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Abstract
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many
empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied.
Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure
of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance
structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may
be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have
recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This
paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-
Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying
causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in
contrast to other approaches. A simulated example is also provided.
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Introduction

The study of statistical causal reasoning can be roughly
divided into two categories. First, if the causal structure of
variables is known, the conditions under which the causal
effects or intervention effects between variables can be
inferred are investigated (Imbens and Rubin 2015; Pearl
2000). Second, if the causal structure is unknown, the con-
ditions under which the causal structure or causal relation-
ships of variables can be inferred are investigated (Spirtes
et al. 1993; Shimizu 2014; Zhang and Hyvärinen 2016). The
difference between the two tasks is whether the causal struc-
ture is known or unknown and reflects different purposes.
The second category is called causal discovery or causal
structure learning. The two categories are closely related.
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For example, suppose that the causal structure is unknown
based on background causal knowledge. Then, the causal
structure is inferred by using causal discovery methods from
the latter category, and causal effects that can be inferred
are identified based on the inferred causal structure. Causal
effects are identified by combining the theories of the two
categories as well as background knowledge.

Researchers in various fields, including prevention sci-
entists, have hypothesized about the causal relationships for
various phenomena. However, narrowing the candidate
hypotheses to one based only on the background theory for a
given field is usually difficult. In such cases, multiple candi-
dates need to be compared based on data to determine which
is better. Further, if the background theory is not sufficient,
developing candidate hypotheses in the first place is diffi-
cult. In this case, candidate hypotheses should be generated
based on experience or observed data. In either case, causal
discovery or causal structure learning methods are useful.

Here is an example where causal discovery is required.
People with depression have been reported to tend to have
sleep problems. For example, according to an epidemiologi-
cal survey (Raitakari et al. 2008), the correlation coefficient
between depression and the degree of sleep disorder is
0.77 (Rosenström et al. 2012). Epidemiologic researchers
may then want to find a causal model to explain this strong
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correlation. They may consider the following candidate
causal models:

1. Sleep problems causes depression.
2. Depression causes sleep problems.
3. There is no direct causal relationship between depres-

sion and sleep problems.

These three candidates are graphically represented in Fig. 1.
Of course, a fourth candidate is that depression and sleep
problems mutually cause each other, i.e., cyclic cases.
In this paper, one-way causal relationships are assumed
to simplify the illustrative examples. The concept can be
further extended to cyclic cases (Lacerda et al. 2008).

If a sleep disorder causes depression, as shown by the
causal structure on the left of Fig. 1, then reducing the
degree of sleep problems of the subjects would decrease
their depression. If the middle structure is the case, then
reducing the degree of depression would decrease sleep
problems. Lowering the severity of sleep problems would
not change the degree of depression. Finally, if the right
structure is the case, then depression and sleep problems are
not causally related. Then, even if the severity of the sleep
problems is lowered, the depression does not change.

By performing randomized experiments, the causal rela-
tionship between depression and sleep disturbance can
be determined. However, actually performing randomized
experiments is not easy. This paper discusses causal dis-
covery methods based on observational data that do not
need such randomized experiments to be performed. Note
that several assumptions are needed in place of the ran-
domization. Even if some assumptions are needed, they
can generate specific causal hypotheses to be verified
by further experiments. Therefore, these causal discovery
methods do not aim to replace such experiments. Rather,
they are intended to help prevention scientists hypothesize

good causal model candidates before performing random-
ized experiments or to do their best when randomized
experiments cannot be performed.

Causal structure learning methods aim to discover or
infer causal graphs of variables based on data. Causal graphs
illustrate the qualitative causal relations of variables. An
example is given in Fig. S1 (available online). There are
three variables to be analyzed: x1, x2, and z1. There are
also two error variables: e1 and e2. x1 and x2, which are
represented by boxes, are observed variables. z1, which is
represented by a dotted circle, is an unobserved variable.
The error variables e1 and e2 are unobserved, although they
are not represented by dotted circles.

In the example graph, all edges between variables are
directed. A directed edge starting from a variable and ending
with another variable indicates that the former variable
directly causes the latter. Based on the terminology of graph
theory, the former variable is called a parent of the latter,
and the latter variable is called a child of the former. In this
causal graph, there is a directed edge from x1 to x2. This
indicates that x1 directly causes x2. Thus, x1 is a parent
of x2, and x2 is a child of x1. If there is no directed edge
between two variables, then there is no direct causal relation
between the two. The unobserved variable z1 directly causes
both x1 and x2. Hence, it is called an unobserved common
cause.

In causal structure learning, the objective is to infer the
causal graph of variables based on their observed data. Note
that this is done without actually intervening on any of the
variables. A major topic in this field is understanding the
conditions under which the causal graph can be uniquely
estimated. This paper first reviews the framework for causal
inference, which is also known as the identification of
causal effects, and then introduces recent causal discovery
methods based on the linear non-Gaussian acyclic model

Fig. 1 Comparison of three
hypotheses regarding the
causality direction
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(LiNGAM). Examples of LiNGAM applications include
epidemiology (Rosenström et al. 2012), economics (Moneta
et al. 2013), finance (Zhang and Chan 2008), and
neuroscience (Mills-Finnerty et al. 2014).

Framework of Causal Inference

This section provides a brief review of the causal inference
framework based on the structural causal model (SCM)
(Pearl 2000). First, structural equation models (SEMs) are
introduced for describing data-generating processes (Bollen
1989), which are used to generate values of variables.
This framework uses special types of equations known as
structural equations to represent how the values of variables
are determined.

The structural equations for the case described in Fig. S1
(available online) are given by

x1 = f1(z1, e1) (1)

x2 = f2(x1, z1, e2), (2)

where the error variable e1 denotes all factors other than z1

that can contribute to determining the value of x1. Similarly,
the error variable e2 denotes all factors other than x1 and z1.

Structural equations represent more than a simple
mathematical equality. The left-hand sides of the equations
are defined by their right-hand sides. For example, in
Eq. 1, the value of x1 on the left-hand side is completely
determined by that of z1 and e1 through the function f1.1

In Eqs. 1 and 2, the value of e1 is first generated
from the probability distribution p(e1). Then, the value
of x1 is determined by those of z1 and e1 through the
function f1. Subsequently, the value of e2 is generated
from the probability distribution p(e2). Then, the value
of x2 is determined by those of x1, z1, and e2 through
the function f2. The variables z1, e1, and e2 are known
as exogenous variables. The values of these exogenous
variables are generated outside the model, and their data-
generating processes are decided by the modeler to not be
further modeled. In contrast, variables whose values are
generated inside the model, such as x1 and x2, are known as
endogenous variables.

Definition of Causality Based on Interventions

Next, causality is defined based on the interventions used
in SCMs (Pearl 2000). First, interventions in SEMs are
defined. Intervening on the variable x1 means forcing the
value of x1 to be a constant c regardless of the other
variables. This intervention is denoted by do(x = c).

1These structural equations simply describe the data-generating
processes and may be designed without the concept of causality.

In SEMs, this means replacing the function determining
x1 with the constant c, i.e., forcing all individuals in a
population to take x = c. Suppose that x1 is intervened with
and forced to take the value of c in the example given in
Eqs. 1 and 2. This creates a new SEM denoted by Mx=c:

x1 = c (3)

x2 = f2(x1, z1, e2). (4)

As a result, the causal graph shown on the left of Fig. S2
(available online) changes to that given on the right. The
directed edge from the unobserved common cause z1 to the
observed variable x1 in the causal graph of the original SEM
given in Eqs. 1 and 2 disappears because x1 is forced to
be c regardless of the other variables including z1. Note
that the other functions are assumed to not change even if a
function is replaced with a constant. Although this may be
physically unrealistic in some cases, the revised SEM given
in Eqs. 3 and 4 represents a hypothetical population where
all individuals in the population are forced to take x = c but
the other function f2 does not change.

Next, the post-intervention distribution is defined. When
x1 is intervened with, the post-intervention distribution of
x2 is defined by the distribution of x2 in the revised SEM,
i.e., Mx=c:

p(x2|do(x1 = c)) := pMx1=c (x2). (5)

The associated causal graph is shown on the right of
Fig. S2 (available online).

Then, x1 is a cause of x2 in this population if there exist
two different values c and d such that the post-intervention
distributions are different, i.e., if the following holds:

p(x2|do(x1 = d)) �= p(x2|do(x1 = c)). (6)

A common method for quantifying the magnitude of
causation from x1 to x2 is to assess the following average
difference (Rubin 1974; Pearl 2000):

E(x2|do(x1 = d)) − E(x2|do(x1 = c)). (7)

This is called the average causal effect. E denotes
the expectation operator and is a shorthand for averaging
according to a given distribution. This evaluates to what
extent, on average, the value of x2 would change if
the value of x1 has been changed from c to d. Other
quantifying methods include assessing the ratio of the two
averages or using the variance or other meaningful statistics
that characterize the features of the post-intervention
distribution.

As an example, assume that the function f2 in the SEM
of Eqs. 1 and 2 is linear:

x1 = λ11z1 + e1 (8)

x2 = b21x1 + λ21z1 + e2, (9)
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where b21, λ11, and λ21 are constants. Then, the post-
intervened SEM Mx1=c takes the form

x1 = c (10)

x2 = b21x1 + λ21z1 + e2. (11)

Therefore, the average causal effect of x1 on x2 if the
value of x1 has been changed from c to d is given by

E(x2|do(x1 = d)) − E(x2|do(x1 = c)) (12)

= E(b21d + λ21z1 + e2) − E(b21c + λ21z1 + e2) (13)

= b21(d − c). (14)

The expected average change in x2 is thus the difference
between d and c multiplied by the coefficient b21.

Similarly, the post-intervened model Mx2=c shown on the
right of Fig. S3 (available online) is written as

x1 = λ21z1 + e1 (15)

x2 = c (16)

Then, the average causal effect of x2 on x1 when the
value of x2 has been changed from c to d is given by

E(x1|do(x2 =d)) − E(x1|do(x2 = c))

= λ21E(z1) + E(e1)

−{λ21E(z1) + E(e1)} (17)

= 0. (18)

This is reasonable because x2 does not contribute to
defining x1 in the original SEM shown in Eqs. 1 and 2 and
on the left of Fig. S3 (available online).

Non-GaussianMethods for Causal Discovery

In causal structure learning, the SCMs introduced above are
used to represent model assumptions, including the back-
ground knowledge and hypotheses of the modeler. Model
assumptions place constraints on the model and restrict the
candidate causal structures. Among the structures that sat-
isfy the model assumptions, the causal structure that is most
consistent with the data distribution is searched for.

This section explains the basic setup (Pearl 2000; Spirtes
et al. 1993) and then introduces the non-Gaussian causal
discovery methods based on a model known as LiNGAM
(Shimizu et al. 2006; Hoyer et al. 2008; Shimizu 2014). The
focus remains on continuous variable cases.

A typical assumption is that the causal relations of
variables are acyclic, i.e., there are no directed cycles in
the causal graph. Further, the functional relations of the
variables are assumed to be linear. The basic model for the

continuous observed variables xi (i = 1, . . . , p) is therefore
formulated as follows:

xi =
∑

j∈pa(xi )

bij xj + ei, (19)

where pa(xi) is the set of parents of xi in the causal graph, ei

(i = 1, . . . , p) are error variables, and bij (i, j = 1, . . . , p)
are the coefficients that represent the magnitude of direct
causation from xj to xi .

In the most basic setup, the error variables ei (i =
1, . . . , p) are assumed to be independent. The independence
assumption between ei (i = 1, . . . , p) implies that
there are no unobserved common causes. This means that
unobserved common causes such as z1 in the causal graph
of Fig. S1 (available online) must be observed. If there is an
unobserved common cause, it is not part of the model (19)
and generally makes some of the error variables in Eq. 19
dependent. This setup is discussed first. Then, an advanced
model with unobserved common causes is presented.

In matrix form, a linear acyclic SCM with no unobserved
common cause in Eq. 19 can be written as

x = Bx + e, (20)

where the coefficient matrix B collects the magnitudes of
direct causation bij (i, j = 1, . . . , p) and the vectors x

and e collect the observed variables xi (i = 1, . . . , p) and
exogenous variables ei (i = 1, . . . , p), respectively. The
zero/non-zero pattern of bij (i, j = 1, . . . , p) corresponds
to the absence/existence pattern of the directed edges. In
other words, if the coefficient bij �= 0, there is a directed
edge from xj to xi . If this is not the case, there is no
directed edge from xj to xi (i, j = 1, . . . , p). Because of
the acyclicity, the diagonal elements of B are all zeros.

Figure 2 provides an example of causal graphs for
representing the linear acyclic SCMs with no unobserved
common cause in Eq. 20. The SEM corresponding to the
causal graph of the figure is written as
⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
0 0 3

−5 0 0
0 0 0

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ +
⎡

⎣
e1

e2

e3

⎤

⎦ . (21)

The goal of identifying causal structures with this basic
setup is to estimate the unknown coefficient matrix B by
using the data X. X is assumed to be randomly sampled from
a linear acyclic SCM with no unobserved common cause, as
represented by Eq. 20 above.

Classical Approach Based on Conditional
Independence

Under the causal Markov condition and the faithfulness
assumption (Spirtes et al. 1993), conditional independence
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Fig. 2 Example of causal graphs
corresponding to a linear acyclic
SEM

3

-5

relations provide a classical way to infer the causal structure
of the linear acyclic SCM with no unobserved common
causes in Eq. 20.2 For any such linear acyclic SCM, the
causal Markov condition holds (Pearl and Verma 1991)
as follows. Each observed variable xi is independent
of its non-descendants conditional on its parents, i.e.,
p(x) = �

p

i=1p(xi |pa(xi)). Thus, conditional independence
between observed variables provides a clue as to what the
underlying causal structure is.

Unfortunately, in many cases, the causal Markov condi-
tion is insufficient for uniquely identifying the causal struc-
ture of the linear acyclic SCM with no unobserved common
causes (Pearl 2000; Spirtes et al. 1993). An example of this
is provided in Fig. 3. Suppose that data x are generated from
the left causal graph shown in Fig. 3. According to the
causal Markov condition, x2 and x3 are independent condi-
tional on x1, and no other conditional independence holds.
Therefore, the only information available for estimating the
underlying causal structure is the conditional independence
of x2 and x3. Within the class of linear acyclic SCMs with
no unobserved common causes, the three causal graphs give
the same conditional independence. In each of these three
causal structures, only x2 and x3 are conditionally inde-
pendent. However, only the left causal graph represents
the right causal relations, and the other two causal graphs
do not. The three causal structures are quite different, and
there is no causal direction that is consistent across all three
causal graphs. Thus, in this example, the causal Markov
condition principle is not capable of uniquely estimating the
underlying causal graph.

Basic LiNGAM

In this section, the basic LiNGAM is reviewed (Shimizu
et al. 2006) before it is extended to cases with unobserved
common causes (Hoyer et al. 2008). The assumptions
of the basic LiNGAM may appear to be restrictive, and
fortunately, they can be relaxed in many ways (Hoyer et al.
2008, 2009; Lacerda et al. 2008; Hyvärinen et al. 2010;
Zhang and Hyvärinen 2009).

2Conditional independence-based approaches can also handle unob-
served common causes, but their results usually contain many causal
directed acyclic graphs, e.g., see the FCI algorithm (Spirtes et al.
1993).

In Shimizu et al. (2006), a non-Gaussian version of
the linear acyclic SCM was proposed with no unobserved
common causes in Eq. 19. This is known as a LiNGAM:

xi =
∑

j∈pa(xi )

bij xj + ei, (22)

where the error variables ei (i = 1, . . . , p) follow non-
Gaussian continuous distributions and are independent.
Without loss of generality, their means are assumed to be
zeros.

LiNGAMs have been proven to be identifiable (Shimizu
et al. 2006), i.e., the coefficients bij (i, j = 1, . . . , d)
can be uniquely identified by using the non-Gaussianity of
the data. Then, the causal graph can be drawn based on
the zero/non-zero pattern of the coefficient matrix B that
collects those coefficients bij (i, j = 1, . . . , p). In contrast,
the classical approach in the previous subsection only uses
the conditional independence of observed variables and
does not use the non-Gaussian structure, even when they
follow non-Gaussian distributions.

A principle for identifying the causal structure is
presented below. First, the Darmois–Skitovitch theorem is
referenced (Darmois 1953; Skitovitch 1953):

Theorem 1 (Darmois–Skitovitch theorem) Define two
random variables y1 and y2 as linear combinations of the
independent random variables si(i = 1, . . . ,Q):

y1 =
Q∑

i=1

αisi, y2 =
Q∑

i=1

βisi .

Then, it can be shown that, if y1 and y2 are independent, all
such variables s� for which α�β� �= 0 are Gaussian.

The contraposition of this theorem therefore shows that,
if there exists a non-Gaussian sj for which α�β� �= 0, y1 and
y2 are dependent.

To illustrate this, two variable LiNGAM cases are
described. The number of observations is assumed to be
large enough that estimation errors can be ignored. First,
consider the case where x1 causes x2:

x1 = e1 (23)

x2 = b21x1 + e2, (24)

where b21 �= 0.
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Fig. 3 Candidate causal
structures that give the same
conditional independence of
variables as the original causal
structure on the left

By regressing x2 on x1,

r
(1)
2 = x2 − cov(x2, x1)

var(x1)
x1 (25)

= x2 − b21x1 (26)

= e2. (27)

Thus, if x1(= e1) is the cause, because e1 and e2 are
independent, x1 and r

(1)
2 (= e2) are also independent.

Next, consider the case where x2 causes x1:

x1 = b12x2 + e1 (28)

x2 = e2, (29)

where b12 �= 0. By regressing x2 on x1,

r
(1)
2 = x2 − cov(x2, x1)

var(x1)
x1 (30)

= x2 − cov(x2, x1)

var(x1)
(b12x2 + e1) (31)

=
{

1 − b12cov(x2, x1)

var(x1)

}
x2 − cov(x2, x1)

var(x1)
e1 (32)

=
{

1 − b12cov(x2, x1)

var(x1)

}
e2 − b12var(x2)

var(x1)
e1. (33)

Thus, if x1 is not the cause, according to the Darmois–
Skitovitch theorem, x1 and r

(1)
2 are dependent because e1

and e2 are non-Gaussian and independent. Furthermore,
the coefficient of e1 on x1 and that of e1 on r

(1)
2 are

non-zero because b12 �= 0 by definition. Therefore, the
causal direction between x1 and x2 can be determined by
examining the independence between explanatory variables
and their residuals (Shimizu et al. 2011).

To evaluate independence, a measure that is not
restricted to uncorrelatedness is needed because least-
squares regression results in residuals that are always
uncorrelated with but not necessarily independent of
explanatory variables. For the same reason, non-Gaussianity
is required for inferring the causal structure because
uncorrelatedness is equivalent to independence for Gaussian
variables. Common independence measures include HSIC
(Gretton et al. 2005) and mutual information (Bach and
Jordan 2002; Kraskov et al. 2004).

LiNGAMwith Unobserved Common Causes

An extension of LiNGAM is now described for causal
discovery in the presence of unobserved common causes
(Hoyer et al. 2008). x1, . . . , xd denotes the observed
variables, f1, . . . , fQ denotes the unobserved common
causes, and e1, . . . , ed denotes the error variables. All of
these variables are continuous. Then, the model is written as
follows:

xi =
∑

j∈pa(xi )

bij xj +
Q∑

q=1

λiqfq + ei, (34)

where bij and λiq are constants that represent the
magnitudes of direct causation from xj and fq to xi ,
respectively (i, j = 1, . . . , p; q = 1, . . . , Q). The
causal relations are assumed to be acyclic. The unobserved
common causes fq (q = 1, . . . , Q) and error variables ei

(i = 1, . . . , p) are further assumed to be non-Gaussian and
independent. Although the assumption of independence for
the unobserved common causes fq (q = 1, . . . , Q) looks
strong, it can be made without loss of generality under
the linearity assumption (Hoyer et al. 2008) because the
observed variables are then linear combinations of error
variables and hidden common causes.

By using the model in Eq. 34, the following two models
with opposite directions of causation can be compared:

Model 1 :
{

x1 = ∑Q
q=1λ1qfq + e1

x2 = b21x1 + ∑Q
q=1λ2qfq + e2

(35)

Model 2 :
{

x1 = b12x2 + ∑Q
q=1λ1qfq + e1

x2 = ∑Q
q=1λ2qfq + e2

. (36)

Figure 4 graphically represents these two models. Note
that the number of unobserved common causes Q is
assumed to be unknown.

In Shimizu and Bollen (2014), the model in Eq. 34
was related to a model with observation-specific intercepts
instead of explicitly having unobserved common causes, as
shown in Fig. 5. A major advantage of this approach is that
neither the number of unobserved common causes Q nor
number of coefficients λiq (i = 1, . . . , p; q = 1, . . . ,Q)
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Fig. 4 Models 1 and 2: two
models with different causal
directions in the presence of
three unobserved common
causes

21b

22λ
11λ

…

12b

22λ
11λ

…

Model 2Model 1

needs to be estimated. To explain the idea, the model in
Eq. 34 for the observation m is rewritten as follows:

x
(m)
i =

Q∑

q=1

λiqf (m)
q +

∑

j∈pa(xi )

bij x
(m)
j + e

(m)
i , (37)

where x
(m)
i , f

(m)
q , and e

(m)
i denote m-th observations of xi ,

fq , and ei , respectively (i = 1, . . . , p; q = 1, . . . ,Q; m =
1, . . . , n).

Now, the sums of the unobserved common causes can
be denoted by μ

(m)
i = ∑Q

q=1λiqf
(m)
q . Then, the following

model is obtained with observation-specific intercepts:

x
(m)
i = μ

(m)
i︸︷︷︸

∑Q
q=1λiqf

(m)
q

+
∑

j∈pa(xi )

bij x
(m)
j + e

(m)
i , (38)

where μ
(m)
i are observation-specific intercepts. The distri-

butions of e
(m)
i (m = 1, . . . , n) are assumed to be identical

for every m. In this model, the observations are generated
from the model with no unobserved common causes, pos-
sibly with different parameter values of the intercepts μ

(m)
i .

This model has the coefficients bij (i, j = 1, . . . , p) that

are common to all observations as well as the observation-
specific intercepts μ

(m)
i . This is similar to mixed models

(Demidenko 2004). Thus, it is called a mixed-LiNGAM.
Now, the problem of comparing Models 1 and 2 in

Eqs. 35 and 36 becomes that of comparing Models 1′ and 2′:

Model 1′ :
{

x
(m)
1 = μ

(m)
1 + e

(m)
1

x
(m)
2 = μ

(m)
2 + b21x

(m)
1 + e

(m)
2

, (39)

Model 2′ :
{

x
(m)
1 = μ

(m)
1 + b12x

(m)
2 + e

(m)
1

x
(m)
2 = μ

(m)
2 + e

(m)
2

, (40)

where μ
(m)
1 = ∑Q

q=1λ1qf
(m)
q and μ

(m)
2 = ∑Q

q=1λ2qf
(m)
q

(m = 1, . . . , n).
A Bayesian approach is applied to compare Models 1′

and 2′ and estimate the possible causal direction between
the two observed variables x1 and x2. The prior probabilities
of the two candidate models are assumed to be uniform.
Then, the log-marginal likelihoods of the two models may
simply be compared to assess their plausibility. The model
with the larger log-marginal likelihood is considered to be
closest to the true model (Kass and Raftery 1995). Once the
possible causal direction has been estimated, the coefficient

Fig. 5 Transforming a
LiNGAM with hidden common
causes to a LiNGAM with no
hidden common causes

…

LiNGAM with
hidden common causes

21b

22λ
11λ

21b

21b

…

2
(m)μ

(1)
2μ(1)

1μ

1
(m)μ

…

LiNGAM with no hidden 
common causes but with 
possibly different intercepts
over observations

21b

2
(n)μ1

(n)μ
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b21 or b12 can be checked for its likeliness to be non-zero
by examining its posterior distribution.

Error Distributions The error distributions p(e1) and p(e2)

can be modeled by using the generalized Gaussian
distribution (Hyvärinen et al. 2001) as follows:

p(ei) = βi

2αi�(1/βi)
e(−|ei |/αi)

βi
(i = 1, 2). (41)

Here, the symbol � denotes the Gamma function:

�(u) =
∫ ∞

0
e−t tu−1dt,

where αi are the scaling parameters, and βi are the shape
parameters (i = 1, 2).

The error variances are

var(ei) = α2
i �(3/βi)

�(1/βi)
(i = 1, 2).

Thus, when the standard deviations of the errors are set to
hi (i = 1, 2), then the scaling parameters are automatically
determined as follows:

αi = hi

√
�(1/βi)

�(3/βi)
.

Prior Distributions Next, an informative prior distribution
is used for the observation-specific intercepts μ

(m)
i (i =

1, 2; m = 1, . . . , n). These observation-specific intercepts
μ

(m)
i are the sums of many non-Gaussian independent

unobserved common causes f
(m)
q and are dependent. The

central limit theorem states that the sum of independent
variables becomes increasingly close to the Gaussian
(Billingsley 1986). Based on this theorem, the non-
Gaussian distributions of the observation-specific intercepts
μ

(m)
i are approximated as the sums of many non-

Gaussian independent unobserved common causes by using
a bell-shaped curve distribution. The prior distribution
of the observation-specific intercepts is modeled by the
multivariate t-distribution as follows:
[

μ
(m)
1

μ
(m)
2

]
= diag

([√
τ1,

√
τ2

]T )
C−1/2u, (42)

where τ1 and τ2 are constants, u ∼ tν(0, �), and � = [σab]
is a symmetric scale matrix whose diagonal elements are
1s. C is a diagonal matrix whose diagonal elements give the
variance of elements of u, i.e., C = ν

ν−2 diag(�) for ν > 2.

Numerical Examples Experimental results using artificially
generated data are presented here.3 The parameters common

3Python codes written by Taku Yoshioka are freely available at https://
github.com/taku-y/bmlingam

to all of the observations were the coefficients b12 and
b21 and the standard deviations of the error variables e1

and e2, which are denoted by h1 and h2. Then, the prior
distributions of the parameters were modeled as follows:

b12 ∼ N(0, 0.752) (43)

b21 ∼ N(0, 0.752) (44)

h1 ∼ U(0, 1) (45)

h2 ∼ U(0, 1). (46)

The observation-specific intercepts μ
(m)
i (i = 1, 2; m =

1, . . . , n) were generated as follows:
[

μ
(m)
1

μ
(m)
2

]
=

[
τ1

std(u1)
0

0 τ2
std(u2)

][
u1

u2

]
, (47)

where the random variables u = [u1, u2]T followed the
t-distribution with ν degrees of freedom ∼ tν(0, �). The
parameters of the t-distribution � are given by the following
positive definite matrix:

� =
[

1 σ12

σ21 1

]
. (48)

The standard deviations of the intercepts μ
(m)
1 and

μ
(m)
2 are τ1 and τ2. σ12 determines the magnitude of

covariance between the intercepts μ
(m)
1 and μ

(m)
2 . The

standard deviations of u1 and u2, which are denoted by

std(u1) and std(u2), are
√

ν
ν−2 because of the property of

the t-distribution.
The hyper-parameters selected with the log-marginal

likelihoods are the shape parameters β1 and β2 and the
parameters of the prior distributions of the observation-
specific intercepts μ

(m)
1 and μ

(m)
2 , i.e., τ1, τ2, and

σ21. An empirical Bayesian approach was used to
select the hyper-parameters. The following were tested:
β1, β2 = 0.5, 1, 2.0, 6.0, τ1, τ2 = 0.4, 0.6, 0.8, σ12 =
0 ± 0.3, ±0.5, ±0.7, ±0.9. Then, the set of the hyper-
parameters that achieved the largest log-marginal likelihood
was selected. The naive Monte Carlo sampling approach
was used to compute the log-marginal likelihoods with
10,000 samples for the parameters. The degree of freedom
was fixed to eight.

Artificial datasets were generated with a sample size
of 100 by using the following LiNGAM with unobserved
common causes:

x1 =
Q∑

q=1

c√
Q + 1

fq + e1 (49)

x2 =
Q∑

q=1

c√
Q + 1

fq + b21x1 + e2. (50)
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The Laplace or uniform distribution was randomly used
for the distributions of the error variables e1 and e2. Their
means were zero, and the standard deviations were

√
3.

The distributions of unobserved common causes fq were
randomly selected from the 18 non-Gaussian distributions
(Bach and Jordan 2002). The coefficient b21 was selected
from the uniform distribution U(−1.5, 1.5). The constant c

was 0.5 or 1.0. A larger c indicated a greater causal effect
from the unobserved common cause fq . The number of
unobserved common causes Q was 10. In this manner, 100
datasets were generated for every combination of the error
distributions and constant c.

Subsequently, the log-marginal likelihoods of Models 1′
and 2′ were calculated, and the number of times the causal
direction of the model with the largest log-likelihood was
the same as that of the model used to generate the dataset
was counted.

The Bayes factor was also computed. The Bayes factor
of the two models being compared (Models 1′ and 2′) is
denoted by K . To simplify the notation, K was assumed
to be computed so that the larger likelihood was in the
numerator and the smaller was in the denominator. Kass and
Raftery (Kass and Raftery 1995) proposed that the Bayes
factor is negligible if 2 log K is 0–2, positive if 2 log K is
2–6, strong if 2 log K is 6–10, and very strong if 2 log K is
more than 10.

Overall, as the Bayes factor rose, so did the precision
(i.e., the fraction of the number of findings that were
successful) in both cases with the magnitudes of the effects
of hidden common causes c = 0.5 and 1.0.

In the cases with the smaller magnitude of hidden
common causes c = 0.5, for the model comparison indexes
2 log K greater than 0 and no more than 2, the precision was
0.51, and the number of findings was 57. For the indexes
2 log K greater than 2 and no more than 6, the precision was
0.67, and the number of findings was 96. For the indexes
2 log K greater than 6 and no more than 10, the precision
was 0.82, and the number of findings was 74. For the
indexes 2 log K greater than 10 and no more than 10, the
precision was 0.82, and number of findings was 74. For the
indexes 2 log K greater than 10, the precision was 0.97, and
number of findings was 173.

In the cases with the larger magnitude of hidden common
causes c = 1.0, for the indexes 2 log K greater than 0 and
no more than 2, the precision was 0.58, and number of
findings was 67. For the indexes 2 log K greater than 2 and
no more than 6, the precision was 0.57, and the number of
findings was 131. For the indexes 2 log K greater than 6 and
no more than 10, the precision was 0.66, and the number of
findings was 92. For the indexes 2 log K greater than 10, the
precision was 0.94, and the number of findings was 109.

This experimental result implies that considering the
Bayes factor is useful when selecting a better model with the

mixed-LiNGAM method. For the largest Bayes factor cases,
the algorithm identified the correct model in more than 90%
of the cases with a small sample size of 100.

Discussion

The main assumptions are the linearity and acyclicity
of causal relations among observed variables and hidden
common causes, non-Gaussian continuous errors, and
such many hidden common causes whose sum can be
approximated by a bell-shaped curve distribution. The
effects of model violations have not yet been extensively
studied and should be a good direction of future research.
However, it should be possible to extend the proposed
method to allow some types of nonlinearity and cyclicity
based on the ideas of nonlinear and cyclic extensions (Hoyer
et al. 2009; Zhang and Hyvärinen 2009; Lacerda et al. 2008)
of basic LiNGAM.

Further, the effects of nonlinearly transforming observed
variables should be investigated. Some transformations
may make the observed variables more non-Gaussian, but
they may also make the functional relations nonlinear. A
promising way of modeling such transformations is to use
the framework of post nonlinear causal models (Zhang
and Hyvärinen 2009). The framework can handle variable-
wise nonlinear transformations of observed variables
generated from nonlinear and linear acyclic models with
no hidden common causes, including the basic LiNGAM.
The proposed method would benefit from such theoretical
advances.

In the proposed approach, hidden common causes are
assumed to be continuous. However, even if the hidden
common causes are binary, their sum is approximated well
by some bell-shaped curve distribution because of the
central limit theorem if the number of hidden common
causes is large enough. Therefore, the proposed Bayesian
method should work better for more hidden common
causes, as long as the noise levels including the magnitudes
of effects of hidden common causes and those of error
variables do not get too large. A natural way would be
to use the Gaussian distributions to approximate the sums
of hidden common causes motivated by the central limit
theorem. However, in practice, the approximation may
be not perfect, and there may be outliers. Thus, the t-
distribution with heavier tails than the Gaussian distribution
was used in the artificial data experiments in the hope that
the inference would become more robust.

Further, in cases that all of the hidden common causes are
known and measured, their effects can simply be removed
by using regression. When only a smaller subset of the
hidden common causes is known and measured, the current
Bayesian approach for the two variable cases cannot fully
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benefit from the observed hidden common causes except
when they are the only root variables, i.e., variables that
have no parent variables. If they are the only root variables,
the other variables only have to be conditioned on the root
variables.

This study focused on two variable cases with hidden
common causes. This is because analyzing only a smaller
subset of observed variables does not lose validity if hidden
common causes are allowed. For more than two variables,
one approach is to apply the proposed method to every
pair of the variables. Then, the estimation results can be
combined to infer the entire causal graph.

Conclusion

The utilization of non-Gaussianity to estimate SEMs is
useful for causal discovery because non-Gaussian methods
are capable of uniquely estimating causal direction even in
the presence of unobserved common causes under the model
assumptions. Non-Gaussian data are widely encountered
(Spirtes and Zhang 2016), and the non-Gaussian approach
can be useful in such applications. Download links to papers
and codes on this topic are available online: https://sites.
google.com/site/sshimizu06/home/lingampapers.
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