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Abstract
Many community-based translations of evidence-based interventions are designed as one-arm studies due to ethical and other consid-
erations. Evaluating the impacts of such programs is challenging. Here, we examine the effectiveness of the lifestyle intervention
implemented by the Special Diabetes Program for Indians Diabetes Prevention (SDPI-DP) demonstration project, a translational
lifestyle intervention among American Indian and Alaska Native communities. Data from the landmark Diabetes Prevention
Program placebo group was used as a historical control. We compared the use of propensity score (PS) and disease risk score
(DRS) matching to adjust for potential confounder imbalance between groups. The unadjusted hazard ratio (HR) for diabetes risk
was 0.35 for SDPI-DP lifestyle intervention vs. control. However, when relevant diabetes risk factors were considered, the adjustedHR
estimates were attenuated toward 1, ranging from 0.56 (95% CI 0.44–0.71) to 0.69 (95% CI 0.56–0.96). The differences in estimated
HRs using the PS and DRS approaches were relatively small but DRS matching resulted in more participants being matched and
smaller standard errors of effect estimates. Carefully employed, publicly available randomized clinical trial data can be used as a
historical control to evaluate the intervention effectiveness of one-arm community translational initiatives. It is critical to use a proper
statistical method to balance the distributions of potential confounders between comparison groups in this kind of evaluations.

Keywords Comparative effectiveness evaluation . Disease risk score . Prognostic score . Propensity score . Single-arm
intervention . Historical controls

Introduction

The growing, global pandemic of type 2 diabetes (T2DM) is a
major public health concern. Randomized clinical trials
(RCTs) have convincingly shown that lifestyle interventions
consisting of exercise and diet behavioral modifications are
highly efficacious in preventing or delaying the onset of
T2DM for those at risk (Knowler et al. 2002; Norris et al.
2005; Pan et al. 1997; Tuomilehto et al. 2001). A critical next
step in stemming this epidemic is to translate interventions
developed in rigorously controlled clinical trials into everyday
settings. A number of translational diabetes prevention initia-
tives have yielded promising results, albeit considerable vari-
ability in outcomes exists and the magnitude of risk reduction
is generally less than that achieved in landmark clinical trials
(Cefalu et al. 2016; Dunkley et al. 2014; Wareham 2015).

While implementing interventions of proven efficacy, these
translational projects often forego inclusion of a randomized
control group given ethical concerns about denying or
delaying treatment. Thus, quasi-experimental designs are

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11121-019-0980-3) contains supplementary
material, which is available to authorized users.

* Luohua Jiang
lhjiang@uci.edu

1 Department of Epidemiology, School of Medicine, University of
California Irvine, Irvine, CA 92697-7550, USA

2 Division of Biostatistics, Department of Public Health Sciences,
University of California Davis, Davis, CA, USA

3 Centers for American Indian and Alaska Native Health, Colorado
School of Public Health, University of Colorado Anschutz Medical
Campus, Aurora, CO, USA

4 Department of Preventive Medicine, Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA

5 Department of Epidemiology, Colorado School of Public Health,
LEAD Center, University of Colorado Anschutz Medical Campus,
Aurora, CO, USA

6 Division of Diabetes Treatment and Prevention, Indian Health
Service, Rockville, MD, USA

Prevention Science (2019) 20:598–608
https://doi.org/10.1007/s11121-019-0980-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11121-019-0980-3&domain=pdf
http://orcid.org/0000-0002-2281-7260
https://doi.org/10.1007/s11121-019-0980-3
mailto:lhjiang@uci.edu


common in community-based translational research (Henry
et al. 2017). Evaluations of such designs must be conducted
with great caution. They are prone to mis-estimation of inter-
vention effects due to potential biases resulting from selective
enrollment and/or lack of control for placebo, historical, and
other effects (Buntin et al. 2009; Flamm et al. 2012). Hence,
appropriate analytical methods that can account for the poten-
tial biases but are also practical for program evaluation in
routine settings are highly desirable.

Data from the National Institutes of Health funded
Diabetes Prevention Program (DPP), a large-scale ran-
domized trial that provided evidence for the efficacy of
lifestyle intervention in a diverse sample of US adults
(Knowler et al. 2002), has become publicly available
through the National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK) Data Repository. These
data provide the potential opportunity to serve as a histor-
ical control to evaluate the effectiveness of translated ver-
sions of the DPP lifestyle intervention, provided the trans-
lational projects have similar eligibility criteria and out-
come measures. The Special Diabetes Program for Indians
Diabetes Prevention (SDPI-DP) demonstration project
(Jiang et al. 2013) meets these criteria. Based on DPP
and using very similar eligibility criteria and outcome
measures, this one-armed intervention project implement-
ed the DPP lifestyle intervention among over 2500
American Indian and Alaska Native (AI/AN) participants
across 36 diverse grantee sites.

Simply combining intervention data with historical control
data and analyzing the combined data as if they were from a
single randomized trial can result in a biased treatment effect
estimate due to imbalance in observed confounders between
treatment conditions. A statistical method that has often been
used when considering causal effects in observational studies
without randomization is the propensity score (PS) approach
whereby the distributions of potential confounders between
comparison groups are statistically balanced (Guo and Fraser
2009; Rosenbaum and Rubin 1983). Another type of summa-
ry score, the disease risk score (DRS), has been suggested as
an alternative method to control for confounding (Sturmer
et al. 2005). The DRS method has been applied widely to
predict the occurrence of chronic diseases, such as cardiovas-
cular disease and diabetes (D'Agostino Sr. et al. 2008; Kahn
et al. 2009; Lee et al. 2006; Lindstrom and Tuomilehto 2003;
Noble et al. 2011; Wilson et al. 1998). Recently, simulation
studies have shown when the PS distributions do not
overlap well between the comparison groups, the DRS
approach might allow researchers to assess treatment
effects in a larger proportion of the treated population
and yield effect estimates with improved precision. In
this study, we explored and compared the use of PS and
DRS approaches in evaluating the effectiveness of
SDPI-DP, using the DPP data as historical controls.

Research Design and Methods

Data Sources

SDPI-DP The SDPI-DP program is a demonstration project
designed to reduce diabetes incidence among American
Indians and Alaska Natives (AI/ANs) with prediabetes
through local translation of the DPP lifestyle intervention.
The details of this project are described elsewhere (Jiang
et al. 2013). Briefly, 36 AI/AN health care programs imple-
mented the 16-session Lifestyle Balance Curriculum drawn
from the DPP (Knowler et al. 2002). The primary goal of
the intervention was to achieve and maintain a weight reduc-
tion of at least 7% of initial body weight through a healthy diet
and increased physical activity. Grantees used the DPP curric-
ulum covering diet, exercise, and behavior modification to
help participants achieve this goal. Adaptation to local culture
and conditions was allowed, provided the same basic infor-
mation was presented and adaptations were well documented.

The eligibility criteria of SDPI-DP included being AI/AN
(based on eligibility to receive Indian Health Service [IHS]
services), being 18+ years of age, no previous diagnosis of
diabetes, and having either impaired fasting glucose (i.e., a
fasting blood glucose (FBG) level of 100 to 125 mg/dL and
an oral glucose tolerance test (OGTT) result < 200 mg/dL) or
impaired glucose tolerance (i.e., an OGTT of 140 to 199 mg/
dL 2 h after a 75-g oral glucose load and a FBG level <
126 mg/dL). Enrollment began January 2006. The analyses
here included baseline and annual data for up to 3 years for
2553 participants who completed the baseline assessment and
started intervention by July 31, 2008.

During the design phase of SDPI-DP, the inclusion of a
control group was deemed an unethical delay of treatment
due to strong evidence supporting the efficacy of the lifestyle
intervention (Knowler et al. 2002; Norris et al. 2005; Pan et al.
1997; Tuomilehto et al. 2001). Rather, the goal of SDPI-DP
was to pursue a comprehensive public health evaluation of the
translation of a proven intervention in diverse AI/AN commu-
nities. Therefore, all SDPI-DP participants received the inter-
vention. Previous analyses of SDPI-DP data based on one-arm
design revealed significant improvements in weight and a
number of secondary outcomes (Jiang et al. 2013).
However, without a control group, a causal interpretation of
intervention effectiveness is not straightforward.

DPP We used de-identified DPP data obtained from the
NIDDK Data Repository as historical controls (Cuticchia
et al. 2006). The DPP was a RCT conducted at 27 US sites
enrolling individuals at high risk for diabetes. Its methods are
published elsewhere (The Diabetes Prevention Program
1999). Briefly, eligible participants were randomly assigned
to one of the three groups: (1) placebo medication twice daily
and standard lifestyle recommendations; (2) metformin twice

Prev Sci (2019) 20:598–608 599



daily and standard lifestyle recommendations; or (3) intensive
lifestyle modification. The first group (placebo) from DPP
served as the historical control to evaluate the effectiveness
of SDPI-DP.

The eligibility criteria for most DPP participants were ≥
25 years old, BMI ≥ 24, FBG level of 95–125 mg/dL, and
OGTT 2-h result of 140–199 mg/dL. Compared to SDPI-
DP, DPP had more stringent eligibility criteria because its
participants needed to have both impaired fasting glucose
and impaired glucose tolerance; additionally, BMI defined
eligibility in DPP.

We obtained the DPP data following established policies of
the NIDDK Data Repository. The University of Colorado
Anschutz Medical Center and University of California Irvine
IRBs approved this supplementary analysis.

Measures

Both studies have the same primary outcome: incidence of
diabetes diagnosed by an annual OGTT or a semiannual
FBG test, according to the American Diabetes Association
2004 criteria: a FBG ≥ 126 mg/dL or a 2-h result ≥ 200 mg/
dL after a 75-g oral glucose load. In addition to the semiannual
tests, FBG was measured if symptoms suggestive of diabetes
developed. The diagnosis required confirmation by a second
test, usually within 6 weeks of the first test.

Basic demographic characteristics and key diabetes risk
factors comprised the common baseline measurements of
SDPI-DP and DPP. Age, gender, and race were available in
both data sets. Given the importance of de-identification in the
public available DPP data, race/ethnic groups were simply
coded as Caucasian, African American, Hispanic, and All
Other. Similarly, age at baseline was collapsed into 5-year
age groups, with truncation of those < 40 and those ≥ 65.

Well-known diabetes risk factors measured at baseline in both
data sources are BMI, family history of T2DM, FBG, OGTT,
systolic blood pressure (SBP), diastolic blood pressure (DBP),
triglycerides, high-density lipoprotein cholesterol (HDL-C), and
low-density lipoprotein cholesterol (LDL-C). In both studies,
baseline physical examination included measurements of height,
weight, and sitting SBP and DBP. BMI was calculated from
height and weight (kg/m2). Blood was drawn from DPP and
SDPI-DP participants after a 9–12-h fast to measure blood glu-
cose level, triglycerides, HDL-C, and LDL-C.

Statistical Analysis

To quantify the effectiveness of the lifestyle intervention
among SDPI-DP participants, Cox proportional hazards re-
gression models were constructed after merging the SDPI-
DP data with those from the DPP placebo group. We investi-
gated four approaches to estimate the hazard ratio (HR) of
developing T2DM among SDPI-DP vs. the DPP placebo

group: (1) no adjustment for confounders; (2) multivariable
regression adjustment; (3) propensity score matching; (4) dis-
ease risk score matching. We describe each of these methods
in turn.

Unadjusted Estimate After merging the two data sources, the
Cox regression models with a dummy variable indicating
SDPI-DP (intervention group) or DPP cohort (control group)
as the only independent variable produced the estimate for
unadjusted HR of diabetes between SDPI-DP and DPP place-
bo participants.

Multivariable Regression Adjustment The Cox regression
models were then adjusted by previously reported diabetes
risk factors identified in three published diabetes prediction
models validated by Mann et al. in a multiethnic population
of US adults (Mann et al. 2010). These were based on the
Framingham Offspring (FO) Study (Wilson et al. 2007),
Atherosclerosis Risk in Communities (ARIC) Study
(Schmidt et al. 2005), and the San Antonio Heart (SAH)
Study (Stern et al. 2002). The risk factors included in the FO
risk prediction model were overweight and obesity, impaired
fasting glucose, low HDL-C, elevated triglycerides, high
blood pressure, and parental history of diabetes. The ARIC
model included age, height, waist circumference, black
race/ethnicity, SBP, FBG, HDL-C, triglycerides, and parental
history of diabetes. Finally, the San Antonio diabetes risk pre-
diction model included age, sex,Mexican-American ethnicity,
FBG, SBP, HDL-C, BMI, and family history of diabetes. In
addition to the risk factors included in these three models, we
added another variable, OGTT 2-h test result, to eachmodel to
account for the potential unbalance in it between the SDPI-DP
and DPP participants. Thus, for each risk prediction model,
we estimated adjusted HR with and without OGTT 2-h result
included in the model.

Propensity Score Method Some drawbacks of using regression
adjustment include the strong assumptions in model specifica-
tion of the outcome, computational complexity when many
potential confounders exist, and the danger of extrapolation in
situations with insufficient common support between groups of
comparison. The propensity score (PS) approach was proposed
to overcome these challenges. The PS, as defined by
Rosenbaum and Rubin (Rosenbaum and Rubin 1983), is the
predicted probability of exposure/intervention for a given vec-
tor of observed covariates. It is considered a balancing score
and is usually estimated using a logistic regression model with
the exposure variable as the response and all variables related to
the outcome of interest as the covariates (D'Agostino Jr. 1998;
Guo and Fraser 2009; Rosenbaum and Rubin 1983). Here, a
logistic regression model was used to estimate the PS of be-
longing to the SDPI-DP cohort. The covariates included for
estimating the PS were the same as the adjustment variables
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used in the multivariable regression models described above in
order to compare the methods. After the PS has been estimated,
it can then be used in various ways to obtain adjusted estimates
of intervention effectiveness.

This study focused on the PS matching approach. We used
a nearest-neighbor methodology with a caliper set to 0.1 of the
standard deviation of the PS (Rosenbaum and Rubin 1985) to
match SDPI-DP subjects to DPP placebo subjects with a max-
imum of one control matched per appropriate case. After
matching on the PS, estimates of intervention effectiveness
were calculated using the Cox regression models. The models
include the exposure as the only independent variable as the
comparison samples have already been matched. Covariate
balance before and after matching was checked by calculating
the absolute standardized difference (ASD) of each variable
between the two treatment groups.

Disease Risk Score Method The disease risk score (DRS),
sometimes referred to as prognostic score, is a score summa-
rizing the associations between a set of observed covariates and
a disease outcome, such as diabetes incidence. It was originally
proposed by Miettinen and was called a Bmultivariate con-
founder score^ to overcome the difficulty of multiple cross-
classification in stratified analysis based on a number of con-
founding factors (Miettinen 1976). Specifically, if the associa-
tion between observed covariates and the outcome follows a
generalized linear model, the DRS score is usually calculated as
the conditional expectation of the outcome given the values of
the observed covariates using the estimated parameters of the
generalized linear model. In most previous studies using DRS,
it was developed for prediction purposes and has been mainly
used to estimate the probability of developing a disease among
individuals not exposed to an intervention.

Recently, it also has been suggested that the DRS could be
used as a balancing score similar to the PS, because the DRS
can be used to account for not only unbalanced propensities of
exposure but also different disease risks between comparison
groups (Hansen 2008). Recent simulation studies suggested
that the DRS could be a reasonable alternative to the PS ap-
proach when the association between covariates and exposure
is, at most, moderate (Arbogast et al. 2008; Arbogast and Ray
2009, 2011). Additionally, when the PS distributions are se-
verely separated, matching on DRS is often able to match a
larger proportion of the treated population and yield effect
estimates with improved precision (Wyss et al. 2015). In this
study, DRSs were calculated based on the three diabetes risk
prediction models described above: FO, ARIC, and SAH.
DRS matching was then performed using an approach similar
to the PS methods. Because none of the original version of
these diabetes risk models included the OGTT 2-h test result,
we fitted the three DRS models with and without OGTT 2-h
result within the DPP placebo group and calculated the DRSs
for all participants afterwards.

The confounding control ability of DRS matching cannot
be evaluated through balance checks commonly used for the
PS approach. Here, we used a newly proposed alternative, the
Bdry-run^ analysis (Wyss et al. 2017), to assess the ability of
DRS matching in controlling potential confounding effects.
Briefly, in the dry-run analysis, we split the unexposed popu-
lation (i.e., the DPP placebo group) into Bpseudo-exposed^
and Bpseudo-unexposed^ groups so that the differences on
observed covariates between the two Bpseudo^ groups are
similar to those between the DPP placebo and the SDPI-DP
participants. We then evaluated the ability of each DRS model
in confounding control by calculating the pseudo-bias, de-
fined as the difference between the pseudo-effect estimate
and the true null effect. A pseudo-bias close to 0 indicates
adequate ability of the DRS matching approach in retrieving
the unconfounded null estimate.

Results

Table 1 compares baseline characteristics of the DPP placebo
group and the SDPI-DP participants. Overall, compared to the
DPP, SDPI-DP participants were younger (46.8 vs. 50.3 years
old), included more females (75% vs. 68%) and more obese
participants (80% vs. 68%). They also had significantly lower
FBG, OGTT 2-h result, and LDL-C level, but significantly
higher weight, waist circumference, and systolic BP. The
SDPI-DP subgroup (n = 648) who met the DPP eligibility
criteria had similar differences when compared with the DPP
placebo group. Here, however, FBG and OGTT 2-h result
were not significantly different between the SDPI-DP sub-
group and the DPP placebo group.

Unadjusted and adjusted HRs estimated by various statis-
tical models are presented in Table 2. When we compare all
SDPI-DP participants (N = 2553) to the DPP placebo group
(N = 1030), the unadjusted HR for diabetes risk is 0.35, sug-
gesting a 65% risk reduction by the lifestyle intervention
among SDPI-DP participants. When OGTT 2-h test result
was not included in the adjustment methods, all the statistical
models produced similar HR estimates, ranging from 0.29 to
0.41, with a very small P value (< 0.0001). However, when
OGTT 2-h test result was included, all the adjusted HR esti-
mates were larger than the unadjusted HR, ranging from 0.56
to 0.69 (Table 2), indicating a weaker effectiveness of the
SDPI-DP lifestyle intervention. These are close to the unad-
justed HR comparing the SDPI-DP participants who met the
DPP eligibility criteria to the DPP placebo group, which is
0.64 (95% CI 0.49–0.84). Regardless of including OGTT 2-
h test results or not, the DRS matching resulted in more pairs
of SDPI-DP and DPP participants to be matched. All the es-
timated HRs are significantly different from 1 (P < 0.05), sug-
gesting lifestyle intervention was significantly effective at re-
ducing diabetes risk among SDPI-DP participants.
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When comparing the DPP placebo participants and the
SDPI-DP participants who met the DPP eligibility criteria,
the unadjusted HR for diabetes risk is 0.64, indicating a 36%
risk reduction by the SDPI-DP lifestyle intervention. This HR
estimate is closer to the HRs estimated using the adjustment
models with OGTT 2-h result included in Table 2, but is much
larger than the unadjusted HR when comparing all SDPI-DP
participants with the DPP placebo group. The adjusted HRs
for SDPI-DP subgroup vs. the DPP placebo group are all
slightly smaller than the unadjusted HR, but fairly close to it
in general, regardless of including OGTT 2-h result in the
model or not (Supplementary Table 1).

Figure 1 illustrates the PS and DRS distributions by inter-
vention group before matching. The PS distributions of the
SDPI-DP and the DPP placebo group do not overlap very well
with each other (overlapping coefficient [a measure of the

agreement between two probability distributions (Inman and
Bradley 1989)] ranges from 0.34 to 0.40) withmany SDPI-DP
participants having very high probability of belonging to the
intervention group. Meanwhile, for DRS, the overlapping co-
efficients are much larger (0.49–0.66).

As shown in Fig. 2, before PS matching, the absolute stan-
dardized differences (ASDs) between the two treatment
groups were larger than 0.1 for most of the diabetes risk fac-
tors included in our regression models. However, after
matching on PS scores without OGTT 2-h test results included
in the PS model, the ASDs were smaller or close to 0.1 for all
risk factors except OGTT 2-h. Furthermore, after matching on
PS scores with OGTT 2-h test results in the model, the ASD
was smaller than 0.1 even for OGTT 2-h. Particularly, upon
matching on the PS scores calculated based on the ARIC
model, the ASDs are smaller than 0.1 for all risk factors except

Table 1 Baseline characteristics
of DPP placebo group and SDPI-
DP participants

Characteristics DPP placebo

(N = 1030)

All SDPI-DP participants

(N = 2553)

SDPI-DP participants met
DPP eligibility criteria

(N = 648)

N (%) N (%) P valuea N (%) P valueb

Gender < 0.001 < 0.001

Female 699 (67.9%) 1901 (74.5%) 520 (80.2%)

Male 331 (32.1%) 652 (25.5%) 128 (19.8%)

Age group < 0.001 < 0.001

< 40 151 (14.7%) 731 (28.6%) 148 (22.8%)

40 to < 50 378 (36.7%) 774 (30.3%) 186 (28.7%)

50 to < 60 301 (29.2%) 645 (25.3%) 166 (25.6%)

≥ 60 200 (19.4%) 403 (15.8%) 148 (22.8%)

Family history of type 2 diabetes < 0.001 < 0.001

No 335 (32.5%) 512 (20.2%) 125 (19.3%)

Yes 695 (67.5%) 2026 (79.8%) 522 (80.7%)

BMI < 0.001 < 0.001

< 30 326 (31.6%) 512 (20.1%) 100 (15.4%)

30 to < 40 519 (50.3%) 1427 (56.0%) 380 (58.6%)

≥ 40 185 (17.9%) 612 (24.0%) 168 (25.9%)

Mean (SD) Mean (SD) P valuea Mean (SD) P valueb

FBG (mg/dL) 107.4 (7.8) 104.6 (9.2) < 0.001 108.0 (8.2) 0.15

OGTT 2-h glucose (mg/dL) 164.6 (17.2) 122.9 (35.2) < 0.001 164.7 (18.5) 0.86

Weight (lbs) 208.9 (44.6) 217.5 (51.2) < 0.001 217.7 (48.7) < 0.001

Waist circumference (cm) 105.1 (14.4) 111.7 (15.9) < 0.001 111.8 (15.6) < 0.001

Systolic BP (mmHg) 123.8 (14.4) 126.6 (15.0) < 0.001 128.2 (15.5) < 0.001

Diastolic BP (mmHg) 78.2 (9.2) 78.8 (10.1) 0.08 78.9 (10.2) 0.13

HDL-C (mg/dL) 44.7 (11.4) 45.0 (12.1) 0.47 44.8 (12.1) 0.96

LDL-C (mg/dL) 125.2 (33.3) 111.7 (31.3) < 0.001 111.3 (31.0) < 0.001

Triglycerides (mg/dL) 167.2 (92.6) 163.3 (98.1) 0.26 175.8 (105.7) 0.09

Abbreviations: BP, blood pressure; DPP, Diabetes Prevention Program; FBG, fasting blood glucose; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; OGTT, oral glucose tolerance
test; SDPI-DP, Special Diabetes Program for Indians Diabetes Prevention Program; SD, standard deviation
aP value for chi-square test or two-sample t test comparing the DPP placebo group and the SDPI-DP participants
bP value for chi-square test or two-sample t test comparing the DPP placebo group and the SDPI-DP participants
who met the DPP eligibility criteria

602 Prev Sci (2019) 20:598–608



gender. The fitted PSmodel based on the ARIC covariates has
excellent predictive performance, with a C statistic of 0.885.

Table 3 exhibits the estimated dry-run pseudo-bias before and
after DRS matching. Before matching, the pseudo-bias of the
unadjusted HR was about − 0.30 (95% CI − 0.47, − 0.12), indi-
cating the differences on observed covariates between the DPP
placebo and the SDPI-DP participants would result in an esti-
mated preventive effectiveness of − 0.30 even when the true
intervention effect was 0. After matching based on DRS without

OGTT 2-h test included in the models, the mean pseudo-biases
ranged from − 0.14 to − 0.36. After matching based on DRS
with OGTT 2-h results included, the estimated pseudo-biases
were much closer to 0. The smallest mean pseudo-bias was
0.01 (95% CI − 0.25, 0.22), which was matched on the ARIC
score.

Discussion

Using historical control data, this study attempted to formally
evaluate the translational effectiveness of a one-arm project
focusing on translating an evidence-based intervention into a
community setting. Many translational or programmatic dia-
betes prevention programs have sought to translate the well-
established evidence of lifestyle interventions into Breal-
world^ settings. Given the existing strong evidence
supporting the intervention being implemented, such pro-
grams often adopt a pre-post study design without including
a concurrent control group. The evaluation of the translational
effectiveness for such programs is thus, challenging. While
methods have been developed for continuous outcome vari-
ables in one-arm intervention designs (Chevreul et al. 2014),
approaches are needed that allow one to assess intervention
effects on a time-to-event outcome, such as diabetes
incidence.

The current study illustrates a potential solution to this
challenge, based on publicly available data from the original
RCT that generated the evidence for the intervention being
translated. While our results provide initial evidence for the
usefulness of such an approach, they also underscore that
great care is essential. As shown in Table 2, after simply
merging the DPP and all SDPI-DP data, the unadjusted HR
greatly overestimated the effectiveness of the SDPI-DP life-
style intervention. Yet, when we restricted the analysis to the
SDPI-DP subgroup or adjusted for all baseline diabetes risk
factors, the magnitude of the estimated risk reduction was
smaller. These observations highlight the importance of con-
sidering the eligibility criteria and baseline characteristics of
two studies involved when conducting program evaluations
using historical control data (Baker and Lindeman 2001).

Further, we found the omission of an unbalanced confound-
er, the OGTT 2-h result, produced biased estimates of the inter-
vention effectiveness no matter which statistical method was
employed. As noted in the PS literature (Drake 1993), even
such sophisticated methods cannot correct the bias introduced
by omitting important confounders. Many DPP translational
projects did not conduct OGTT due to cost and feasibility con-
siderations. Yet, our results suggest that, for accurate estimation
of diabetes prevention effect of a translational intervention, this
variablemay be too important to ignore. Furthermore, emerging
evidence highlighted the importance of OGTT in detecting pre-
diabetes and T2DM (NCD Risk Factor Collaboration 2015).

Table 2 Intervention effectiveness of SDPI-DP based on different esti-
mation methods using data from SDPI-DP participants and DPP placebo
group

Method HR SE 95% CI P value

Unadjusted (NT = 2553, NC = 1030)
(All SDPI-DP vs. DPP)

0.35 0.10 (0.29, 0.43) < 0.0001

Unadjusted (NT = 648, NC = 1030)
(SDPI-DP subgroup* vs. DPP)

0.64 0.14 (0.49, 0.84) 0.001

Without OGTT 2-h result in the models

Regression adjustment

FO (NT = 2553, NC = 1030) 0.29 0.11 (0.24, 0.36) < 0.0001

ARIC (NT = 2553, NC = 1030) 0.35 0.11 (0.28, 0.43) < 0.0001

SAH (NT = 2553, NC = 1030) 0.38 0.11 (0.31, 0.47) < 0.0001

Propensity score matching

FO (NT = 716, NC = 716) 0.32 0.15 (0.24, 0.43) < 0.0001

ARIC (NT = 880, NC = 880) 0.35 0.14 (0.27, 0.46) < 0.0001

SAH (NT = 932, NC = 932) 0.41 0.13 (0.32, 0.53) < 0.0001

Disease risk score matching

FO (NT = 857, NC = 857) 0.32 0.14 (0.24, 0.42) < 0.0001

ARIC (NT = 1011, NC = 1011) 0.33 0.13 (0.26, 0.43) < 0.0001

SAH (NT = 1001, NC = 1001) 0.39 0.13 (0.31, 0.50) < 0.0001

With OGTT 2-h result in the models

Regression adjustment

FO (NT = 2553, NC = 1030) 0.56 0.12 (0.44, 0.71) < 0.001

ARIC (NT = 2553, NC = 1030) 0.58 0.12 (0.45, 0.73) < 0.001

SAH (NT = 2553, NC = 1030) 0.63 0.12 (0.50, 0.79) < 0.001

Propensity score matching

FO (NT = 535, NC = 535) 0.66 0.14 (0.50, 0.87) 0.004

ARIC (NT = 556, NC = 556) 0.69 0.15 (0.56, 0.96) 0.013

SAH (NT = 603, NC = 603) 0.64 0.14 (0.48, 0.84) 0.002

Disease risk score matching

FO (NT = 788, NC = 788) 0.58 0.12 (0.45, 0.74) < 0.001

ARIC (NT = 920, NC = 920) 0.63 0.12 (0.49, 0.77) < 0.001

SAH (NT = 903, NC = 903) 0.66 0.12 (0.52, 0.82) < 0.001

Abbreviations: ARIC, Atherosclerosis Risk in Communities Study; CI,
confidence interval; DPP, Diabetes Prevention Program; FO,
Framingham Offspring Study; HR, hazard ratio; NC, sample size of the
control group, i.e., the DPP placebo group; NT, sample size of the treat-
ment group, i.e., the SDPI-DP group; OGTT, oral glucose tolerance test;
SAH, San Antonio Heart Study; SDPI-DP, Special Diabetes Program for
Indians Diabetes Prevention Program; SE, standard error

*SDPI-DP subgroup who met the DPP eligibility criteria
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Indeed, a recent study in a high-risk population found that
47.3% of newly diagnosed patients with T2DM would have
been missed if OGTTs were not performed (Meijnikman et al.
2017).

The regression adjustment method is the standard method
to control for potentially unbalanced confounders, but suffers
from computational complexity and model selection issues. It
has been shown to produce biased estimates for regression
coefficients when the number of events per covariate is less
than 10 (Harrell Jr. et al. 1985; Peduzzi et al. 1996). Hence,
dimension reduction methods such as the PS or DRS are pre-
ferred in the presence of a large number of potential con-
founders. When comparing PS matching with DRS matching

in this study, we found the DRS approach resulted in more
matched pairs than PS. This is consistent with a recent simu-
lation study demonstrating that DRS can match a larger pro-
portion of the treated population when the PS distributions
across comparison groups are strongly separated (Wyss et al.
2015). Consequently, DRS matching can improve the preci-
sion and potential generalizability of the effect estimate due to
larger sample size. The DRS approach has been shown to
require a weaker condition than the positivity assumption of
the PS approach (Hansen 2008). It only assumes no levels of
disease risk at which each intervention or control is received
with certainty, which means DRS matching can allow re-
searchers to include individuals who would otherwise be
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Fig. 1 Propensity score and
disease risk score distributions
across treatment groups.
Abbreviations: ARIC,
Atherosclerosis Risk in
Communities Study; DPP,
Diabetes Prevention Program;
FO, Framingham Offspring
Study; SAH, San Antonio Heart
Study; SDPI-DP, Special
Diabetes Program for Indians
Diabetes Prevention Program
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excluded with PS matching, especially in regression disconti-
nuity designs such as the current study where participants with
an OGTT 2-h result < 140 mg/dL were excluded from the
DPP study.

Regarding the three different DRS models we explored, all
demonstrated adequate capability to correct the bias in the
effectiveness estimates, as long as all important confounders
were considered. Although due to lack of a true control group,
it is difficult to assess which method produced the least biased
estimate for the effectiveness, the PS matched samples based
on the ARIC model exhibited the best covariate balance with
ASD < 0.1 for almost all diabetes risk factors. Similarly,
among the three DRS models we compared, matching on
the ARIC score (with OGTT 2 h included in the score) pro-
duced the least pseudo-bias which is very close to 0. The
ARIC score included waist circumference instead of BMI in
its model, which has been demonstrated to be more predictive
of diabetes risk than BMI (Klein et al. 2007). This might
explain the better performance of ARICmodel in confounding
control shown here.

Several limitations exist in this study. First, the race/ethnic
compositions of the two data sources were substantially dif-
ferent. The SDPI-DP only recruited AI/ANs while the DPP
was a multiethnic cohort with only 49 AI/ANs in the placebo
group (3). Since the publicly available DPP data coded AIs in
the BOther^ category along with other race/ethnicity groups,
adjusting for AI/AN status was impossible. However, the DPP
findings showed no significant racial differences in the effica-
cy of lifestyle intervention, including the AI/AN subgroup
(Knowler et al. 2002). Second, except for the OGTT 2-h re-
sult, we only adjusted for diabetes risk factors that were in-
cluded in one of the three diabetes risk models, which may not
capture all the potentially unbalanced confounders. Third, we
could only find a match for < 40% of the SDPI-DP partici-
pants. This means valid inference can only be made for a
proportion of the SDPI-DP participants. Yet, a previous study
reported no treatment heterogeneity in lifestyle intervention

Table 3 BDry-run^ analysis
evaluating disease risk scores for
confounding control

HR 95% CI Pseudo-bias 95% CI

Unadjusted 0.35 (0.29, 0.43) − 0.30 (− 0.47, − 0.12)
DRS matching (without OGTT 2-h results in the models)

FO (NT = 857, NC = 857) 0.32 (0.24, 0.42) − 0.36 (− 0.12, − 0.53)
ARIC (NT = 1011, NC = 1011) 0.33 (0.26, 0.43) − 0.18 (− 0.39, 0.04)
SAH (NT = 1001, NC = 1001) 0.39 (0.31, 0.50) − 0.14 (− 0.38, 0.09)

DRS matching (with OGTT 2-h results in the models)

FO (NT = 788, NC = 788) 0.58 (0.45, 0.74) − 0.11 (− 0.33, 0.14)
ARIC (NT = 920, NC = 920) 0.61 (0.49, 0.77) 0.01 (− 0.25, 0.22)
SAH (NT = 903, NC = 903) 0.66 (0.52, 0.82) 0.06 (− 0.17, 0.32)

Abbreviations: ARIC, Atherosclerosis Risk in Communities Study; CI, confidence interval; FO, Framingham
Offspring Study; HR, hazard ratio; NC, sample size of the control group, i.e., the DPP placebo group; NT, sample
size of the treatment group, i.e., the SDPI-DP group; OGTT, oral glucose tolerance test; SAH, San Antonio Heart
Study

a Without OGTT 2 hour test included in PS models

b With OGTT 2 hour test included in PS models
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Fig. 2 Absolute standardized differences before and after propensity
score matching in covariate values for all SDPI-DP vs. DPP placebo
participants. a Without OGTT 2 h test included in PS models. b With
OGTT 2 h test included in PS models. Abbreviations: ARIC,
Atherosclerosis Risk in Communities Study; DPP, Diabetes Prevention
Program; FO, Framingham Offspring Study; OGTT, oral glucose toler-
ance test; SAH, San Antonio Heart Study; SDPI-DP, Special Diabetes
Program for Indians Diabetes Prevention Program
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effects based on baseline diabetes risk of the DPP participants,
suggesting potential generalizability of our results (Sussman
et al. 2015).

Last, although the PS and DRS approaches appear to be
useful statistical tools for evaluating intervention effectiveness
in studies with observational data or quasi-experimental design,
they cannot substitute RCTs in assessing the efficacy of a new
intervention. The Women’s Health Initiative (WHI) study re-
ported a well-known example where the conclusions from ob-
servational studies were different from those based on RCT:
although several large observational studies with sound statisti-
cal design and analyses suggested postmenopausal hormone use
reduced CHD risk (Grodstein et al. 1996) (Varas-Lorenzo et al.
2000), the WHI randomized trial reported those in the hormone
therapy arm had a higher incidence of CHD than the women in
the placebo group (Manson et al. 2003). The discrepancies be-
tween the results of theWHI RCTand observation studies could
largely be explained by the time-varying HRs of the treatment
effects (Prentice et al. 2005), which cannot be detected and
solved by the statistical methods used here. Furthermore, several
threats to internal validity as listed by Campbell and Stanley
(Campbell and Stanley 1963) might exist in our study. The
potential applicability of those threats to our study is listed and
discussed in Supplementary Table 2.

In summary, this study illustrates how one can use publicly
availableRCTdataashistorical controls to evaluate the interven-
tion effectiveness of community translational projects without a
concurrent control. Carefully employed, this approach shows
promise in obtaining relatively accurate estimates for the transla-
tional effectiveness of projectswherein the eligibility criteria and
outcomemeasures are similar. Indeed, future translational initia-
tiveswithout a control groupmay consider using similar eligibil-
itycriteriaandoutcomesas theoriginal clinical trial(s), at least for
a proportion of the participants, in order to allow for formal eval-
uation of translational effectiveness using historical control data.
Toovercomepotentially severe selectionbiaswhile usinghistor-
ical controls, it is critical to employ a proper statisticalmethod to
balance the distributions of potential confounders between com-
parison groups. Both PS matching and DRSmatching are good
choiceswhen the number of confounders that needs to be adjust-
edis large(Cepedaetal.2003;Harrell Jr. etal.1985;Peduzzietal.
1996). Further, theDRSapproachmaybeparticularly suitable in
circumstances when the PS distributions of the comparison
groups do not overlap well with each other.
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