and 3b), we can use standard estimation meth-
ods for the three measurement models in Fig. 2, including 

robust weighted least squares (WLSMV: DiStefano & 
Morgan, 2014; Flora & Curran, 2004) when item scales 
are treated as ordinal. However, these estimation methods 
require information on all associations among all possible 
pairs of items, and so will no longer be applicable when two 
measures never co-occur in any study (Fig. 3c through 3e). In  
those cases, we must use numerical integration algorithms 
or Markov Chain Monte Carlo algorithms (MCMC) with 
Bayesian estimators. Although these methods are becoming 
available for multilevel IRT applications (Huo et al., 2014; 
Jeon et al., 2014; Mun et al., 2019; Zhang et al., 2023), there 
are still many uncertainties about their performance with 
datasets having various forms and levels of sparseness. In 
one of the few relevant studies, Huo et al. (2014) used a 
two-stage modeling approach with Bayesian estimation to 
combine multidimensional alcohol use data from 20 studies 
with substantial sparseness at both the item and study levels.

We know of no work that systematically evaluates the 
effects of different patterns of sparseness on analyses that 
combine multiple measures of the same construct across 
multiple studies. A central question informs the current 
study: as we move from a complete graph to graphs with 
fewer direct and more indirect linkages, what effect will 
that have on our estimates of a latent general factor as an 
index of our construct? It will clearly increase unsystematic 
measurement error, given that the estimates will, by defini-
tion, be based on less and less data, but will it also lead 
to biased estimates? We explore this through simulation. 
To provide a context, we developed simulations based on 
prior research on the measurement of youth depression and 
conducted analyses of an IDA dataset of youth depression 
measures based on these simulation results.

Monte Carlo Simulation Study

We focused our simulation study on the first five graphs in 
Fig. 3 (and their matrix representations in Fig. 1), as these 
provide a logical progression from a complete IDA dataset 
where all studies include all measures (3a) to IDA datasets 
with systematic decreases in empirical evidence for direct 
associations among measures and their items. Pattern 3b  
has all possible direct associations, but each association is 
based on only a subset of studies. Patterns 3c, 3d, and 3e 
have increasingly indirect associations: 3c replicates most  
of 3b, but has no trials with direct associations between 
measures A and D (one indirect link). In turn, pattern 3d  
replicates most of 3c, but has no trials with direct  
associations between B and C (2 indirect links). Pattern 3e  
replicates most of 3d, but has no trials with direct associa-
tions between A and C. This leads to 3 indirect links: two of 
these are two-step links (ABD and BDC), but one is now a 
three-step link (ABCD).
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Method

Population Models

We used the Monte Carlo facility in MPLUS Version 8.7 
(Muthén & Muthén, 1998–2017) to specify two population 
models and simulate datasets based on those models. We chose 
bifactor models as the most general and comprehensive meas-
urement models that included both common factor variance 
and variance unique to each measure. Both models specified 
a two-level bifactor structure with 20 ordinal items (as illus-
trated in Fig. 2c). We used ordinal items given their ubiquity 
in questionnaire measurement. All items are loaded on a single 
common factor. Each item also is loaded on one of four sec-
ondary factors, resulting in five items assigned to each of four 
measures. In line with existing measures of youth depression, 
two measures had items with three ordinal categories, one had 
items with four ordinal categories, and one had items with 
five ordinal categories. All five factors (the single common 
factors and four secondary factors) were forced to be uncor-
related, consistent with the bifactor model, and all factor vari-
ances were set to one. Both models were specified as two-level 
models, with 300 participants clustered within each of the 18 
trials. We chose this sample size based on our experience with 
IDA datasets for prevention trials targeting youth depression. 
We specified two-level models because study-level conditions 
may have an impact on measurement models, requiring that 
standard errors take into account study-level clustering when 
analyzing IDA data.

One of the population models, termed the strong common 
factor model, set all loading parameters for the common factor 
to 1.5 and those on the secondary factors to 0.5. This yielded 
a model where the common factor accounted for 90% of the 
explained common variance (Reise et al., 2013), and the 
secondary factors accounted for only 10%. These values are 
consistent with those reported in analyses of youth depression 
measures in IDA datasets (Howe et al., 2019). The second pop-
ulation model, the weak common factor model, reversed these 
values. The common factor accounted for only 10% of the  
explained common variance. Item thresholds in both mod-
els were set to values from analyses reported in Howe et al. 
(2019) for four comparable youth depression measures, 
selecting values from the five items with the strongest load-
ings. Consistent with studies of youth depression, this led 
to skewed response frequencies, with the lowest scale point 
having the largest rates and the highest scale point having 
relatively few responses.

Simulated Datasets

We simulated 100 datasets for each of the two population 
models using MPLUS default priors. MPLUS uses Markov 
Chain Monte Carlo (MCMC) algorithms that repeatedly 

sample parameter values based on assumptions about the 
distributions of those values (priors). Each dataset had 300 
cases clustered within each of 18 trials, for a total of 5400 
cases. Within-cluster distribution priors for factor loadings 
were set to normal with a mean of zero and standard devia-
tion of 5, as were between-cluster priors for item thresholds, 
as this weakly informative prior has been shown to help 
stabilize estimation with little impact on estimates (Muthén 
et al., 2016, p. 385). Priors for between-level item variances 
were set to inverse gamma, a noninformative uniform prior. 
This resulted in 200 simulated datasets, 100 for each of the 
two population models.

We followed a strategy similar to that employed by Huo 
et al. (2014) to create sparse datasets. Using the data patterns 
in Fig. 1, we created datasets with various levels of sparse-
ness based on these simulated datasets for each of five lev-
els of sparseness, reflecting graphs 3a through 3e in Fig. 3. 
Pattern 3a represented a complete IDA dataset, with every 
study including every measure and scores for every item. 
We defined this as the benchmark against which to com-
pare the impact of increasing sparseness, and used the 200 
simulated datasets without revision. To create datasets for 
the one clique/all direct condition (graph 3b, matrix 1b), we 
took each of the 200 complete datasets and set item values to 
missing for all measures in trials that had no X in their cells 
in the respective matrix in Fig. 1. This resulted in datasets 
with items that had identical values to those in the complete 
datasets when measures were considered present but had 
no values for those items when measures were considered 
absent. We repeated this for each of the three sparseness con-
ditions with increasingly indirect associations. As a result, 
items in the 200 datasets for each sparseness condition had 
identical values when measures were present, but values 
set to missing when measures were absent. This resulted in 
1000 datasets (100 datasets for each of 2 population models 
for each of 5 sparseness conditions). Conditions based on 
graphs 3b through 3e had missing data for 50%, 54%, 58%, 
and 62% of scores in the complete dataset.

Analyses

We specified and estimated three models for each of the 
1000 simulated datasets, using a graded response model for 
ordinal dependent variables (Samejima, 1969). The graded 
response model is one of the most commonly used confirma-
tory factor models for measures with ordinal items. It uses 
a logistic framework, assuming that item scale values are 
categorically different from one another rather than differ-
ing on a continuum, but also takes into account their order-
ing. The factor loading is assumed to be the same across 
all adjacent pairs of ordered categories, resulting in a sin-
gle-factor loading estimate on the logit scale for each item, 
and estimates for k-1 thresholds (where k is the number of 



996	 Prevention Science (2024) 25:989–1002

scale categories). We used the generalized linear model in 
MPLUS to estimate factor models based on items with dif-
ferent numbers of ordered categories.

Confirmatory factor analysis with ordinal items often 
employs weighted least squares estimation, but that is not 
possible for datasets with indirect associations, as it requires 
that correlations be calculated for every pair of items. We 
therefore used Bayesian estimation, which is not constrained 
by this limitation. We used noninformative or weakly 
informative priors (normally distributed, with mean of 0 
and variance of 5), as we had no pre-existing knowledge 
about these parameters. We allowed each run to continue 
until either the potential scale reduction (PSR) factor for 
all parameters fell below 1.1 (Gelman & Rubin, 1992), or 
the program completed 1 million iterations. The PSR com-
pares the results of the estimation to that from another ran-
domly initiated chain, and indicates when the chains have 
converged to a true distribution (see Kadane, 2015 for an 
excellent introduction to Bayesian methods for prevention 
science).

We estimated parameters for each dataset three times, 
using a common factor model (Fig.  2a), a hierarchical 
model (Fig. 2b), and a bifactor model (Fig. 2c), to assess 
whether parameter bias might vary depending on type of 
measurement model. We initially specified each as a two-
level model, given that scores based on the population model 
were clustered within trial. All models converged in the first 
four sparseness conditions across all datasets, but under the  
fifth condition (3 indirect linkages) all models failed to con-
verge for most datasets within 1 million iterations. In those 
cases, we re-specified the analytic models as one-level mod-
els, ignoring clustering within trial. The one-level common 
factor and hierarchical models converged for all 100 data-
sets; the one-level bifactor model converged for 99 datasets 
based on a strong common factor and 93 datasets based on 
the weak common factor. Tables A1–A3 in the online sup-
plementary materials provide annotated MPLUS code for 
these models.

Parameter Bias  Parameter bias of an estimator is often 
defined as the simple difference between a population 
parameter and the central tendency of that parameter esti-
mated over a large number of samples. In this study, we 
were interested in the difference between average model 
parameters as estimated from complete datasets and those 
same parameters as estimated from the same datasets with 
missing data because not all studies used every measure. The 
parameters of interest were factor loadings for each item. For 
ordinal items these factor loadings are log odds.

Simple differences among parameter estimates are not 
meaningful without some clear metric. We decided to  

use relative effect size. A common effect size estimate for 
associations of a continuous X with a categorical Y is the 
difference in odds of Y at the mean of X compared to odds 
at 1 standard deviation above that mean. Given that our 
models set the variance of the latent variable to 1 (and the 
mean to zero), the factor loading can be interpreted as a log 
odds ratio comparing these two odds. The comparative bias 
estimate reflects the percent difference in this effect size, 
comparing the effect size from the complete dataset to the 
effect size estimated for each different pattern of sparseness, 
allowing us to compare how much these effect sizes varied 
as sparseness increased.

Bias can also be compared to the variation in simulated 
parameter values. MPLUS provides an estimate of the stand-
ard deviation of those values. This standard deviation con-
verges to the population standard error as the number of 
simulations increases. We used the standard deviation for 
each loading based on the complete dataset as a benchmark, 
dividing the raw bias by this value. Given that the simulation 
drew parameter values from a normal distribution, we can 
consider raw bias that is outside the range of plus or minus 
1.96 as outside the confidence interval for the parameter esti- 
mated from complete data. Collins et al. (2001) suggested 
a more conservative threshold of 0.40, based on experience 
that bias over this threshold had a negative impact on cover-
age. We used both thresholds here.

We used the MPLUS Monte Carlo procedure to com-
bine findings across simulated datasets within each of 
the 30 conditions: these included 3 measurement mod-
els (bifactor, hierarchical, single factor) analyzing data 
based on 2 levels of common factor strength (strong, 
weak), repeated for datasets having each of the 5 levels 
of sparseness illustrated in Fig.  3. MPLUS computed 
average values for each parameter. We then calculated 
potential parameter bias due to sparseness for each of 
the four sparseness conditions involving missing data. 
We subtracted average parameter values based on each 
sparse dataset from those estimated for the complete 
datasets and divided that difference by the value from 
the complete dataset. Loading parameters in the bifac-
tor and single-factor models reflected direct loadings of  
the common factor with each indicator. However, this was 
not true of the hierarchical model, where the association 
is indirect, and involves both the loadings of indicators on 
each measure factor and the loadings of the measure factor 
on the higher-order factor. For those models, we also esti-
mated the strength of the indirect path from higher-order 
factor to each indicator using the product of these loadings, 
assuming a latent response variable formulation of an unob-
served continuous dependent variable (Muthén et al., 2016, 
pp. 224–225), and estimated bias for these indirect effects.
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Results

Posterior predictive checks (comparisons of what the fitted 
model predicts with the actual data) supported model fit for 
the bifactor and hierarchical models (PPP values of around 
0.5 reflect good model fit, with smaller values reflecting 
worse fit.) The average posterior predictive p-values (PPP) for  
these models ranged from 0.494 to 0.515. In contrast, aver-
age PPP values for the single-factor model were poor (rang-
ing from 0.000 to 0.141), consistent with the interpretation 
that this model did not specify measurement error correctly, 
given that the population models were bifactor models.

Bias Estimates

Table 1 presents estimates of absolute bias as a percentage 
of effect size in the complete dataset, averaged across all 
factor loadings for each factor in the three models for both 
weak and strong common factor datasets. Figures A1 and A2 
in the online supplementary materials illustrate how these 
absolute value bias estimates vary across the sparseness con-
ditions. Specific bias estimates for each factor loading are 
presented in Tables B1 through B8 in online supplementary 
materials.

Population Model with Strong Common Factor

Absolute bias as a percentage of effect size remained low 
in the common factor loadings for the bifactor model and 
the higher-order factor in the hierarchical model as sparse-
ness increased. Estimates for patterns with one or two indi-
rect linkages were very close to those for the pattern hav-
ing all direct linkages. The indirect effect estimates in the 

hierarchical model, which combine information from item 
loadings on measure factors with that from the loadings of 
measure factors on the higher-order common factor, very 
slightly outperformed the loading estimates for the main 
factor in the bifactor model. The indirect effect estimates 
also remained low in the loadings for individual measures in 
the hierarchical model. Two-level models failed to converge 
when there were three indirect paths, but were estimable 
when we moved to a simpler one-level model. In that case, 
the bias estimates remained low and were similar to those 
for the other sparseness conditions.

We also compared bias estimates to the standard devia-
tion of estimates in the complete data condition (findings 
are summarized in Table C1 in the online supplementary 
materials). None of the bias estimates was outside the con-
fidence interval range for the common factor loadings in the 
bifactor model or for either loadings on individual measures 
or on the higher-order factor in the hierarchical model. Using 
the more conservative threshold suggested by Collins et al. 
(2001), most of the hierarchical model loadings were under 
the threshold, but almost half of the loadings on the bifac-
tor model was above threshold for the indirect sparseness 
conditions.

Loadings for the secondary factors in the bifactor model 
demonstrated increasing bias, and bias became stronger in 
the datasets with indirect links. Loadings were outside the 
confidence interval range only for the condition with three 
indirect links (25%), but almost all loadings were outside 
the more conservative threshold for the three sparseness 
conditions.

Absolute bias in the single-factor model was 3 to 5 times 
higher than that in the hierarchical model or the common fac-
tor in the bifactor model, across both direct and indirect sparse-
ness conditions. Fifty to 75% of the single-factor loadings were 

Table 1   Average absolute bias as a percentage of effect size in the complete dataset for each model across sparseness conditions

*Models for the all direct, 1 indirect, and 2 indirect datasets are two-level; those for the 3 indirect datasets are one level

Bifactor population model Analytic model* Loadings for Sparseness condition

All direct 1 indirect 2 indirect 3 indirect

Strong common factor Bifactor Main factors 0.7% 1.3% 1.3% 0.9%
Secondary factors 1.8% 8.5% 13.8% 11.1%

Hierarchical Higher-order factor 0.9% 0.6% 0.5% 1.4%
Individual measures 1.1% 1.0% 0.9% 1.1%
Indirect effects 0.5% 0.5% 0.5% 0.8%

Single factor Individual items 4.0% 5.1% 5.5% 5.9%
Weak common factor Bifactor Main factors 13.4% 14.0% 12.5% 14.3%

Secondary factors 1.8% 2.0% 1.3% 1.4%
Hierarchical Higher-order factor 4.4% 14.3% 10.1% 9.5%

Individual measures 1.2% 1.0% 0.9% 1.3%
Indirect effects 3.9% 14.8% 10.5% 9.5%

Single factor Individual items 245.5% 274.2% 281.9% 285.5%



998	 Prevention Science (2024) 25:989–1002

outside the confidence interval range, and almost all were out-
side the more conservative threshold.

In summary, when the common factor was strong, increas-
ing sparseness led to little bias in the hierarchical model or in 
the common factor from the bifactor model, with the hierar-
chical model performing slightly better. Bias in loadings of 
the secondary factors in the bifactor model increased with 
sparseness, but this does not necessarily compromise the bifac-
tor model, as the secondary factors in this case would reflect 
nuisance variance. The single-factor model had the weakest 
performance. Two-level models were not tractable when data 
included 3 indirect linkages.

Population Model with Weak Common Factor

Absolute bias in the common factor was much more pro-
nounced in all models when the common factor in the 
population model was weak, and the secondary factors 
were strong. The hierarchical model again performed 
slightly better than the common factor in the bifactor 
model in all but the condition with 1 indirect link, and 
was substantially better in the sparsest condition, although 
absolute bias for indirect effects was still high (9.5%). 
Here most of the bias occurred in the loadings of the 
measures on the higher-order factor, not in the loadings  
of items on measures, which was low. Bias for loadings in  
the hierarchical model were never outside of the con-
fidence interval across all sparseness conditions and 
were above the conservative threshold less than 25% 
of the time. Raw bias in the common factor load-
ings of the bifactor model was also always inside 
the confidence interval for all conditions, but was  
above the more conservative threshold for 75 to 100% of 
the loadings. Bias in the secondary factors of the bifac-
tor model was consistently low, and never outside of the 
confidence intervals, although it did exceed the more 
conservative threshold in 35 to 80% of the loadings, but 
with no clear increase across greater sparseness. Abso-
lute bias in the single-factor loadings was very strong, 
reflecting effect size estimates that were between 2 
and 3 times those from the complete dataset. Bias esti-
mates were outside of the confidence interval in 75 to  
85% of the loadings, and above the conservative threshold 
for almost all loadings.

Overall, when the common factor was weak absolute bias 
was much greater for all common factor loadings regardless 
of analytic model and was particularly pronounced when data-
sets included indirect links. The hierarchical model performed 
slightly better in most conditions, while the single-factor 
model performed very poorly.

Discussion

These simulations demonstrate that bias in estimating fac-
tor loadings is a function of the measurement model, the 
nature of sparseness, the actual strength of construct load-
ings, and the presence of common measurement error in 
specific measures. These findings are based on one set of 
sparseness patterns for IDA datasets similar to those found 
in studies of youth depression, so these patterns may not 
be representative of other IDA datasets.

Based on these findings, we suggest a systematic strat-
egy for exploring possible bias in other IDA datasets: 
begin by constructing a linkage graph and its associated 
matrix for the dataset (and include these in any report of 
findings); if the graph reflects a single clique, specify and 
estimate a two-level bifactor model for these data as the 
most general measurement model that evaluates both com-
mon and measure-specific variance; if this model appears 
inestimable, explore a one-level bifactor model or a hierar-
chical model; once a final model is selected, use parameter  
estimates to build a population model and Monte Carlo 
simulation to produce a large number of complete data-
sets with similar measurement structure and cluster sample 
sizes; use those complete datasets to create new datasets 
with the same pattern of sparseness found in the original 
synthesis dataset; conduct Monte Carlo analyses to pro-
duce parameter estimates in the complete and sparse data-
sets; and use these parameter values to estimate potential 
bias for this specific pattern of sparseness. We demonstrate  
this strategy with a synthesis dataset from a recent IDA 
study.

Example: Youth Depression Study

Sample and Measures

We used a synthesis dataset from an IDA study that com-
bined data on youth depression from 4146 youth who 
participated in 16 randomized field trials of programs 
designed to reduce problem behaviors and depression. 
Details of the samples, trials, and measures were presented 
in Brown et al. (2018) and Howe et al. (2019). We used 
item-level data collected at baseline from youth reports of 
depression symptoms on four measures. This included 27 
items from the Child Depression Inventory (CDI: Kovacs, 
1992), 20 items from the Center for Epidemiologic Sur-
veys-Depression Scale (CESD: Radloff, 1977), 20 items 
from the Project Alliance depression scale (PAL: Dishion 
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et al., 2002), and 20 items from the Youth Self Report 
scale (YSR: Achenbach, 1991). The sparseness pattern 
found in this dataset, illustrated in Fig. 4, is similar to 
the “three indirect linkage” pattern used in the simulation 
study. Direct links were based on data from single studies, 
and the link between the CDI and the PAL was based on 
only a subset of participants in one trial.

Method

Initial modeling, as well as results of the simulation study 
for a sparseness graph with 3 indirect linkages, suggested 
that a one-level hierarchical model would be appropriate for 
this dataset. We first specified a hierarchical measurement 
model with items loading on four measure factors. Those 
factors in turn loaded on a higher-order depression factor. 
We analyzed these data using a Bayesian estimator with non-
informative priors and a convergence criterion of PSR less 
than 1.1. The model converged without problem. Estimated 

factor loadings were strong and significant for all items, and 
for the loadings of the measure factors on the higher-order 
factor (see Table D1 in supplementary materials).

We then used estimated factor loadings and thresholds 
from this analysis to create a population model for further 
simulations. We simulated 100 datasets with complete data 
clustered within 16 trials with sample sizes identical to 
those in this synthesis dataset, and with the same number 
of items having the same number of scale points. We also 
created 100 datasets that had the same missing data struc-
ture as that in the synthesis dataset. We conducted Monte 
Carlo analyses of these two datasets using a one-level 
hierarchical model and estimated bias for all parameters 
(reported in Table D2 in supplementary materials).

Results

As reported in Table 2, average bias in item loadings var-
ied substantially across the four measures. This was also 
the case for measure loadings on the higher-order factor. 
However, when we combined these loadings in estimates 
of indirect effects, a different picture emerged. Bias in 
these effects was much lower for the CDI, CES-D, and 
PAL, although still higher for the YSR. These findings 
suggested that estimates of the higher-order factor based 
on the actual data would be relatively unbiased when 
based on the CDI, CES-D, and the PAL, but would lead to 
underestimates when based on the YSR.

To illustrate these effects, we randomly selected one of 
the simulated datasets and estimated median factor score 
values for each case for the higher-order factor based on 
the complete and sparse versions. Figures B1–B4 in the 
online supplementary materials plot the estimated associa-
tion between these values for subsets of cases that had data 
on each measure. Cases that included PAL, CDI, or CES-D 
scores have estimates that are very close in the upper part 
of the range but underestimate the factor score in the lower 
region by up to 1–3%. Cases including the YSR consist-
ently underestimate the factor score by around 3% across 
the entire range.

Fig. 4   Sparseness graph for youth depression synthesis dataset. Node 
sizes reflect relative sample sizes

Table 2   Bias estimates from 
simulation study based on youth 
depression data

*95% CI range based on SD of parameters from complete data: −1.96 to 1.96

Average bias Average bias/SD*

Item loading Measure loading Indirect effect Item Loading Measure loading

CDI 12.7% −13.6% −2.6% 2.38 −3.25
CES-D 19.6% −19.2% −3.4% 3.65 −3.77
YSR 6.9% −13.5% −7.5% 1.54 −4.57
PAL 0.8% 2.5% 3.1% 0.18 0.73
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Discussion

Our strategy provides evidence that sparseness does not 
strongly bias factor estimates in a hierarchical measure-
ment model based on this synthesis dataset. However, 
there appears to be some bias in estimates for those par-
ticipants with low depression scores, and in scores based 
on the YSR. These analyses also highlight the importance 
of evaluating indirect effects in the hierarchical measure-
ment model: here the overestimation bias in item loadings 
is balanced by the underestimation of measure factor load-
ings on the higher-order factor.

This strategy does assume that model parameters based 
on the dataset are at least reasonable ballpark estimates of 
the strength of loadings for individual measures, and of 
the association among those measures, allowing us to use 
these estimates in population models to explore the impact 
of sparseness given the strength of these associations. The 
first assumption is bolstered by the substantial sample 
sizes available for estimating the measurement models for 
the individual members based on combining data from 
multiple trials. The second assumption is supported by 
the presence of subsamples that completed more than one 
measure (correlations of the CDI factor with factors from 
the other three measures ranged from 0.52 to 0.87), and 
to a lesser degree by the presence of indirect associations 
for those measures that did not co-occur in any sample.

General Discussion and Conclusions

Measurement modeling to achieve construct equivalence 
across multiple measures of the same construct is an 
important tool for integrative data analysis, but its appli-
cation requires careful attention to sparseness in synthesis 
datasets. Graph theory representations of sparseness pat-
terns provide a systematic way of describing such patterns 
and exploring their implications for modeling. Results of 
the simulation study clarified that bias due to sparseness 
will depend on the strength of the general factor, the nature 
of the measurement model employed, and the level of indi-
rect linkage among measures in the measurement graph. 
Given that different synthesis datasets will embody differ-
ent patterns of sparseness, investigators would do well to 
use simulation methods to explore the potential for bias 
given the sparseness pattern they encounter.

This study focused on datasets having systematic viola-
tions of conditional independence due to method effects. 
Measurement models can also be compromised when 
other assumptions, such as construct invariance, fail to 
hold. Standard tests of measurement invariance can be 

extended to IDA datasets to evaluate possible violations of 
invariance over categorical variables such as age or gender 
(Howe et al., 2019). More complex methods such as mod-
erated nonlinear factor analysis have been developed to 
adjust for measure invariance across multiple dimensions 
(MNLFA: Curran et al., 2014; Gottfredson et al., 2019). 
However, the impact of sparseness on these methods has 
yet to be explored.

Future Directions

We followed standard methods for evaluating bias, based on 
statistical theories of bias. However, these theories focus on 
individual parameters, while measurement is multivariate 
and multilevel. When data from multiple measures are com-
bined, bias in one measure may balance out bias in another, 
leading to a more accurate total score. However, this will not 
happen whenever studies have data only on one of the two 
measures; in this case, participants from different studies 
can have total scores biased in different directions. The field 
needs to develop and study the performance of methods for 
evaluating bias at the item, measure, and construct level. 
This could involve comparing empirical estimates of factor 
scores across different patterns of sparseness or comparing 
how sparseness impacts the association of those scores with 
other constructs.

This study focused on sparseness patterns involving sin-
gle cliques. When an IDA dataset includes multiple isolated 
cliques, it may be possible to conduct empirical harmoniza-
tion within each clique, and then combine findings across 
cliques. This will require added assumptions: for example, 
we may need to assume that common factor means and vari-
ances are the same across all cliques, as a means of estab-
lishing a common metric. Future research will be necessary 
to evaluate the performance of such extensions.

This study also focused entirely on empirical harmoniza-
tion. Many recent IDA projects in prevention science have 
employed semantic harmonization, merging items from dif-
ferent measures based on judgments of their semantic sim-
ilarity (Cole et al., 2023). Howe and Brown (2023) noted 
several untested assumptions required for such harmoniza-
tion, and briefly suggested ways of empirically testing them. 
Semantic harmonization may be particularly useful when 
measures form two or more isolated cliques. However, sole 
reliance on semantic methods can discard substantial empiri-
cal information about associations among items both within 
and between measures. We suggest that the field would profit 
from exploring methods that integrate semantic and empiri-
cal harmonization and evaluating how those methods perform 
with IDA datasets having various patterns of sparseness.
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Most applications of measurement modeling to synthe-
sis datasets used in IDA have also attended to single con-
structs, as in the current study. However, investigators are 
often interested in multiple constructs, as when combining 
studies to evaluate structural equation models involving 
causal impact or mediation (Huh et al., 2022). Sparse-
ness patterns in the relevant synthesis dataset may be even 
more complex here, differing for different constructs in the 
structural model. Other than the work of Huo et al. (2014) 
on multiple outcome constructs associated hierarchically, 
we are unaware of attempts to deal with sparseness or to 
explore how sparseness patterns might bias estimates in 
models with more than one construct.

It will also be important to determine how we might 
adjust our analyses to reduce the impact of bias due to 
sparseness. Our simulation findings suggest that the 
MAR assumption may not remain tenable as sparseness 
increases. Exploration of methods for analyzing data that 
are not missing at random (MNAR) may prove profitable 
here (Linero & Daniels, 2018).

In conclusion, we recommend that IDA investigators 
use simulation to explore the potential impact of sparse-
ness whenever data graphs are less than complete. The 
four-step strategy we employed in the example study is 
a reasonable way to begin: (1) estimate the measurement 
model of interest with the actual synthesis dataset; (2) 
use the estimated parameters from that model as known 
values in a population model to simulate a large number 
of datasets with the same structure as that of the synthesis 
dataset, but with complete data; (3) create a second group 
of datasets by introducing missingness into the complete 
datasets to mimic the pattern of sparseness in the synthesis 
dataset of interest; and (4) conduct Monte Carlo analyses 
of these two datasets, calculating estimates of bias for each 
model parameter.
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