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Abstract
In prevention science and related fields, large meta-analyses are common, and these analyses often involve dependent effect 
size estimates. Robust variance estimation (RVE) methods provide a way to include all dependent effect sizes in a single meta- 
regression model, even when the exact form of the dependence is unknown. RVE uses a working model of the dependence 
structure, but the two currently available working models are limited to each describing a single type of dependence. Drawing 
on flexible tools from multilevel and multivariate meta-analysis, this paper describes an expanded range of working models, 
along with accompanying estimation methods, which offer potential benefits in terms of better capturing the types of data 
structures that occur in practice and, under some circumstances, improving the efficiency of meta-regression estimates. We 
describe how the methods can be implemented using existing software (the “metafor” and “clubSandwich” packages for 
R), illustrate the proposed approach in a meta-analysis of randomized trials on the effects of brief alcohol interventions for 
adolescents and young adults, and report findings from a simulation study evaluating the performance of the new methods.

Keywords Meta-analysis · Meta-regression · Robust standard errors · Dependent effect sizes

In the prevention sciences as in other areas of social inquiry, 
systematic reviews and meta-analyses are increasingly common 
modes of research. The need for systematic reviews has grown 
particularly over the past 10 years, in response to increasing 
numbers of randomized trials and quasi-experiments evaluating 
interventions targeting youth (e.g., Chhin et al., 2018). Over 
the past decade, Prevention Science alone has published thirty 
such reviews, including reviews on substance abuse prevention 
programs (Hennessy & Tanner-Smith, 2015), mental health 
interventions (Conley et al., 2015), and parenting interventions 
(Baudry et al., 2017).

The meta-analyses produced within prevention science 
and many other areas of social science tend to be large in 
scope, often including results from more than 50 studies 
(Tipton et al., 2019b). In reviews this large, the goal of meta-
analytic synthesis is not simply to provide an estimate of 

the average effect but also to characterize heterogeneity and 
investigate sources of variation in effects. Meta-analyses 
routinely examine whether effect sizes vary in relation to 
methodological characteristics (e.g., study design), sample 
characteristics (e.g., average age of participants), and fea-
tures of the intervention (e.g., hours of intervention, delivery 
mode). The primary statistical tool for investigating such 
questions is the meta-regression model—essentially the 
meta-analytic version of multiple regression.

When the goal of a research synthesis is to explore heter-
ogeneity, it is often desirable to combine all relevant sources 
of evidence into a single meta-regression model. This allows 
tests of hypotheses regarding focal variables, such as inter-
vention components, while holding constant methodological 
characteristics that might otherwise confound the analyses 
(Lipsey, 2003; Tipton et al., 2019a). However, including 
all collected effect size estimates in a single model creates 
complications due to the statistical dependence among the 
effect size estimates generated from the same study. Sta-
tistical dependence can arise from shared features of labs 
or research groups or as a result of multiple measurements 
being collected on the same individuals (e.g., outcomes at 
1, 6, and 12 months). The structure of such dependence 
needs to be taken into account if conclusions based on 
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meta-regression models are to remain valid, but doing so 
presents analytic challenges because the information needed 
to quantify the degree of dependence is rarely reported in 
primary studies.

Methods for handling dependent effect sizes have been 
available in meta-analysis since the beginning of the field 
(see Hedges & Olkin, 1982). Early methods, sometimes 
called multivariate meta-analysis, required knowledge of the 
exact dependence structure of the effect sizes, thus rendering 
them useful only in exceptional cases. Instead, analysts have 
typically sought to avoid dependence by dividing a larger 
meta-analysis into several smaller analyses, each focused on 
a particular outcome or particular subgroup of effects (e.g., 
effects measured immediately after intervention; effects 
based on researcher-developed outcome assessments). This 
approach can produce statistically valid results for each 
subgroup, but running separate analyses on each subgroup 
makes it difficult to quantify differences across levels of a 
moderator or to adjust for multiple moderators.

Over the past decade, focus has turned increasingly to a 
new method known as robust variance estimation (RVE), 
which provides a way to include dependent effect sizes in 
meta-regression, even when the nature of the dependence 
structure is unknown (Hedges et al., 2010; Tipton, 2013, 
2015; Tipton & Pustejovsky, 2015). RVE is now widely 
used in meta-analyses, and software packages implement-
ing the methods are available in both R (Fisher et al., 2017; 
Pustejovsky, 2020) and Stata (Hedberg, 2014; Tyszler et al., 
2017). RVE methods do not require knowledge of the exact 
dependence structure between effect size estimates. Instead, 
RVE involves use of a working model for dependence, which 
approximates the dependence structure but does not need to 
be entirely correct. Even when the working model is mis-
specified, meta-regression coefficient estimates will be unbi-
ased, and their standard errors (along with hypothesis tests 
and confidence intervals) will provide valid quantification 
of uncertainty. The primary benefit of using a more accurate 
working model comes from increased efficiency. Specifi-
cally, using a working model that more accurately captures 
the dependence structure will lead to meta-analysis and 
meta-regression coefficient estimates that are more precise 
and accurate (Tipton, 2015; Tipton & Pustejovsky, 2015).

To date, two different working models have been pro-
posed for use with RVE methods. The first of these, called 
the hierarchical effects model, assumes that dependence 
arises solely through common features of a lab or research 
group, while within a lab or group, each effect size is esti-
mated on an independent sample. The second of these, called 
the correlated effects model, assumes that dependence arises 
because effect sizes are estimated based on the same sample 
(e.g., multiple measures of a common outcome construct or 
one outcome assessed over multiple time points). The choice 
of one of these working models then forms the basis for a 

set of “approximately efficient” weights used in the meta-
regression model (Hedges et al., 2010).

In practice, however, meta-analyses frequently involve 
both hierarchical and correlated effects structures. Existing 
guidance on use of RVE encourages analysts to select a hier-
archical effects or correlated effects model based upon the 
structure that is most common in their analyses, noting that 
for the purposes of weighting and inference about the meta-
regression coefficients, using the exactly correct dependence 
structure is not necessary (Tanner-Smith & Tipton, 2014; 
Tanner-Smith et al., 2016). When taking this approach, 
the model’s variance components (e.g., the between study 
variance, �2 ) are treated as incidental to the analysis—only 
there for efficiency improvements—rather than as a focal 
parameter used for description or inference. This is where 
RVE diverges markedly from standard meta-analytic meth-
ods, where variance component estimates are considered an 
important component of synthesis results. Thus, analysts are 
left to choose between using RVE—which guards against 
model misspecification yet does not emphasize descriptions 
of heterogeneity—and multivariate meta-analysis—which 
can provide heterogeneity estimates but does not guard 
against misspecification.

We think that this forced choice is artificial and unneces-
sary. In this paper, we propose a hybrid approach that melds 
RVE with existing approaches to multivariate meta-analysis 
instead of treating them as separate analytic strategies. We 
argue that the flexible variance structures available with 
multivariate models offer benefits in terms of better captur-
ing the types of dependence that occur in practice, including 
dependence that has both hierarchical effects and correlated 
effects. At the same time, treating the multivariate variance 
structures as working models within the RVE framework 
provides a safeguard against model misspecification. We 
show that this melding of methods can be implemented 
with existing software (the metafor and clubSandwich pack-
ages for R), and we study the properties of the approach 
using Monte Carlo simulations. We illustrate the proposed 
approach with an example based upon a meta-analysis of 
randomized trials examining the effects of brief-alcohol 
interventions for adolescents and young adults (Tanner-
Smith & Lipsey, 2015).

Meta‑Regression with Robust Variance 
Estimation

We begin by providing a general review of meta-analysis 
with dependent effect sizes using robust variance estimation 
(RVE). Consider a collection of J studies to be included 
in a meta-analysis, where each study contributes nj effect 
size estimates, for j = 1, .., J . Let Tij denote effect size esti-
mate i from study j , with corresponding standard error sij , 

426 Prevention Science (2022) 23:425–438



1 3

for i = 1,… , nj and j = 1,… , J . We assume that Tij is an 
unbiased estimate of an effect size parameter �ij and that 
sij is fixed and known. Letting �ij denote a row vector of 
p covariates (possibly including an intercept term) and � 
denote a vector of p regression coefficients, we can relate 
the observed effect size estimates to these covariates using 
the meta-regression model

where eij = Tij − �ij is the sampling error, with E
(

eij
)

= 0 
and Var

(

eij
)

= s2
ij
 . The error term uij describes variation in 

the effect size parameters above and beyond the variation 
explained by the covariates. Throughout, we assume that the 
effect size estimates from different studies are uncorrelated, 
so cor

(

ehj, eik
)

= 0 when j ≠ k. To capture potential depend-
ence, however, we will allow that effect size estimates from 
the same study may be correlated, although typically, the 
analyst will not know the exact degree of correlation 
between effect sizes from the same study. We will consider 
several different assumptions about the structure of uij within 
studies.

Robust Variance Estimation

In the RVE framework, meta-regression coefficients are esti-
mated using weighted least squares (WLS).1 WLS involves 
regressing the effect size estimates ( Tij ) on the predictors 
( �ij ). Unlike with ordinary regression, WLS incorporates a 
set of weighting matrices to improve the efficiency of the 
resulting coefficient estimates. For each study j = 1,… , J , 
let �j denote an nj × nj matrix of weights and let �� be 
an nj × nj variance–covariance matrix that describes the 
true dependence structure of the effect sizes from study j . 
The entries in true variance–covariance matrix for study j 
describe the covariance between pairs of effect sizes within 
the study, so that row h and column i of the matrix has entry 
�hij = Cov(uhj + ehj, uij + eij) for h, i = 1,… , nj.

If we knew the exact dependence structure of the effect 
sizes, then we could choose weights that are exactly 
inverse of the true variance–covariance for each study (i.e., 
�� = �−1

j
), resulting in an estimator of � that is fully effi-

cient, meaning that it has the smallest possible sampling 
variance. Furthermore, if we knew the true dependence 
structure, we could exactly calculate standard errors, test 
statistics, and confidence intervals for the WLS estimator 
using standard formulas (Hedges et al., 2010). In contrast, if 
we are not certain of the dependence structure (i.e., the form 
of the �j’s), then we cannot define exactly inverse variance 

(1)Tij = �ij� + uij + eij

weights, nor can we estimate the variance of the WLS esti-
mator using standard methods.

The RVE approach separates the choice of a set of weight 
matrices from the method of estimating standard errors, so 
that standard errors can be obtained without having to assume 
a known dependence structure. Rather, RVE standard errors 
are calculated by using products of the regression residuals 
to roughly approximate the variance–covariance structure 
of the errors (i.e., to roughly estimate �j for each study). 
Even though each product of residuals provides only a very 
crude estimate, the RVE standard errors are nonetheless valid 
because they involve an average of the residual products, 
which will be accurate if calculated across a sufficiently 
large number of studies. Furthermore, adjustment methods 
have been developed to reduce small-sample bias of the RVE 
standard errors (Tipton, 2015; Tipton & Pustejovsky, 2015).

Although RVE standard errors are statistically valid 
under any set of weights, the choice of weights does impact 
the precision of the meta-regression coefficient estimator 
( ̂� ). The most precise estimator results when the weights 
are exactly inverse of the true variance–covariance matrix. 
However, because the true covariance matrix �j is unknown, 
we must in practice use a working model—meaning a good 
guess or rough approximation—for purposes of develop-
ing weight matrices. If the working model is correct, the 
resulting weights are exactly inverse variance, and the meta-
regression estimator is fully efficient. If the working model is 
only close to correct, the resulting weights are still approxi-
mately inverse variance, and the meta-regression estimator 
is still close to efficient. In contrast, if the working model is 
quite discrepant from the true covariance structure, the meta-
regression estimator may be much less efficient, although it 
is still unbiased and inferences based on RVE remain statisti-
cally valid. Thus, the choice of working model and associ-
ated weight matrices offer a means to improve the precision 
of meta-regression coefficient estimates.

Currently Available Working Models

When they introduced RVE, Hedges et al. (2010) included 
two working models, “hierarchical” and “correlated” 
effects. For each working model, they also proposed 
approximately efficient weights. We now review these 
models.

Model 1: Hierarchical Effects (HE)

The first of the original working models is the hierarchical 
effects (HE) model, which has the form

(2)Tij = �ij� + uj + v
ij
+ eij,

1 This section describes RVE at a heuristic level. Section S1 of the 
supplementary materials includes exact mathematical details using 
matrix notation.
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where Var
(

uj
)

= �2 , Var
(

vij
)

= �2 , Var
(

eij
)

= s2
ij
 , and 

Cov
(

ehj, eij
)

= 0 . Here, �2 is the between-study variation in 
study-average true effect sizes, �2 is the within-study varia-
tion in true effect sizes, and sij is the known standard error 
from estimation.2 Note that the HE model assumes that con-
ditional on being in the same study, the effect size estimates 
are independent, so that the only source of dependence 
between effect sizes in the same studies is with regard to the 
true effect sizes, not estimation error.

Model 2: Correlated Effects (CE)

The second working model is the correlated effects (CE) 
model, which has the form

where now Var
(

uj
)

= �2 , Var
(

eij
)

= s2
j
 , and Cov

(

ehj, eij
)

=

�s2
j
 . Here, � is the correlation between two effect size esti-

mates in the same study (for h ≠ i) , and s2
j
=

1

nj

∑nj

i=1
s2
ij
 is the 

average (known) sampling variance in the study.3
The CE model imposes several simplifying assumptions 

about the dependence structure. First, it is assumed that there 
is no within-study variation in the true effect size parameters 
beyond what is explained by the covariates. Second, it is 
assumed that sampling variances are roughly equivalent, so 
that s2

ij
≈ s2

j
 . Third, it is assumed that the correlation between 

effect size estimates is the same for all pairs of effect size 
estimates in study j (and in every study). Thus, this working 
model has only a single variance component, �2 , represent-
ing between-study variation in true effect sizes.

Weights and Estimation

The correlated effects and hierarchical effects working mod-
els involve, respectively, one or two unknown variance com-
ponent parameters that must be estimated. Existing software 
for RVE estimates these variance component parameters 
using special method-of-moment estimators proposed by 
Hedges et al. (2010). Estimates of the variance components 
are used to calculate weighting matrices, which are then 
used for weighted least squares estimation of the regression 
coefficients � . For the hierarchical effects model, the weight 
matrices are given by

(3)Tij = �ij� + uj + eij

wherewij = 1∕
(

�̂2 + �̂2 + s2
ij

)

 and �̂2 and �̂2 are the method-
of-moments estimators of �2 and �2 (Hedges et al., 2010). 
For the correlated effects model, the weight matrices are also 
diagonal, with every diagonal entry equal to

where �̂2 is the method-of-moments estimator of �2 . This 
estimator requires specification of an assumed correlation 
� ; the software default is set as � = 0.80 (Fisher et al., 2017).

Crucially, these weight matrices are not fully inverse-
variance weights, even when the working models are correct. 
Rather, Hedges and colleagues describe them as “approxi-
mately efficient” weights, which are close to the optimally 
efficient inverse-variance weights but are easier to calculate 
because they do not involve inverting nj × nj matrices. In 
contrast, we follow a different strategy and use fully inverse-
variance weighting when implementing new working models 
for RVE. As we demonstrate in the following sections, this 
change in strategy can lead to non-trivial efficiency improve-
ments under certain conditions while still being feasible to 
implement with existing software tools.

A New Class of Working Models for RVE

Given the two available working models, it is not hard to 
see that there are situations in which a fusion of the mod-
els would be desirable. Indeed, in our consultations with 
researchers using RVE, this has been a common request. In 
this section, we propose two new working models, as well 
as describing an approach for developing further extensions 
and refinements. We start with a model that combines the 
features of the HE and CE models because we anticipate 
that this working model may be the most broadly applicable.

Model 3: Correlated and Hierarchical Effects (CHE)

In our experience, meta-analytic data rarely have a purely 
correlated or purely hierarchical effects structure. Rather, it 
is far more common for both types of structure to be pre-
sent. A model that combines both dependence structures is 
given by

where  Var
(

uj
)

= �2 , Var
(

vij
)

= �2 , Var
(

eij
)

= s2
j
 , and 

Cov
(

ehj, eij
)

= �s2
j
 . Like the original CE model, the corre-

lated and hierarchical effects (CHE) model makes the sim-
plifying assumption that there is a single, known correlation 
� between pairs of effect sizes from the same study, which is 

(4)�j = diag
(

w1j,… ,wnjj

)

(5)wij =
1

nj

(

�̂2+s2
j

)

(6)Tij = �ij� + uj + v
ij
+ eij

3 Section S2.2 of the supplementary materials provides further details 
on the structure of the variance–covariance matrices, �1,… ,�

J
 under 

this model.

2 These assumptions define a certain structure for the variance–
covariance matrices, �1,… ,�

J
. See Section S2.1 of the supplemen-

tary materials for further details.
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the same across all studies. We shall refer to this as the “con-
stant sampling correlation” assumption.4

This CHE model combines the desirable features of the 
HE and CE working models. Like the HE working model, 
it allows for both between-study heterogeneity (quantified 
by the between-study SD � ) and within-study heterogeneity 
(quantified by the within-study SD � ) in true effect sizes. 
Like the CE model, it also allows there to be some corre-
lation between the effect size estimates within each study. 
Combining these features into one working model may be 
particularly attractive in meta-analyses that include studies 
with a broad variety of outcomes, follow-up times, or other 
operational variations—exactly the circumstances where 
meta-regression and RVE methods are most useful.

We expect that the CHE model will be a first choice as a 
working model in many applications, especially when little 
information is available about correlations between included 
effect size estimates. However, other working models are 
possible and may be of interest when effect sizes from 
included studies can be classified into distinct dimensions 
or categories.

Model 4: Subgroup Correlated Effects (SCE)

When a meta-analytic database includes multiple dimen-
sions or categories of effect sizes, meta-analysts often con-
duct sub-group analysis, estimating separate results within 
each category of effect sizes. For example, in a synthesis of 
adolescent mental health interventions, Skeen et al. (2019) 
conducted separate meta-analyses of effects on positive 
mental health, depression and anxiety symptoms, aggres-
sive behavior, and substance use. Their approach resulted in 
five separate meta-regressions, with separate pooled effect 
size estimates, between-study heterogeneity estimates, and 
hypothesis tests.

Using separate sub-group analyses may be appealing 
because of its feasibility and conceptual simplicity. In par-
ticular, the results for each sub-group are based only on 
the effect size estimates from that sub-group, rather than 
coming from a model for the full data including all effect 
size estimates. Running separate analyses also allows the 
between-study variance to be different for each sub-group, 
rather than assuming that it is common across categories. 
However, running separate meta-regressions for each of sev-
eral sub-groups can become unwieldy because each analysis 
has a reduced sample size, potentially making it infeasible 
to estimate a meta-regression with many predictors. More 
fundamentally, running separate analysis does not provide 
any way to conduct statistical tests or calculate confidence 

intervals for comparisons between average effects from dif-
ferent sub-groups. This is because, if the sub-groups include 
overlapping sets of studies, the pooled effect sizes from each 
sub-group are not independent.

Here, we propose an alternative working model, the sub-
group correlated effects (SCE) working model, that over-
comes these problems and allows for comparisons across 
sub-groups, while preserving the conceptual clarity of 
sub-group analysis. The SCE working model embeds the 
assumptions of separate meta-regression analyses into a 
working model for the full data, including effects across all 
categories. By using a working model that treats the effect 
size estimates from different sub-groups as independent, we 
can obtain meta-analytic estimates that are identical to the 
results of separate sub-group analyses, but that can be sta-
tistically compared using RVE because they are all part of 
one model.

Suppose that every effect size estimate can be classified 
into one of C categories, and define the indicators d1

ij
,… , dC

ij
 , 

where dc
ij
= 1 if effect size i in study j falls into category c 

(e.g., a depression outcome), with dc
ij
= 0 otherwise. If they 

were running a sub-group analysis of the effects in category 
c, the analyst would estimate the model

using only on the subset of effect sizes that has dc
ij
= 1 . The 

set of C such models can be expressed in one meta-regres-
sion model by interacting the covariates ( �ij ) with indicators 
for each category ( dc

ij
 ) and similarly interacting the random-

effects term ( ucj ) with indicators for each category. This 
yields the model

which can be expressed more compactly as

Note that this model includes separate terms for the 
regression coefficients from each of the C categories. To 
ensure that the coefficient estimates from each category are 
based only on the effect size estimates from that category, 
the assumptions regarding the random effects terms and 
sampling errors need to be slightly modified. First, rather 
than using the constant sampling correlation assumption, 
the analyst can use what we shall call a “constant sampling 
correlation within subgroups” assumption. Here, we assume 
that effect size estimates from the same study are correlated 
if they fall within the same sub-group, but are uncorrelated 
if they fall in different sub-groups. This assumption can be 
expressed mathematically as

Tij = �ij�c + ucj + eij

Tij =d
1

ij
�ij�1 + d2

ij
�ij�2 +⋯ + dC

ij
�ij�C + d1

ij
u1j

+ d2
ij
u2j +⋯ + dC

ij
uCj + eij,

(7)Tij =
∑C

c=1
dc
ij

�

�ij�c + ucj
�

+ eij

4 Section S2.3 of the supplementary materials gives form of the vari-
ance–covariance matrices implied by the CHE model.
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Second, the sub-group analysis approach requires speci-
fying random effects for each category that are mutually 
independent, so that Var

(

ucj
)

= �2
c
 and Cov

(

ubj, ucj
)

= 0.5
In contrast to the original CE model, this SCE working 

model produces several estimates of between-study heter-
ogeneity—one for each category of effects. Furthermore, 
using the subgroup working model produces estimates of 
the meta-regression coefficients �1,… , �C and variance 
components �2

1
,… , �2

C
 that are identical to results based 

on estimating separate models for each sub-group of effect 
sizes. The main benefit of this working model, then, is that 
using a single model allows statistical comparisons of the 
meta-regression coefficients across categories. For instance, 
in the meta-analysis of mental health interventions (Skeen 
et al., 2019), one could use RVE methods to test the hypoth-
esis that average effect sizes are equal across the dimen-
sions of positive mental health, symptomatology, aggres-
sive behavior, and substance use, or that the differences in 
program impacts between in-person interventions and digital 
interventions are consistent across these dimensions. Simi-
larly, one could calculate a robust confidence interval for a 
difference between two categories (e.g., the difference in 
average effect on symptomatology and the average effect on 
substance use).

Additional Variants and Extensions

We expect that the CHE and SCE working models may be 
more widely applicable than the original CE or HE work-
ing models. However, we would also emphasize that these 
models will not address all of the problems that meta-ana-
lysts face when applying RVE. We view these two working 
models as leading examples of a larger class of working 
models that can be expressed using multivariate or mul-
tilevel models. Other working models, as well as refine-
ments to the models that we have described, are possible 
and simply require expressing other assumptions regarding 
the variance–covariance structure of the effect sizes. Here, 
we briefly describe three potential refinements that may be 
useful in practice.

Add a Level ( +)

Thus far, the working models we have described all assume 
a two-level meta-analytic structure, wherein effect sizes are 
nested within independent studies. However, some meta-
analytic databases include one or more higher levels of 

(8)Cov
�

ehj, eij
�

= �s2
j

∑C

c=1
dc
hj
dc
ij

nesting that could also be modeled. For example, it may be 
that multiple effect sizes are nested in samples, with mul-
tiple samples nested within larger studies (e.g., multi-site 
trials that report site-specific results) or within independent 
research labs. In any of these cases, including this additional 
level amounts to including an additional random effect and a 
corresponding variance component. For notational purposes, 
we refer to such models with a “ + ” sign to indicate the 
additional level, as in “CHE + ”.6

Non‑Constant Correlation Using Auxiliary Data

The working models described thus far are premised on 
the assumption that the analyst will typically have infor-
mation on the variances of effect size estimates but little 
or no information about their correlations or covariances. 
In some meta-analytic databases, however, the analyst may 
be able to directly compute the covariances between effect 
sizes for some pairs of effect sizes within studies.7 Further, 
some primary studies might also report a correlation matrix 
across outcome measures (or across repeated measures of 
an outcome), which can be used to compute the covariances 
between effect size estimates for those outcomes.

In practice, it is unlikely that sampling covariances could 
be directly estimated for all included studies and all pairs of 
effect size estimates. Still, the analyst may be able to specify 
the covariances by using a combination of known values 
(i.e., for studies that report correlations between outcomes) 
and potentially arbitrary guesses about covariances between 
effect sizes where no information is available. We shall call 
this approach the “partially empirical correlations” assump-
tion or “PEC” assumption. Using it in place of the constant 
sampling correlation assumption, Model 3 would then be 
called “PECHE.”

Auto‑Correlated Errors

Some meta-analyses may involve very narrowly defined out-
comes, but where there is interest in understanding change 
over time. In these cases, effect size dependence arises pri-
marily from outcomes measured repeatedly over time, and the 
constant sampling correlation assumption might be considered 

6 More details about the specification of CHE + are given in Section 
S3.1 of the supplementary materials.
7 For example, a meta-analysis might include some experiments with 
multiple treatment conditions, where the effect size estimates repre-
sent treatment effects compared to a common control condition. The 
formula for the covariance between pairs of effect sizes estimated 
from a common control group can be calculated from information 
that is usually reported in primary studies (Gleser & Olkin, 2009; 
Wei & Higgins, 2013), so that there is no need to make arbitrary 
assumptions about the correlation between sampling errors.

5 Section S2.4  of the supplementary materials give the form of the 
variance–covariance matrices in the SCE model.

430 Prevention Science (2022) 23:425–438



1 3

somewhat unrealistic. Instead, it may be more plausible to 
assume that the correlation between a pair of effect size esti-
mates generated from a common sample depends on the time 
interval between assessments (cf. Trikalinos & Olkin, 2012). 
For example, we might expect the correlation between effect 
sizes at the end of an intervention, and 1 month later to be 
larger than the correlation with effect sizes 6 or 12 months 
later. In the supplementary materials (Sect. 3.2), we suggest 
an alternative to the constant sampling correlation assump-
tion, based on a simple first-order auto-regressive working 
model. Similar to the constant sampling correlation assump-
tion, the AC assumption involves a single parameter, the 
choice of which might be arbitrary (and paired with sensitiv-
ity analysis) or informed by empirical data provided by one 
or more of the primary studies. We call this the “sampling 
auto-correlation” or “AC” assumption. Using it in place of 
the constant sampling correlation assumption, Model 3 would 
then be called “ACHE.”

Choosing and Implementing a Working 
Model

The new working models and refinements that we have 
described are more complicated than the original RVE 
working models, and readers may worry about how feasible 
it is to implement them in practice. As we illustrate here 
and in the example, it is possible to implement these new 
working models using readily available, existing software. 
The implementation process involves three steps, which we 
detail in this section: (1) identify a working model and flesh 
it out; (2) assume the working model is true and estimate 
the meta-regression coefficients based upon it; and (3) guard 
against misspecification of the working model by calculating 
standard errors and hypothesis tests using RVE.

Identify an Appropriate Working Model

The benefit of the approach we have described is that there 
are now a wider variety of possible working models avail-
able to analysts, thus allowing selection of a model that more 
closely aligns with the dependence structure of the effect 
size data. This flexibility does come with some potential 
risks, as it requires analysts to make a larger number of deci-
sions and thus expands the possibilities for analytic flex-
ibility or “researcher degrees of freedom”—even the meta-
analytic equivalent of p-hacking.

To guard against such concerns, we recommend that the 
working model be chosen based upon a broad understand-
ing of the data structure and data-generating process—not 
by comparing how meta-regression results change (or do 
not) over different working models or assumptions. In Fig. 1, 
we provide a decision-tree that analysts can use to select a 

working model. This involves three decisions: (1) choos-
ing an assumption for the within-study correlation between 
effect size estimates, (2) identifying a structure for the ran-
dom effects, and (3) determining whether to include any 
additional levels. Ideally, this decision-tree would be used 
to select a working model during the planning stage of the 
meta-analysis (before analysis begins), and the intended 
working model would be pre-registered. Even if it is not 
possible to identify a specific working model during the 
planning stage, researchers might still pre-register the com-
mitment to follow the decision tree (or a suitably modified 
version of the decision tree), once the structure of the data 
has been determined.

Estimate the Meta‑Regression while Treating 
the Working Model as True

After a working model is selected, it can be implemented in 
R using a combination of the clubSandwich (Pustejovsky, 
2020) and metafor packages (Viechtbauer, 2010). The first 
step in the analysis is to specify the correlation structure 
of the effect size estimates within studies. For the constant 
sampling correlation (C) or sampling auto-correlation mod-
els (AC), as well as the corresponding sub-group versions, 
this can be accomplished using the function impute_covari-
ance_matrix() from the clubSandwich package. The par-
tially empirical sampling correlation model (PE) can be 
implemented using the pattern_covariance_matrix() from 
clubSandwich.

The second step is to estimate the random effects part 
of the working model and to use the results to estimate the 
meta-regression coefficients. This can be accomplished 
using the function rma.mv() from the metafor package. To 
use this function, the analyst must specify (a) the form of the 
meta-regression model, using R’s regression equation syn-
tax, (b) the chosen sampling correlation working model, and 
(c) the form of the random effects working model, using syn-
tax and arguments described in the metafor package. Given 
these inputs, the function automatically generates restricted 
maximum likelihood estimates of the random effects vari-
ance components, calculates inverse-variance weight matri-
ces, and estimates the meta-regression coefficients.

Guard Against Misspecification by Using RVE

The third step is to calculate RVE standard errors, hypoth-
esis tests, or confidence intervals for the meta-regression 
coefficient estimates. This can be accomplished using the 
functions coef_test() or conf_int() from the clubSandwich 
package. These functions take as input the results of the 
rma.mv()model, calculate RVE standard errors, hypothesis 
tests for each coefficient, and confidence intervals for each 
coefficient. The function Wald_test() from clubSandwich 

431Prevention Science (2022) 23:425–438



1 3

can also be used to carry out tests of multiple-contrast 
hypotheses, such as tests for equality of levels across 
multiple categories of effect sizes. In the accompanying 
supplementary materials, we provide annotated R syntax 
demonstrating how to use all of these functions to carry 
out the empirical analysis reported in the next section.

Comparison to the Standard RVE Implementation

Our proposed approach differs in two subtle ways from the 
current approach as instantiated in the robumeta package 
(Fisher et al., 2017) in R. First, instead of estimating vari-
ance components using method-of-moments estimators, our 

Fig. 1  Decision-tree for select-
ing working model based upon 
data generating model. ES effect 
size, RE random effects, HE 
hierarchical effects, CE cor-
related effects, CHE correlated 
and hierarchical effects, SCE 
subgroup correlated effects

Do you have samples that 
contribute mul�ple ES es�mates?

Yes No

How much informa�on 
do you have about the 
sampling correla�ons?

Li�le or 
none

Measured 
over �me

Informa�on available

Assume constant 
correla�on (C)

Assume auto
correla�on (AC)

Assume par�ally 
empirical sampling 
correla�on (PEC)

Is there reason to expect 
withinstudy heterogeneity 

in true ES?

Are ES classified into 
different dimensions/ 

categories with varying 
heterogeneity?

Use HE

Use CHE 
(or ACHE 
or PECHE)

USE CSE
Are there 

extra levels 
of hierarchy?

Go forth and es�mate!Add levels (+)

Yes

No Use CE

Yes

No

NoYes

Do the ES es�mates 
have a hierarchical 

structure?

Yes

Use 
basic RE

No
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approach uses restricted maximum likelihood (REML) esti-
mation, which obtains parameter estimates by finding the 
parameter values that maximize the restricted log likelihood 
of a specified working model. The primary advantage of 
REML methods is that they can be applied to a very broad 
set of models, including models with multiple levels of nest-
ing, multivariate models, and combinations thereof, even 
beyond the range of working models that we have described. 
In contrast, method-of-moments estimation methods are not 
as extensible because they have to be developed anew for 
every working model. Furthermore, for univariate models 
with only a single variance component, REML estimation 
has been generally recommended over moment estimation 
methods (Veroniki et al., 2016).

Second, instead of using diagonal weight matrices that are 
only approximately efficient, our approach uses weighting 
matrices that are exactly inverse of the variances defined by 
the working model, and thus fully efficient when the work-
ing model is correct. There are two main reasons for taking 
this approach. The first is simply computational conveni-
ence. Available software automatically carries out the matrix 
inversion and weighted least squares regression estimation, 
and we see no strong reason to modify the inverse-variance 
weights—especially if doing so sacrifices efficiency. The sec-
ond reason is that the originally proposed weighting schemes 
are sometimes less efficient than one might expect, particu-
larly when the model includes predictors that vary within 
studies. As we demonstrate in the next two sections, using the 
approximately efficient weight matrices can, under some cir-
cumstances, lead to less precise estimates of meta-regression 
coefficients. Thus, using fully inverse-variance weights may 
avoid a subtle drawback of the existing weighting approach.

Application: Brief Alcohol Interventions

Tanner-Smith and Lipsey (2015; henceforth TSL15) con-
ducted a comprehensive synthesis examining the effects of 
brief alcohol interventions for adolescent and young adults. 
Here, we use a subset of the studies from TSL15 to demon-
strate use of the new working models and estimation method 
that we have proposed. Our re-analysis illustrates how the 
new working models better capture the structure of the effect 
sizes included in the synthesis, providing descriptive infor-
mation about both between- and within-study heterogeneity. 
The re-analysis also indicates how the new working models 
might, under certain circumstances, yield more precise esti-
mates of meta-regression coefficients compared to existing 
RVE approaches—a possibility that we explore further in 
Monte Carlo simulations. Importantly, these analyses are 
presented for illustrative purposes only; readers should 
refrain from drawing substantive conclusions or policy 
implications based upon them.

The full TSL15 synthesis included quasi-experimental 
designs, cluster-randomized trials, and individually ran-
domized trials; eligible outcomes included measures of 
alcohol consumption and alcohol-related problems. Effect 
sizes were operationalized as standardized mean differences, 
coded so that positive values indicated better outcomes (e.g., 
lower alcohol consumption). For illustration, we focus on 
a subset of the included studies that used individually ran-
domized designs and reported a continuous measure of 
alcohol consumption. After excluding effect sizes that were 
missing information on control variables (described further 
below), this subset consists of 117 studies and a total of 1198 
effect size estimates; individual studies contributed between 
1 and 108 effect sizes (median = 6, IQR = 3–12).

The dependence structure of TSL15′s database is quite 
complex. Many studies reported effects for multiple meas-
ures of alcohol consumption (e.g., frequency of use, quantity 
of use, peak consumption), effects across multiple follow-up 
times, or both. Many studies also examined multiple inter-
ventions, multiple variants of an intervention, or compared 
an intervention to multiple non-intervention conditions. 
Thus, correlated sampling errors are a major feature of the 
included effect sizes.

Analysis and Working Models

TSL15 investigated a range of moderator variables related to 
intervention, participant, and measurement characteristics. 
For illustrative purposes, we focus on two types of mod-
erators, each of which are common in practice. First, we 
examine differences by type of dependent variable, classi-
fied into six categories; this moderator varies substantially 
within studies (i.e., an effect size level moderator).8 Second, 
we examine differences by type of control condition, classi-
fied into four categories; this moderator varies substantially 
between studies but not within studies (i.e., a study level 
moderator).9 As the results illustrate, this distinction affects 
how the new models perform relative to current RVE work-
ing models.

We estimated separate meta-regression models for each 
moderator, using a no-intercept specification so that coef-
ficients represent average effect sizes for the corresponding 
category. Each model also included predictors for follow-
up time, the proportion of the sample that was in college, 
the proportion of the sample that was male, and the overall 
level of attrition. These predictors were centered so that 
intercepts correspond to average effects 12 weeks after 
treatment for a college-age sample that is 50% male and 
with attrition of 16% (the median attrition level). With 

8 See Supplementary Table S1 for further details.
9 See Supplementary Table S2 for further details.
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each model, we report a robust Wald test for equality of 
effects across levels of the focal moderator. Because the 
dependence structure of TSL15 was predominantly one of 
correlated sampling errors, the original analysis used the  
correlated effects (CE) working model as proposed by Hedges  
et al. (2010), with moment estimation for the between-
study variance �2 . We therefore used this working model 
as a benchmark, then explored alternative working models 
for the random-effects structure.

To determine our primary working model, we followed 
the decision tree depicted in Fig. 1. First, because we had 
very limited information about the sampling correlations 
among effect sizes, we assumed a constant sampling cor-
relation of � = .6 . The supplementary materials include 
sensitivity analyses for varying values of � . Second, 
given the wide variation in outcome measures, follow-up 
times, treatment conditions, and control conditions, there 
was strong reason to expect within-study heterogeneity 
in effects. Because the original analysis did not distin-
guish categories or dimensions of effect sizes with varying 
degrees of heterogeneity, our primary analysis therefore 
used the CHE working model. Third, the database did not 
include information about hierarchical groupings of stud-
ies, and so we did not include additional levels of random 
effects.

In addition to analyses based on CHE, we also present 
results based on the SCE working model. We included this 
additional approach to illustrate similarities and differences 
with the CE and CHE models—not because we think that 
all of the models should be applied or reported in practice. 
Results based on SCE also illustrate how this working model 
enhances a traditional sub-group analysis, which some meta-
analysts might have preferred for handling dependence in 
these data. As with the primary CHE model, we used the 
constant sampling correlation assumption with � = .6.

Results

Effect Size Level Moderator In Table  1, we report esti-
mated average effect sizes by type of dependent variable, 
along with variance component estimates for each working 
model. Column A contains results based on the correlated 
effects (CE) working model, which includes only a single 
variance component. Estimated effects range from 0.087 
SD (SE = 0.044) for frequency of use measures to 0.167 SD 
for frequency of heavy use and blood alcohol concentra-
tion (BAC) measures (SE = 0.039 and 0.034, respectively). 
Average effects are statistically distinguishable from zero for 
frequency of heavy use, quantity of use, peak, consumption, 
and BAC. Based on a robust Wald test, we cannot rule out 
the hypothesis that average effects are equal across depend-
ent variables (p = 0.463).

Point estimates for the average effects based on CHE  
(Column B) are quite consistent with results from the basic 
CE model. The results suggest two potential advantages over 
the original CE model. First, the CHE model provides both 
between- and within-study variance components, yielding 
a more useful description of the structure of heterogene-
ity in these effect sizes. The between-study SD ( �) estimate 
from this working model is much smaller than the moment 
estimate from the correlated effects model, but the within-
study SD (�) estimate indicates that there is substantial het-
erogeneity across effect sizes within studies. This is helpful 
diagnostic information, suggesting that it may be useful to 
identify further moderators that vary at the within-study 
level in order to explain this heterogeneity. Second, the esti-
mates from the CHE working model are noticeably more 
precise than those from the original CE working model, with 
standard errors that are 14 to 43% smaller. These two work-
ing models differ in several respects, including the number 
of variance components, how the variance component(s) 

Table 1  Comparison of working models for a within-study moderator (type of dependent variable)

Estimates for all working models are adjusted for follow-up time, the proportion of the sample that was in college, the proportion of the sample 
that was male, and the overall level of attrition. All working models assume a sampling correlation of � = .6

(A) Correlated effects (B) Correlated hier-
archical effects

(C) Sub-group correlated 
effects

Coefficient Studies Effect sizes Est. [SE] Est. [SE] Est. [SE] tau

Frequency of use 49 180 0.087 [0.044] 0.118 [0.027] 0.104 [0.035] 0.123
Frequency of heavy use 55 214 0.167 [0.039] 0.170 [0.026] 0.149 [0.031] 0.155
Quantity of use 103 470 0.169 [0.027] 0.151 [0.023] 0.148 [0.023] 0.101
Peak consumption 27 122 0.119 [0.044] 0.154 [0.033] 0.153 [0.047] 0.135
Blood alcohol concentration 31 156 0.167 [0.034] 0.181 [0.029] 0.186 [0.030] 0.007
Combined measures 21 56 0.114 [0.063] 0.160 [0.036] 0.159 [0.060] 0.216
�̂ 0.182 0.123
�̂ 0.116
Wald test p value 0.463 0.232 0.602
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are estimated, and use of semi-efficient versus inverse-
variance weighting. Of these differences, the major driver 
of increased precision is use of the fully efficient inverse-
variance weight matrices.10 Because the levels of the focal 
moderator vary at the effect size level, the weighting scheme 
used in the original correlated effects model sacrifices a sub-
stantial amount of precision.

Results based on the SCE working model are generally 
consistent with those of the CHE working model, although the 
standard errors from the SCE working model are larger and 
more similar to those from the CE model. A potential advan-
tage of the SCE working model is that it allows the degree of 
heterogeneity to vary across type of dependent variable.

Study Level Moderator In Table 2, we report estimated aver-
age effect sizes by type of control group, along with variance 
component estimates based on the CE, CHE, and SCE working 
models. Estimated average effect sizes are generally consist-
ent across working models, with the exception of the average 
effect for treatment-as-usual control groups. Only eight studies 
have effect sizes from this category, and two of those studies 
also included a no-treatment control group (see supplementary 
Table S2). For three of the four types of control groups, aver-
age effect estimates from the CHE working model are more 
precise than those from the original CE model, although the 
precision gains are not as strong as for the analysis by type of 
dependent variable (which had considerable variation within 
studies). Similar to the previous analysis, the CHE working 
model has the advantage of providing an estimate of within-
study heterogeneity. Estimates based on the SCE working 
model are very similar to those from the CE working model, 
without any clear pattern of differences in precision.

Sensitivity Analysis All of the estimates in Tables 1 and 2 
are based on a constant sampling correlation model with 
� = .6 . In Supplementary Figures S2 through S5, we report 
sensitivity analysis for all model parameters, varying the 
assumed correlation between � = .0 and � = .95 . For both 
the study level and effect size level moderators, the average 
effects and variance component estimates from the original 
CE model are nearly identical across the entire range of � 
values. In comparison, meta-regression coefficient estimates 
based on the CHE model were somewhat more sensitive, but 
still generally quite stable. Coefficient estimates based on 
the SCE working models became a bit sensitive at values of 
� above 0.8, but were otherwise stable. For both moderator 
analyses, however, the variance component estimates from 
the CHE and SCE working models were substantially more 
sensitive to the assumed value of � , particularly for values 
above 0.8. This sensitivity represents an important limitation 
to the conclusions that one can draw regarding the depend-
ence structure based on the working models.

Simulation Study

In the previous section, we noted that when the focal mod-
erator had substantial variation at the effect size level, 
estimates based on the new working models tended to be 
more precise than those based on the original CE working 
model, as indicated by differences in the robust standard 
errors based on each working model. However, one must be 
cautious in interpreting differences in the standard errors as 
indicative of systematic differences in the performance of 
the working models because the standard errors are them-
selves random quantities, affected by sampling variability, 
and because all of the analysis was based on just a single 
dataset.

In order to investigate whether the patterns noted in the 
empirical application hold more generally, we conducted a 

Table 2  Comparison of working models for a between-study moderator (type of control group)

Estimates for all working models are adjusted for follow-up time, the proportion of the sample that was in college, the proportion of the sample 
that was male, and the overall level of attrition. All working models assume a sampling correlation of � = .6

(A) Correlated effects (B) Correlated hierar-
chical effects

(C) Sub-group correlated 
effects

Coefficient Studies Effect sizes Est. [SE] Est. [SE] Est. [SE] tau

Straw man 27 340 0.099 [0.050] 0.119 [0.046] 0.112 [0.044] 0.114
Attention/sham 13 137 0.135 [0.074] 0.166 [0.072] 0.150 [0.081] 0.208
Treatment as usual 8 36  − 0.038 [0.063] 0.040 [0.083]  − 0.048 [0.053] 0.000
No treatment 72 685 0.177 [0.026] 0.168 [0.026] 0.178 [0.028] 0.136
�̂ 0.183 0.126
�̂ 0.116
Wald test p value 0.076 0.553 0.027

10 Section S4.2  of the supplementary materials provides further 
details.
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set of Monte Carlo simulations. These simulations allowed 
us to assess the performance of the new CHE and SCE work-
ing models relative to the CE working model (the current 
default) in a more systematic way, by repeatedly generating 
artificial data under conditions with known parameters.

Simulation Design

We designed the simulations to generate data that had a 
structure similar to that of the TSL15 data (but using smaller 
sample sizes of 30 or 60 primary studies per meta-analysis), 
so that the simulation results would inform our interpreta-
tion of the re-analysis that we have presented.11 We assessed 
several aspects of the performance of each working model, 
including the precision of meta-regression coefficient esti-
mators (as measured by root mean-squared error or RMSE), 
confidence interval coverage rates, and the accuracy of the 
variance component estimators (as measured by RMSE). We 
examined performance under several different conditions, 
including conditions of mild mis-specification, where the 
general form of the CE or CHE working model was correct 
but the assumed sampling correlation was incorrect, as well 
as stronger mis-specification, where the structure of the CE, 
CHE, or both the CE and CHE working models was not 
close to the true data-generating structure.

Simulation Results

Consistent with the patterns noted in the empirical applica-
tion, we found that using the new working models could 
make a substantial difference for models that included effect 
size level predictors but made little difference for models 
with only study level predictors. For models with effect 
size level predictors, using the CHE working model rather 
than CE led to systematic improvements in the precision 
of coefficient estimates. Gains in precision were substan-
tial (10–50% reductions in RMSE) when the CHE working 
model was correct or mildly mis-specified and more moder-
ate (10–44% reductions) when CHE was more strongly mis-
specified. Notably, these gains were also present even when 
the CE model was correct or only mildly mis-specified. 
Using the SCE working model led to smaller improvements 
(2–13% reductions in RMSE compared to using CE) that 
were consistent across data-generating conditions. For meta-
regression models of study level predictors, using the CHE 
working model led to very small improvements in precision, 
and using the SCE model led to small improvements or, for 

some predictors, modest reductions in precision compared 
to using the CE.

Under the various data-generating conditions we exam-
ined, confidence intervals generated based on the new CHE 
and SCE working models were appropriately calibrated (as 
were those based on the original CE working model), with 
coverage rates close to or above the nominal 95% rate. Con-
fidence intervals had near-nominal coverage rates even when 
the working model was quite discrepant from the true data-
generating model.

In the empirical application, we also noted that the REML 
variance component estimators appeared to be more sensi-
tive to modeling assumptions than the moment estimator 
from the CE working model. We observed a similar pattern 
in the simulations but also found that this increased sensitiv-
ity was not necessarily indicative of reduced accuracy. Com-
paring the REML estimator of between-study variance from 
the CHE model to the moment estimator from the CE model, 
we found that the estimators had similar accuracy when the 
CE working model was correct or mildly mis-specified. 
Further, the CHE REML estimator had consistently better 
accuracy than the CE moment estimator when the true data-
generating model included within-study heterogeneity. Thus, 
REML estimation of the CHE working model represents an 
improvement in that it can describe both between-study and 
within-study heterogeneity, albeit with some sensitivity to 
the assumed value of the sampling correlation.

Discussion

In this paper, we have described and demonstrated an 
expanded set of working models for use with RVE meta-
regression, along with an accompanying estimation strat-
egy based on REML and fully inverse-variance weighting. 
By melding RVE with the powerful and extensible methods 
for multivariate meta-analysis, these new working models 
expand the range of options available for meta-analytic 
application, which were previously limited to two working 
models.

The new models and new estimation strategy have sev-
eral potential advantages relative to existing tools for meta-
analysis with RVE. First and foremost, as illustrated in our 
re-analysis of TSL15 and supported in simulations, the new 
models can sometimes provide more precise estimates of 
average effect sizes than the original working models—par-
ticularly in meta-regressions involving moderators that vary 
at the effect size level (within study). Under such conditions, 
the improved precision is due to the use of working model 
assumptions that better approximate the true dependence 
structure and to the shift to fully inverse-variance weight-
ing. Second, the availability of working models with both 
correlated sampling errors and hierarchical random effects 

11 Section S5 of the supplementary materials include a full descrip-
tion of the simulation design and results, including graphical depic-
tions of the main findings. Supplementary materials also include the 
full computer code and complete numerical results.
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provides richer (albeit still imperfect) descriptive informa-
tion about effect heterogeneity, allowing the analyst to bet-
ter tailor their analytic approach to the complexities and 
nuances of their data. Finally, the new approach is feasible 
to implement with existing software packages in R (metafor 
and clubSandwich) that are already widely used.

An important part of meta-regression analysis with RVE 
is to consider how the working model assumptions, such 
as the assumed sampling correlation ( �) , influence one’s 
conclusions. We have illustrated one approach to sensitivity 
analysis in the empirical application, where we found that 
meta-regression coefficient estimates were largely insensi-
tive to assuming different values of � between 0.0 and 0.8 
(although they were not as insensitive as results based on the 
original CE working model). However, the REML variance 
component estimates from the CHE and other new working 
models were substantially more sensitive to the choice of 
� , whereas the moment estimator used in the original CE 
working model was almost entirely invariant.

Some might argue that the sensitivity of the REML esti-
mators of variance components points toward a limitation 
of using the approach with more complex working mod-
els. Clearly, the sensitivity of the variance component esti-
mates does mean that analysts must be cautious in drawing 
any substantive conclusions based upon their magnitude. 
For example, in the analyses of TSL15, we would refrain 
from drawing any conclusion about the relative magnitude 
of within- versus between-study variation because the ratio 
depends very strongly on � . Still, based upon the overall pat-
tern of results, it seems reasonable to infer that one should 
be concerned with heterogeneity on both levels, rather than 
limiting consideration to between-study variation alone. 
Further, our simulation results indicated that the REML 
estimator of between-study variance under the CHE work-
ing model had similar or better accuracy than the moment 
estimator used in the original CE model, suggesting that the 
sensitivity of REML is not necessarily indicative of poorer 
performance. On balance, we would argue that it is better to 
apply a working model that captures the structure of one’s 
data—even if the variance component estimates are sensitive 
to assumptions—than to use one that imposes stronger and 
less plausible assumptions (i.e., that there is no within-study 
heterogeneity).

In addition to the sensitivity of REML estimation, it is 
important to note two other limitations of the new working 
models and estimation methods that we have proposed. First, 
we have assessed their performance under conditions similar 
to the TSL15 data, but performance in other scenarios warrants 
further investigation—especially in scenarios where the data 
have a highly imbalanced structure (e.g., one or a small num-
ber of studies that contribute many more effect sizes than the 
other studies) or where the data include moderators with less 
extensive variation at the effect size level. Second, the broader 

variety of working models that we have proposed does create 
more room for analytic flexibility, and we have cautioned that 
the new working models should not be used for specification 
searches to reach desired results. We have briefly sketched 
how our approach might be built into a pre-registered analytic 
protocol, but it remains to see how feasible or effective this 
will be when planning future research syntheses.

Compared to the original development of RVE, the new 
working models and estimation methods that we have pro-
posed place more emphasis on the match between the data 
structure and the working model. Along with this shift in 
emphasis, we would encourage meta-analysts to shift their 
understanding of RVE as a method. Currently, most research-
ers seem to understand RVE as a distinct, self-contained, and 
automatic method for meta-analysis of dependent effect sizes. 
Rather than viewing it this way, we suggest that it would be 
better to view RVE as one component tool—a technique for 
guarding against model mis-specification—that can be used 
in combination with other available strategies for modeling 
dependent effect sizes. We hope that this shift in emphasis 
might lead meta-analysts to develop and report working mod-
els that better fit the complex, often multi-level structures 
found in large-scale research syntheses.
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