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Abstract
Science is an inherently cumulative process, and knowledge on a specific topic is organized through synthesis of findings 
from related studies. Meta-analysis has been the most common statistical method for synthesizing findings from multiple 
studies in prevention science and other fields. In recent years, Bayesian statistics have been put forth as another way to syn-
thesize findings and have been praised for providing a natural framework for update existing knowledge with new data. This 
article presents a Bayesian method for cumulative science and describes a SAS macro %SBDS for synthesizing findings 
from multiple studies or multiple data sets from a single study using three different methods: meta-analysis using raw data, 
sequential Bayesian data synthesis, and a single-level analysis on pooled data. Sequential Bayesian data synthesis and Bayes-
ian statistics in general are discussed in an accessible manner, and guidelines are provided on how researchers can use the 
accompanying SAS macro for synthesizing data from their own studies. Four alcohol use studies were used to demonstrate 
how to apply the three data synthesis methods using the SAS macro.
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Introduction

Science is an inherently cumulative process. Just as the cur-
rent paper cites multilevel mediation work by MacKinnon 
(2008), he cited earlier mediation work by Baron and Kenny 
(1986), who cited Campbell and Fiske on construct valid-
ity (1959), who cited Thurstone (1931) on reliability and 
validity of tests. Directly and indirectly, the research in this 
paper has been informed by years of prior research, going 
back at least 80 years. In prevention science, social influence 
school-based drug prevention programs have been improved 
since they were first introduced in the 1970s (Cuijpers, 2002; 
McBride, 2003; Tobler, 1997). After a body of research has 

been produced on a given topic, it is important to summarize 
the findings from all relevant studies. Furthermore, combin-
ing findings from studies is beneficial when the sample sizes 
are small, and/or the base rate of a behavior being studied is 
low (Curran & Hussong, 2009). In prevention science, there 
are many examples of multiple prevention studies of differ-
ent programs, including school-based health promotion and 
interventions for children at risk.

This paper provides instruction on performing sequen-
tial Bayesian data synthesis (SBDS) for mediation analysis, 
along with an accompanying SAS1 macro, for synthesizing 
data across multiple studies, sites, and/or data collection 
periods. Using an example data set, we compare the results 
from SBDS with two other popular methods of data synthe-
sis: regression analysis with pooled data and meta-analysis 
on raw data (multilevel analysis), which are also available 
in the macro. The remainder of the introduction will give a 
theoretical overview of the three methods for data synthesis 

This research was supported in part by the National Institute on 
Drug Abuse (R37DA09757). At the time the majority of this 
research was completed, Dr. Wurpts was a graduate student at 
Arizona State University. She is now a Scientist at Presbyterian 
Healthcare Services.

 * Ingrid C. Wurpts 
 icarlso1@asu.edu

1 Arizona State University, Tempe, AZ, USA
2 McGill University, Montreal, Canada

1 We hope that by providing an annotated SAS macro, preven-
tion science researchers and graduate students at all levels will feel 
comfortable performing SBDS with their own data. If an academic 
researcher does not have access to an institutional SAS license, SAS 
University edition can be downloaded for free from https:// www. sas. 
com/ en_ us/ softw are/ unive rsity- editi on. html.

/ Published online: 21 July 2021

Prevention Science (2022) 23:378–389

1 3

http://orcid.org/0000-0001-8557-6962
http://crossmark.crossref.org/dialog/?doi=10.1007/s11121-021-01256-1&domain=pdf
https://www.sas.com/en_us/software/university-edition.html
https://www.sas.com/en_us/software/university-edition.html


implemented in the SAS macro. After a theoretical descrip-
tion of the methods, the four example data sets will be 
described, followed by an application of the SAS macro and 
a discussion of the results obtained using the three methods. 
The macro is annotated in a way that allows users to easily 
modify the macro when synthesizing their data. The paper 
will conclude with additional options users can implement 
in the macro, as well as a brief mention of related methods 
for data synthesis that were not implemented in this paper.

Meta‑Analysis

Meta-analysis has been the most common method for 
summarizing findings from multiple studies in the social 
sciences and the prevention literature (Hedges & Olkin, 
1985). Generally, meta-analysis consists of five stages as 
summarized in Cook et al. (1992): (1) specification of the 
research problem, (2) identification of relevant research stud-
ies, (3) retrieval of data such as effect sizes from research 
studies, (4) analysis of data from studies and interpretation 
of results, and (5) public presentation in a research docu-
ment. When analyzing the data (stage 4), researchers have 
the choice between a fixed-effects model that assumes the 
true effect is the same in all studies, and a random-effects 
model that assumes the true effect varies between studies 
being synthesized (Brockwell & Gordon, 2001). The choice 
between fixed- and random-effects models depends on the 
type of inference desired. If the researcher is making con-
ditional inferences, i.e., inferences only about the set of 
observed studies, then a fixed-effect model is appropriate. If 
the researcher is making unconditional inferences, i.e., using 
the selected sample of studies to make inferences about the 
population from which they are drawn, then a random-effects 
model is appropriate (Cooper et al., 2009).

Meta-analysis can be carried out on summary data from 
multiple studies as well as individual participant data (IPD). 
Both types of data are amenable to meta-analysis via multi-
level modeling. IPD is often preferable as it contains more 
information than corresponding summary data (Jones et al., 
2009), and meta-analysis can be performed with IPD by 
estimating a standard multilevel model where individual 
observations are nested within studies (Hox, 2002). In this 
paper, we use the term “raw data,” rather than IPD, as data 
synthesis methods are applicable to other situations where 
the most granular data may not be individual participants 
per se.

Meta-analysis is generally performed for one parameter at 
a time, thus making it more challenging to summarize stud-
ies with different covariates, and more cumbersome when 
summarizing more than one effect from multiple studies, 

given that the effects must be summarized individually, 
rather than simultaneously (de Leeuw & Klugkist, 2012). 
The SAS macro accompanying this paper provides point 
and interval estimates of the mediated effect computed as 
the product of the effect of the independent variable on the 
mediator and the effect of the mediator on the outcome con-
trolling for the effect of the independent variable.

Regression and Mediation Analyses 
on Pooled Data

Integrative data analysis (IDA) is a framework for analyz-
ing pooled individual participant data from multiple studies 
(Hussong et al., 2013). IDA has numerous benefits, ranging 
from increases in power due to larger sample sizes than those 
of individual studies to increase in sample heterogeneity and 
frequencies of low base rate behaviors (Curran & Hussong, 
2009). In IDA, individual participant data from relevant 
studies are first pooled, then a commensurate metric across 
studies is created (unless all studies used the same meas-
urement instruments for the constructs in the model), and 
finally the statistical model of interest is fit using participant 
scores on the commensurate measures. In this project, all 
studies use the same measurement instruments for relevant 
constructs; therefore, all variables in the model already have 
common metrics across studies. In pooled data mediation 
analysis, the first step is pooling all data sets to be synthe-
sized. In the bivariate case, the next step is to fit a regression 
model on the pooled data set. In the mediation case, the next 
step is to fit two regression models on the pooled data set: 
one predicting the mediator from the independent variable 
and the other to predict the outcome from the independent 
variable and the mediator. (While the approach generally 
can accommodate covariates, they are not currently part of 
the macro.) The four studies used in the empirical example 
are similar in design, construct measurement, and histori-
cal time (all studies were carried out within 8 years). The 
intraclass correlations (ICC) for M and Y were 0.0005 and 
0.007, respectively, indicating that out of the total variation 
in M, 0.05% was due to between-study variance, and 0.7% of 
the total variation of Y was due to between-study variance. 
Although these values may appear small, even ICC estimates 
of 0.01 may bias estimates if the nested structure is ignored 
(MacKinnon, 2008; Muthén & Satorra, 1995).

However, we recognize that pooling data without account-
ing for between-study variation is a common technique, so 
we demonstrated it here for comparison purposes. In many 
applications, this method may be inferior to meta-analysis 
and SBDS because unlike the multilevel model, it does not 
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account for the potential dependence of observations from 
the same study (or site), and unlike SBDS, it does not allow 
for examining intermediate findings before all data sets have 
been synthesized. Researchers are advised to first estimate 
ICCs for M and Y and consider a multilevel model or SBDS 
approach if the values are non-trivial.

Sequential Bayesian Data Synthesis

If a researcher wants to combine information across at least 
two data sets, (e.g., a pilot and a main study, at least two sep-
arate studies, or data sets from the same study collected at 
different sites), an alternative option is sequential Bayesian 
data synthesis (SBDS). Methods for Bayesian data synthesis, 
including meta-analysis, have been described (Smith et al., 
1995; Hartung et al., 2008), as well as Bayesian methods 
for updating the evidence for competing hypotheses (Kuiper 
et al., 2013) and Bayesian methods for updating linear regres-
sion findings using published summaries to construct priors 
(de Leeuw & Klugkist, 2012). SBDS in this context refers to 
a sequential updating of model parameters in studies j = 1 to J, 
with J being the number of data sets to be synthesized. SBDS 
uses raw data and extracts point summaries from the results 
of the Bayesian analysis of study j to use as prior information 
for the Bayesian analysis of study j + 1. We next describe the 
steps to perform SBDS. These steps assume that there are at 
least two sets of raw data which can be ordered temporally. 
Secondly, these steps assume that the same model can be fit in 
all data sets. In the example we present, this assumption is met 
clearly, because each data set was collected using the same 
survey instruments and population. However, there may be 
cases where the variables or methods of data collection vary 
among the data sets. We will discuss later how to deal with 
such issues with SBDS.

Sequential Bayesian data synthesis consists of 6 steps.

1. Analyze the first study with an estimation method of 
choice and record coefficient estimates and correspond-
ing standard errors (or standard deviations of the pos-
terior), sample size, and residual variances. This step 
could utilize frequentist methods or Bayesian analysis 
with diffuse or informative prior distributions.

2. Use the results from step 1 as hyperparameters for a 
Bayesian analysis of study 2.

3. Save posterior summaries (generally, central tendency and 
variation of the posterior distribution) for use as the hyper-
parameters for the prior in the analysis of the next study.

4. Repeat Steps 2–3 j times for each of J studies. Continue 
using the posterior of each study as the prior for the 
analysis of the subsequent study until all the studies have 
been analyzed.

5. Summarize the posterior distributions from the final study 
and draw inferences about the parameters of interest.

6. Return to Step 2 when additional future studies are avail-
able (Fig. 1). As more data are collected, the amount 
of prior information for each analysis increases, and so 
does the accuracy of the scientific knowledge summa-
rized by the posterior distribution.

Advantages of Sequential Bayesian Data 
Synthesis

The SBDS approach has some unique utilities compared to 
other methods for data synthesis, many of which are incor-
porated into the %SBDS macro. SBDS accounts for temporal 
ordering in the accumulation of knowledge, which allows 
the researcher to detect after how many studies an effect 

1. Es�mate model parameters from the 
first data set using OLS regression, ML, 
resampling, or other methods. Record 
coefficient es�mates and corresponding 
standard errors, sample size, and residual 
variances. 

2. Conduct a Bayesian analysis of the next 
data set in the sequence using prior 
informa�on from Step 1.  

3. Save posterior summaries for use as 
prior informa�on in the analysis of the 
next data set.

4. Repeat Steps 2 and 3 for each 
remaining data set.

6. Return to Step 2 when addi�onal data 
sets are available in order to keep 
accumula�ng knowledge.  

5. Summarize results.  

Fig. 1  Steps in a sequential Bayesian analysis
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becomes significant2 and whether it remains significant after 
additional studies have been synthesized. This method of 
cumulative analysis might be useful in contexts where an 
effect could change over time (such as school-based drug 
prevention programs) and the researcher is interested in 
observing this change as well as finding the most up-to-
date effect. Although Lau et al. (1992) described a similar 
method of (frequentist) cumulative meta-analysis which 
pools the accumulated data at each step, the SBDS method 
more explicitly models the accumulation of knowledge 
via priors for each study separately. While the final step in 
cumulative meta-analysis reflects the pooling of all available 
data, the final step in SBDS estimates the effect in the final 
study, given prior information from all previous studies.

SBDS can also incorporate information from pilot studies 
and other previous studies. Whereas pilot studies are pri-
marily used to assess the feasibility of the main study and 
suggest changes to the methodology prior to collecting data 
from the focal sample, they can also be used as relevant 
pieces of prior information in a statistical analysis. In the 
case where there is only one pilot or previous study and 
only one main study, multilevel methods cannot be used to 
combine the data, as there are only two data points used to fit 
the random (or fixed) effects model. Even in the case of 3, 4, 
or 5 studies, a multilevel model may be difficult to estimate, 
depending on the study size. SBDS can still be used in these 
cases. Doing the analysis on pooled data would be another 
plausible option if the raw data are available, as the feasibil-
ity of this method does not depend on how many studies are 
being combined.

However, as discussed previously, even small amounts 
of between-study variance can affect the results of a pooled 
data analysis. Additionally, when using data from different 
studies and/or sites, researchers must choose whether to con-
sider the data collection sites and participants from differ-
ent locations exchangeable, or whether their model ought to 
reflect these differences (e.g., in study design or population 
from which the sample was drawn). If some of the stud-
ies being synthesized did not sample from the population 
of interest for the research question, and/or used experi-
mental manipulations that are not identical to the experi-
mental manipulation for which researchers want to make 
inferences, then it may be appropriate to give such data sets 
less weight in the data synthesis. Downweighing the results 

from such non-exchangeable studies can be accomplished 
in the %SBDS macro either by (1) multiplying the posterior 
standard deviation estimate for study j by a weight, which 
correspondingly decreases the influence of studies 1 through 
j on study j + 1, or (2) specifying a power prior distribution 
for study j + 1 based on the informativeness of pooling stud-
ies 1 through j (Ibrahim & Chen, 2000).

Power prior distributions are a class of informative prior 
distributions based on the likelihood of a historical data set 
raised to the power a0 (Ibrahim & Chen, 2000). The power 
parameter is generally chosen so 0 ≤ a0 ≤ 1. If the likelihood 
function of studies 1… j is raised to the power a0 = 0, then the 
power prior distribution for study j + 1 is not influenced by 
previous studies. On the other hand, if a0 = 1, then the power 
prior based on studies 1… j is equivalent to using results from 
all observations in studies 1… j to construct an informative 
prior distribution for study j + 1. Both options will necessarily 
reduce the influence of studies 1 through j on study j + 1. The 
first option, however, is most useful if researchers are inter-
ested in interpreting the results at each step as weights can be 
specified for every additional study added to the synthesis.

Although not currently available as a pre-programmed 
option in the %SBDS macro, the SBDS method can also 
combine raw and summary data together. First, existing 
prior information would be summarized via a Bayesian or 
frequentist meta-analysis, and the results from this analysis 
could be used as prior information for subsequent Bayesian 
analyses of raw data sets.

More generally, Bayesian analysis allows for probabilistic 
interpretation of effects and for computing the probability of 
the null hypothesis (Kruschke, 2011). In the %SBDS macro, one 
can compute the probability that the mediated effect is equal to 
any given constant, including zero; this can be done by comput-
ing the percentage of posterior draws from the posterior dis-
tribution of the last step of SBDS that lie in an interval around 
zero. The boundaries of the interval should be chosen such that 
the effect is close enough to zero so as to be non-existent, e.g., 
between − 0.01 and 0.01, although the range of what counts 
as non-existent will vary between fields and depending on the 
research question.

Note that we are not introducing SBDS as a superior 
method to multilevel meta-analysis. The two methods differ 
in their goals and interpretation. Whereas multilevel analysis 
allows estimation of an average treatment effect and the het-
erogeneity of that effect across studies, SBDS can increase 
the precision of an estimated treatment effect for a given 
study by considering information from other studies. In an 
ideal world, a researcher would have access to raw data from 
all relevant studies, and the properties of the data would not 
preclude the researcher from choosing the analysis method 
that is best suited to the research question. However, we 
recognize that is not always the case in practice. The num-
ber of studies with available raw data may be too small to 

2 Here we use the term significant to mean that the credibility inter-
vals for a given effect do not contain zero. There is no concept of 
significance testing in the Bayesian framework, however, if 0 is not 
included in the credibility interval for an effect, we can conclude that 
the effect is different from zero. Throughout the paper we will use the 
term “significant” for both frequentist and Bayesian findings because 
of its familiar interpretation, but we caution the reader that this 
expression does not stem from the Bayesian theoretical framework.
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perform multilevel analysis. Or, as we have found in our own 
research, attempting to account for the multilevel structure of 
a data set while also estimating a complex model with many 
parameters (such as a growth mixture model) may result in 
non-convergence, out-of-bounds estimates, and other errors. 
The SBDS method described here may be a feasible alterna-
tive to other data synthesis methods, especially for models 
that are more complex than OLS regression. Concepts in 
Bayesian statistics needed by the reader to understand the 
logic behind SBDS are described in Online Resource 1.  
This paper will proceed by describing four studies of col-
lege students’ alcohol use. We use these data to demonstrate 
how SBDS can combine information across multiple stud-
ies and compare SBDS with raw data meta-analysis and 
pooled data analysis. The paper will conclude with a discus-
sion on the usefulness and applicability of SBDS in social  
sciences.

Data Example

We demonstrate how to conduct SBDS with data from 
four rounds of the Harvard Public Health Alcohol Study 
(Wechsler, 1993, 1997, 1999, 2001). The study included stu-
dents’ self-reported use of alcohol, tobacco, and illicit drugs, 
as well as information related to their studies (e.g., GPA). 
We use these data for illustrating data synthesis methods and 
do not intend to draw scientific conclusions about alcohol 

use and GPA. The independent variable in our mediation 
model represents students’ answers to the question “Is there 
a member of the faculty or administration with whom you 
could discuss a problem?” (response options 1 = “Yes” and 
0 = “No”). The mediator was the students’ response to the 
question “In the past 30 days on those occasions when you 
drank alcohol, how many drinks did you usually have?” 
(response options 1–9). The outcome is student-reported 
GPA on a scale from 1 (“D”) to 9 (“A”). Following listwise 
deletion for simplicity of demonstration,3 the 1993 data set 
had 10,528 observations, the 1997 data had 9153 observa-
tions, the 1999 data had 8887 observations, and the 2001 
data set had 7118 observations. Data coding details are avail-
able in Online Resource 2, and the derived data set we used 
is available at https:// figsh are. com/ artic les/ datas et/ Harva rd_ 
alcoh ol_ csv/ 12671 105.

When analyzing only one data set, model 1 (Fig.2) can be 
described using Eq. (1):

(1)Y = i1 + cX + e1,

Fig. 2  Bivariate model (model 
1) and single mediator model 
(model 2)

3 PROC MCMC is able to accommodate missing data via the MISS-
ING = option, although we did not add this explicitly to the macro, as 
a thorough discussion of the Bayesian treatment of missing data was 
beyond the scope of this article. Users who wish to utilize the PROC 
MCMC missing data utility are referred to https:// docum entat ion. sas. 
com/? cdcId= pgmsa scdc& cdcVe rsion=9. 4_3. 4& docse tId= statu g& 
docse tTarg et= statug_ mcmc_ detai ls61. htm& locale= en
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where i1 is the intercept, c is the regression coefficient 
for predicting Y from X, and e1 is the residual. Model 2 is 
described using Eqs. (2) and (3):

where i2 and i3 are the intercepts in the equations predict-
ing M and Y (respectively), a is the effect of X on M, b 
and c’ are the conditional effects of M and X on Y (respec-
tively), and e2 and e3 are the residuals from the equations 
predicting M and Y (respectively). The mediated effect is 
computed as either the product of coefficients ab or the dif-
ference of coefficients c – c’, and these are equivalent for the 
analyses conducted in this article (MacKinnon et al., 1995). 
This paper will use ab as a measure of the mediated effect 
(MacKinnon, 2008).

Three different data synthesis methods were used for 
both models: a SBDS of all four data sets in the order they 
were collected, multilevel model with a random inter-
cept (thus, assuming a fixed slope parameter4 but differ-
ent intercepts in the four studies) and the study number 
as the clustering variable, and OLS regression analysis 
on the pooled data from all four studies. All three data 
synthesis methods were computed using SAS University 
Edition Windows, and the %SBDS macro for performing 
these analyses is available in Online Resource 3. Subse-
quent sections will outline the procedures and results by 
data synthesis method.

Meta‑Analysis Using Raw Data

Meta-analysis is usually performed by using point estimates, 
such as effect sizes, from each study as raw data are often 
unavailable. However, when raw data sets are available, 
they are more advantageous to use than summary statistics 
(Curran & Hussong, 2009; Jones et al., 2009). Since raw 
data for all four studies were available for our example, a 
random-intercept multilevel model was specified in SAS 
PROC MIXED, using study as the clustering variable. These 
models had four level 2 units (studies) with varying numbers 
of level 1 units (participants) ranging from 7118 to 10,528. 
The equation describing the multilevel model for the bivari-
ate case is:

(2)M = i2 + aX + e2

(3)Y = i3 + c
�

X + bM + e3,

where i1 is the intercept, c is the regression coefficient 
assumed to be invariant between the four studies, uj is the 
difference in the intercept of study j from the mean intercept 
i1, and e1ij is the residual at the level of the individual. The 
effect of interest in the bivariate case is c. In the case of the 
single mediator model with random intercepts, there are two 
equations used to describe the model (Krull & MacKinnon, 
1999; MacKinnon, 2008):

where i2 and i3 are the intercepts in the equations predicting 
M and Y (respectively), a is the effect of X on M assumed 
to be invariant between the four studies, b and c’ are the 
conditional effects of M and X on Y (respectively) assumed 
to be invariant between the four studies, uMj and uYj are the 
difference in the intercept of study j from the mean intercepts 
i2 and i3 (respectively), and e2ij and e3ij are the residuals at 
the level of the individual.5

In the bivariate case (model 1), the inclusion of the 
term uj in the model indicated that the intercept i1 was 
allowed to differ among the four studies. The slope c was 
constrained to be equal between studies, thus assuming 
a fixed-effects model for the effect of X on Y. Using a 
multilevel model where individual ratings were nested 
within studies, the maximum-likelihood estimate of hav-
ing a trusted adult on GPA (coefficient c from Eq. (4)) 
was 0.416 with a 95% confidence interval ranging between 
0.380 and 0.451.

In the mediation analysis (model 2), two multilevel mod-
els were estimated: the first with participants’ self-reported 
number of drinks consumed in the past 30 days (M) as the 
outcome predicted by the presence of a trusted faculty 
member (X) to obtain the a coefficient. The second mul-
tilevel model used self-reported GPA (Y) as the outcome 
predicted from trusted faculty member (X) and participants’ 

(4)Yij = i1 + cXij + uj + e1ij,

(5)Mij = i2 + aXij + uMj + e2ij

(6)Yij = i3 + c
�

Xij + bMij + uYj + e3ij,

5 Multilevel meta-analysis is more complex when mediating vari-
ables are considered because the mediation model at its simplest 
contains two relations, X to M and M to Y, compared to typical mul-
tilevel meta-analysis which consists of one bivariate X to Y relation. 
Information for a mediational multilevel meta-analysis may consist 
of: (1) within-study (level 1) relations for the independent variable, 
mediator, and dependent variable which are all collected in the same 
study, and (2) between-study (level 2) information which combines 
information on different parts of mediational relations across studies 
(MacKinnon, 2008). Both within-study and between-study relations 
can be examined in a multilevel meta-analysis, and the difference 
between these effects, called a contextual effect, can be examined via 
a significance test (Wurpts, 2016).

4 A multilevel model with random slopes was also attempted follow-
ing the SAS code from Bauer, Preacher, and Gil (2006); however, 
this model failed to converge. Researchers who have reason to believe 
that the a and/or b paths (slopes) may differ among their data sets are 
encouraged to follow the excellent SAS documentation accompanying 
Bauer et al. (2006) available at http:// dbauer. web. unc. edu/ publi catio ns/.
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self-reported number of drinks consumed (M) to obtain the 
b coefficient. The intercepts i2 and i3 were allowed to be dif-
ferent between the four studies; however, the coefficients a, 
b, and c’ were constrained to be equal between studies, thus 
assuming a fixed-effects model for the effect of X on M and 
the effects of X and M on Y. The mediated effect was com-
puted as the product of coefficients ab. Using a multilevel 
model where individual ratings were nested within stud-
ies, the maximum-likelihood estimate of having a trusted 
faculty member on GPA through drinking behavior (ab) 
was 0.041 with a 95% confidence interval ranging between 
0.034 and 0.047.

Regression Analysis Using Pooled Data

Data synthesis can also be performed by pooling data from 
multiple studies without accounting for study membership. 
To illustrate that, we pooled our four studies into one data 
set of size N = 35,686. Observations from all four stud-
ies were weighted equally, as there were no reasons to 
assume differences between participants in the four studies. 
We used the pooled data set to estimate both the single-
predictor regression model (model 1) and the mediation 
analysis consisting of two OLS regression coefficients that 
would yield coefficients a and b for the product ab (model 
2). Again, we performed this analysis for illustration and 
recommend that researchers use caution if ignoring the 
nested structure of the data. Using the parallel data analysis 
method with pooled data, the maximum-likelihood esti-
mate of having a trusted faculty member on GPA (c) was 
0.41 with a 95% confidence interval ranging between 0.374 
and 0.446. The maximum-likelihood estimate of having a 
trusted faculty member on GPA through drinking behav-
ior (ab) was 0.041 with a 95% confidence interval ranging 
between 0.034 and 0.047.

Sequential Bayesian Data Synthesis

The SBDS for the four data sets was carried out in the 
order in which the data were collected. The first data set 
was analyzed using a diffuse prior, and the resulting param-
eter estimates from this analysis were used to specify prior 
distributions for the Bayesian regression analysis of the 
second data set. Point summaries of regression coefficients 
(and intercepts) from the posterior distribution of the first 
Bayesian mediation analysis were used as mean hyperpa-
rameters for normal priors for the corresponding regres-
sion coefficients (and intercepts) in a Bayesian analysis of 
the second data set. The posterior standard deviations for 
regression coefficients (and intercepts) of the first data set 

were used as standard deviation hyperparameters6 of the 
normal priors for the corresponding regression coefficients 
(and intercepts) in a Bayesian analysis of the second data 
set.

The diffuse priors used for the analysis of the first study 
(1993) were the normal prior with the mean hyperparameter 
equal to 0 and the variance hyperparameter equal to 100 
times the variance of the outcome variable for regression 
coefficients. The inverse-gamma priors for residual vari-
ances had shape and scale hyperparameters equal to 0.5, thus 
encoding the assumption that the best guess for the residual 
variance was 1 and that the prior information about this 
parameter had the weight of 1 observation (Gelman et al., 
2004). The priors for residual variances in the analysis of 
the second study (1997) were specified as inverse-gamma 
priors with the shape parameter equal to half of the observed 
sample size in the 1993 study, and the scale parameter equal 
to the product of the sample size and the observed residual 
variance in the 1993 study divided by 2. This choice of 
hyperparameters ensured that the bulk of the density of the 
prior was around the observed residual variance in study 1 
(Gelman et al., 2004).

Point summaries of central tendency and variability 
from the posterior distributions of all 1997 study model 
parameters were then used as hyperparameters for the 
prior distributions for a Bayesian analysis of the 1999 
data. For this example, we used the posterior median of 
all regression coefficients and intercepts as the mean of the 
prior distribution for the subsequent study. We performed  
the same analysis using the posterior mean of the regression 
coefficients as the  mean hyperparameter of normal priors for 
the next study, and we found that the results did not change 
appreciably. Likewise, we used the standard deviation of 
the posterior distribution of the regression coefficients in 
one study as the standard deviation of the prior distribution 
for the same regression coefficient in the subsequent study. 
Priors for the residual variances of each study were speci-
fied as inverse-gamma priors with the shape parameter equal 
to half of the observed sample size in the preceding study, 
and the scale parameter equal to the product of the sample 
size of the preceding study, and the posterior median of 
the corresponding residual variance in the preceding study 
divided by 2. This process was repeated with the results  

6 Note that another way to specify the spread hyperparameter of 
a normal prior in SAS is as a variance, which one can compute by 
squaring the standard errors or posterior standard deviations of the 
corresponding regression coefficient or intercept. Specifying a stand-
ard deviation hyperparameter to be equal to the standard deviation 
of the coefficient and as the variance hyperparameter to be equal to 
the squared standard deviation of the coefficient are just two ways 
of specifying the same prior distribution in SAS PROC MCMC 
(Miočević & MacKinnon, 2014; SAS Institute Inc., 2013).
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from 1997 becoming the prior information for the 1999 
study, and so on, until the final study (2001) was analyzed. 
Detailed explanations of the SAS PROC MCMC syntax for 
this analysis can be found in the supplementary document 
available at URL.

For the effect of having a trusted faculty member on 
GPA (c), the  posterior median from the initial 1993 data 
set (N = 10,528) was 0.435, posterior SD = 0.037, so those 
with a trusted faculty member had an average GPA 0.435 
higher (on a 9-point scale) than those who did not have a 
trusted faculty member. The 95% HPD credibility interval 
for this effect ranged between 0.365 and 0.494. The pos-
terior median of the intercept, i.e., the predicted GPA for 
those who did not have a trusted faculty member, was 5.05, 
posterior SD = 0.273. The posterior median of the residual 
variance for this model was 3.05.

Next, a Bayesian regression analysis of Y on X for the 
1997 data (N = 9153) was performed using PROC MCMC. 
The c parameter was given a normal prior with mean of 
0.435 and standard deviation of 0.037. The intercept was 
assigned a normal prior with a mean of 5.05 and a standard 

deviation of 0.027. The variance of the residual for the 
analysis was given an inverse-gamma prior with a shape of 
10,528/2 = 5264 and a scale of (3.05*10,528)/2 = 16,045.9.

This analysis yielded a posterior distribution for c with a 
median of 0.453, SD = 0.022. The posterior median for the 
intercept was 5.10 and the posterior SD = 0.015. The posterior 
distribution for the residual variance had a median of 2.87. 
These posterior summaries were then used as prior informa-
tion in a Bayesian regression analysis for the third data set 
(1999). The c parameter was assigned a normal prior with 
M = 0.453, SD = 0.021, and the intercept was given a nor-
mal prior with M = 5.10, SD = 0.015. The residual variance 
was given an inverse-gamma prior with a shape hyperpa-
rameter of 9153/2 = 4576.5 and a scale hyperparameter of 
(3.04*9153)/2 = 13,914. This process of using the central ten-
dency and variability of the posterior distributions for each 
analysis as the hyperparameters of the prior distribution for 
the next data set was continued until the final data set analyzed.

Using SBDS to combine information across all four stud-
ies, the median of the posterior distribution for the c effect 
in the final data set was 0.518 and the 95% HPD credibility 

Table 1  Posterior distribution summaries for bivariate and mediation models

Dataset Sample Size Parameter Posterior Median Posterior SD Credible Lower Credible Upper HPD Lower HPD Upper

Bivariate Model
1993 10528 i1 5.060 0.025 5.013 5.112 5.017 5.112
1993 10528 c 0.429 0.032 0.360 0.487 0.375 0.501
1993 10528 e21 3.052 0.041 2.967 3.130 2.964 3.128
1997 9153 i1 5.105 0.018 5.073 5.139 5.075 5.140
1997 9153 c 0.446 0.025 0.387 0.488 0.402 0.495
1997 9153 e21 3.043 0.030 2.984 3.100 2.983 3.097
1999 8887 i1 5.159 0.014 5.136 5.187 5.136 5.187
1999 8887 c 0.476 0.020 0.436 0.520 0.433 0.511
1999 8887 e21 2.923 0.030 2.864 2.981 2.864 2.981
2001 7118 i1 5.220 0.013 5.192 5.246 5.193 5.246
2001 7118 c 0.524 0.017 0.488 0.560 0.485 0.551
2001 7118 e21 2.870 0.032 2.805 2.935 2.805 2.933

Mediation Model
1993 10528 a -0.390 0.042 -0.475 -0.306 -0.465 -0.301
1993 10528 b -0.142 0.007 -0.156 -0.128 -0.156 -0.128
1993 10528 ab 0.055 0.007 0.043 0.069 0.042 0.068
1997 9153 a -0.315 0.027 -0.367 -0.261 -0.370 -0.266
1997 9153 b -0.138 0.005 -0.148 -0.128 -0.148 -0.129
1997 9153 ab 0.043 0.004 0.036 0.052 0.036 0.052
1999 8887 a -0.275 0.022 -0.315 -0.231 -0.315 -0.233
1999 8887 b -0.127 0.004 -0.134 -0.120 -0.135 -0.121
1999 8887 ab 0.035 0.003 0.029 0.041 0.029 0.041
2001 7118 a -0.299 0.019 -0.337 -0.264 -0.338 -0.265
2001 7118 b -0.118 0.003 -0.124 -0.112 -0.124 -0.112
2001 7118 ab 0.035 0.002 0.031 0.040 0.030 0.040
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interval ranged between 0.489 and 0.542, meaning there 
was a 95% probability that having a trusted faculty member 
increased GPA between 0.489 and 0.542 units (on a 9-point 
scale). Table 1 includes posterior medians, posterior stand-
ard deviations, 95% equal-tail, and highest posterior density 
(HPD) intervals for the effect of having a trusted faculty mem-
ber on GPA (c), the intercept (i1), and the residual variance 
�
2

e1
 for all data sets.
For the mediated effect of having a trusted faculty mem-

ber on GPA through alcohol consumption (ab), the poste-
rior distribution median for the initial 1993 data set was 
0.055. The 95% HPD credibility interval obtained via the 
%POSTINT macro (SAS Institute Inc., 2013) ranged from 
0.042 to 0.068 for ab in the 1993 data set. Using SBDS with 
SAS PROC MCMC, the median of the posterior distribu-
tion for the mediated effect in the final data set (2001) was 
0.035 with a 95% HPD credibility interval between 0.030 
and 0.040. This means there was a 95% chance that hav-
ing a trusted faculty member increased GPA via reduced 
drinking behavior between 0.03 and 0.04 units (on a 9-point 
scale). Table 1 includes posterior medians, posterior stand-
ard deviations, 95% equal-tail credibility intervals, and 95% 
highest posterior density intervals for the effect of condition 
on imagery (a), the effect of imagery on number of words 
recalled (b), and the mediated effect (ab) for all data sets 
analyzed using PROC MCMC.

As mentioned earlier, data sets available for synthesis 
may not always be homogenous in terms of quality or design. 
SBDS is very adaptable to such problems, as the informa-
tiveness or precision of prior information can be altered at 

each step via specification of a vector of weights for each 
study, between 0 and 1. Studies with weight = 0 are removed 
from the analysis. For those with weights > 0, the inverse 
of each weight is used to multiply the standard deviation 
of the posterior distributions from that study before those 
values are used as hyperparameters for the subsequent study. 
A smaller weight, therefore, reduces the influence that a par-
ticular study has on the analysis of the subsequent study. For 
weights = 1, the standard deviation of the posterior distribu-
tion remains unchanged.

For demonstration purposes, if we set the weights for stud-
ies 1993 and 1997 to 0.5, the posterior standard deviations for 
each parameter in the 1993 analysis would be multiplied by 
1/0.5 = 2 before being used as prior distributions for the 1997 
study. Likewise, the posterior standard deviations would be 
doubled from 1997 before being used as priors for the 1999 
study. In this case, the median of the posterior distribution for 
the mediated effect in the final data set would be 0.034 with a 
95% HPD credibility interval from 0.028 to 0.042.

Sequential Bayesian Data Synthesis 
with a Power Prior

The code in Online Resource 3 also allows for users to 
perform a semi-sequential Bayesian data synthesis where 
the initial study or studies are used to create a power prior 
for the next study, and then, the sequential Bayesian updat-
ing continues from that point. In this case, the initial priors 
for error terms are inverse-gamma with hyperparameters 

Pooled Data Analysis

Meta-Analysis with Raw Data

SBDS Step 1: 1993

SBDS Step 2: 1997

SBDS Step 3: 1999

SBDS Step 4: 2001

SBDS with Power Prior

SBDS with Downweighed 

1993 and 1997

0.030 0.040 0.050 0.060 0.070

Fig. 3  Point and interval estimates of the ab effect from all analyses. 
For frequentist analyses (Pooled  Data Analysis and Meta-Analysis), 
error bars represent 95% confidence intervals. For the remaining anal-

yses, point estimates are taken from the posterior median and error 
bars represent 95% HPD intervals
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(0.001, 0.001). For example, we used the 1993–1997 
studies combined with a0 = 0.5 to create a power prior for 
the 1999 study. In this case, the mediated effect for the 
1999 study with a power prior was 0.036, with 95% HPD 
credibility interval between 0.026 and 0.044. The point 
summaries from this analysis were then used to define the 
priors for an analysis of the 2001 study, like described in 
the preceding sequential Bayesian analysis section. Using 
this method, the mediated effect for the final 2001 study 
was 0.035 with a 95% HPD credibility interval between 
0.029 and 0.042.

The code also allows specification of a threshold for 
the mediated effect and assessment of the probability that 
the mediated effect is greater or less than this threshold. 
In our example, we set the threshold to 0 and tested the 
hypothesis that ab > 0. For all four studies, we found that 
100% of the posterior draws were > 0. If users are inter-
ested in where the HPD credibility intervals for ab exclude 
zero, the output includes a table with this information 
(all studies in our example had HPD credibility intervals 
which excluded 0). In addition, users can suppress plots for 
PROC MCMC and PROC REG, and they can specify the 
number of burn-in iterations, number of MCMC iterations, 
thinning parameter, and seed. When using the macro, it is 
important that the data be sorted by the order in which the 
user wishes to analyze the data. Across all three methods 
of data synthesis, final point and interval estimates (i.e., 
point and interval summaries in the Bayesian framework) 
are similar, as seen in Fig. 3.

Discussion

Using Bayesian methods to sequentially update findings 
in data synthesis has been advocated before (de Leeuw 
& Klugkist, 2012; Kuiper et al., 2013). However, to our 
knowledge, this is the first study to implement it in a 
mediation model using raw data and compare the results 
it produces to those obtained from more commonly used 
data synthesis methods, i.e., multilevel meta-analysis and 
OLS regression on pooled data via a SAS macro. We note 
that the point estimates for c and ab did not differ drasti-
cally among the three methods in our example, although 
the credibility intervals obtained in the SBDS were nar-
rower (and thus more precise) than the confidence inter-
vals from the other methods. This similarity among the 
different methods is unsurprising given the very large sam-
ple sizes and relative homogeneity between each study. 
With smaller and more heterogeneous studies, the SBDS 
approach offers more flexibility in terms of weighting the 
information from each study—in cases where some data 
sets are less reliable, the variance hyperparameters of the 

prior distributions can be easily modified via weights to 
reflect this heterogeneity. Without a priori knowledge of 
heterogeneity, each study could be analyzed separately to 
ensure that the specified model is appropriate before com-
bining into a sequential analysis. Future iterations of the 
%SBDS macro might include an automating of the choice 
of appropriate prior distributions in cases where normality 
is not expected.

Also, SBDS allows for the accumulation of scientific 
knowledge. In our example, we demonstrated how to model 
the accumulation of knowledge across time for the effect of 
having a trusted faculty advisor on college students’ GPA. 
Again, we wish to emphasize here that our empirical exam-
ple was chosen for the purposes of illustrating the SBDS 
method, and we assumed a temporal ordering of the three 
constructs. With observational data such as these, it is also 
possible that other relations among the data could explain 
our results, such as if GPA was a moderator rather than 
mediator, if GPA was a confounder rather than a mediator, 
or if all three variables measured the same construct. The 
SBDS method describes could be extended to other more 
complex mediation models (MacKinnon, 2008). Further-
more, we did not explicitly account for the non-normal dis-
tribution of the outcome variable, although mediation mod-
els for such zero-inflated distributions have been described 
elsewhere (O’Rourke & Vasquez, 2019).

Another important distinction between SBDS and the 
other two methods lies in the interpretation of the findings: 
while meta-analysis and OLS regression gave one point 
estimate of the effects of interest and intervals interpreted 
in terms of confidence (i.e., upon repeated sampling, 95% 
of the intervals constructed using these two methods will 
contain the true value of the effect of interest), SBDS gave 
an entire distribution for the parameter of interest based 
on which intervals with a probabilistic interpretation were 
formed. Thus, when using SBDS, one has the advantage of 
being able to conclude that the true value of c lies between 
0.489 and 0.542, and the true value of ab lies between 0.028 
and 0.042 with 95% probability.

Replication issues in psychology right now call for 
a more nuanced understanding of the accumulation of 
research beyond whether each study independently showed 
a significant or non-significant effect (Maxwell et  al., 
2015). Although all four alcohol studies had similarly 
sized effects for c and ab parameters (likely because of the 
large sample sizes), it is possible that a subsequent study 
may find parameters that are larger, smaller, or even in a 
different direction. Rather than viewing this hypothetical 
result as contrary to the results from the other data sets, 
SBDS allows integration of replicated studies to provide 
a more general understanding of the experimental effect. 
This facilitates the accumulation of knowledge across mul-
tiple studies even when the studies have differing results.
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Note that all data synthesis methods may be prone to publi-
cation bias when the researcher is required to compile scientific 
findings without access to non-statistically significant findings. 
Studies and data sets with small effect sizes and non-significant 
results are often not published, and then not included in the 
data synthesis. Thus, studies with significant findings are likely 
to be overrepresented in meta-analytic literature compared to 
comparable studies with non-significant findings. Like many 
others in our field, we support the increased use of publicly 
available data sets to combat this so-called file drawer problem 
(Nosek et al., 2012).

When raw data are available, however, SBDS offers an intui-
tive and easily interpretable method to obtain point and interval 
summaries of an effect of interest across multiple studies. SBDS 
could also be expanded to more complicated structural and 
latent variable models if prior distributions for model param-
eters can be accurately represented in the Bayesian framework. 
There has been considerable growth in the amount and quality 
of data collected in prevention science research since the forma-
tion of the field of prevention science. The sequential Bayesian 
framework provides an organized way to accumulate scientific 
knowledge in prevention.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11121- 021- 01256-1.
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