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Abstract
In a recent update of the standards for evidence in research on prevention interventions, the Society of Prevention Research
emphasizes the importance of evaluating and testing the causal mechanism through which an intervention is expected to have an
effect on an outcome. Mediation analysis is commonly applied to study such causal processes. However, these analytic tools are
limited in their potential to fully understand the role of theorized mediators. For example, in a design where the treatment x is
randomized and the mediator (m) and the outcome (y) are measured cross-sectionally, the causal direction of the hypothesized
mediator-outcome relation is not uniquely identified. That is, bothmediation models, x→m→ y or x→ y→m, may be plausible
candidates to describe the underlying intervention theory. As a third explanation, unobserved confounders can still be responsible
for the mediator-outcome association. The present study introduces principles of direction dependence which can be used to
empirically evaluate these competing explanatory theories. We show that, under certain conditions, third higher moments of
variables (i.e., skewness and co-skewness) can be used to uniquely identify the direction of a mediator-outcome relation.
Significance procedures compatible with direction dependence are introduced and results of a simulation study are reported that
demonstrate the performance of the tests. An empirical example is given for illustrative purposes and a software implementation
of the proposed method is provided in SPSS.
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Testing and refining theories of how intervention works to
influence outcomes lies at the heart of prevention science.
According to the recently updated standards for evidence in
research on prevention interventions (Gottfredson et al. 2015),
the Society of Prevention Research (SPR) emphasizes that any
intervention theory should provide an account of the underly-
ing theoretical mechanism through which an intervention has

an effect on the outcome of interest. The “black box” of inter-
vention effects can often be disentangled through
decomposing the intervention theory into two core compo-
nents: an “action theory” that explains how the treatment in-
fluences potential mediators and a “conceptual theory” that
explains how those mediators are related to the outcome
(Chen 1990). Thus, mediation modeling (Baron and Kenny
1986; MacKinnon 2008) can now be seen as a prime method
in prevention science because it enables researchers to statis-
tically decompose total treatment effects into direct and indi-
rect effect components. Here, an indirect effect reflects the
proposed explanation of why and how the intervention has
an effect on the outcome. The direct effect represents a sum-
mary of those effects that cannot be explained by the mediator.

Mediation analysis is often considered a (seemingly) intu-
itive statistical tool to understanding the causal mechanisms of
treatment effects. However, in particular, the recent re-
conceptualization of total, direct, and indirect effects using
the counterfactural (potential outcome) framework of causa-
tion (Imai et al. 2010; Pearl 2001) made the exact conditions
explicit under which a mediation effect can be interpreted as
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being causal transparent to researchers. For example, even
when a treatment (i.e., the predictor x) is randomized, it is
now well understood that the causal effect of a mediator (m)
on the outcome (y) cannot be uniquely identified without im-
posing uncounfoundedness assumptions (so-called
ignorability conditions) on the data. These assumptions are
similar to those of observational studies. For this reason,
blockage- or enhancement designs have been proposed
(Imai et al. 2011) with the goal of, in addition to the predictor,
experimentally controlling the hypothesized mediator.
However, these designs, again, introduce strong assumptions
(for details see Bullock et al. 2010).

While research on causal mediation analysis mainly fo-
cused on causal effect identification and sensitivity properties
under confoundedness, another more subtle assumption re-
ceived considerably less attention. That is, the assumption of
correctness of causal ordering of variable relations that are not
under experimental control. For example, in the simple medi-
ation model with randomized treatment, the direction of the
mediator-outcome effect, i.e., whether m→ y or y→ m better
approximates the data-generating mechanism, is not uniquely
identified and must be determined based on a priori theory
alone (Wiedermann and von Eye 2015a, 2016). Here, tempo-
rality of mediator-outcome effects is often used as a “remedy.”
However, simply measuring the tentative mediator earlier in
time than the tentative outcome does not prove causation.
Suppose that the “true” mediational mechanism has the form
x→ y→ m. Measuring m at time point t1 (e.g., 3 months after
randomization) and y at t2 (6 months later) may, from a purely
statistical perspective, support the model x→ m1→ y2 al-
though y0, active at an earlier point in time t0, might actually
have caused m1 (MacKinnon 2008). Furthermore, spurious-
ness must also be considered as a possible explanation for the
relation of temporally ordered variables (Shrout and Bolger
2002).Whenmediator and outcome are measured on the same
occasion, exploratory approaches are sometimes recommend-
ed to evaluate the hypothesized mediation model against plau-
sible alternatives (e.g., Gelfand et al. 2009; Hayes 2013;
Iacobucci et al. 2007). Here, different model specifications
are examined with the aim of gaining further insights into
the data. In other words, the comparison of the mediation
effects of x→ m→ y and x→ y→ m is assumed to provide
empirical guidance to selecting the model that better approx-
imates the data-generating mechanism. Wiedermann and von
Eye (2015a) cautioned against such a strategy because alter-
native model specifications do not provide any further infor-
mation on the plausibility of a model. This can be explained
by the fact that direct and indirect effect estimates depend on
the magnitude of pairwise correlations of variables and noth-
ing new is learned from the data that would justify statements
about the correctness of a certain mediation model.

When competing conceptual theories about the interven-
tion mechanism exist, statistical methods to evaluate whether

one mediation model is superior over an alternative model are
desirable. The present work introduces methods of Direction
Dependence Analysis (DDA; Wiedermann and von Eye
2015b; Wiedermann and Li 2018) as statistical tools to make
such decisions concerning directionally competing models,
and applies these methods to the analysis of mediation pro-
cesses under randomized treatment. The present work extends
previous work (Wiedermann and von Eye 2015a, 2016) in
three ways: (1) previous studies focused on direction depen-
dence properties of mediation models in purely observational
data; we extend DDA for mediation models to situations in
which the predictor is under experimental control. (2) DDA
has been discussed for cases in which error terms of correctly
specified mediation models follow a normal distribution; we
discuss methods for errors that are non-normal. (3) Most im-
portant, previous studies on DDA in mediation models only
considered the two directional explanatory models (in the
present context, m→ y vs. y→ m); we extend DDA to cases
in which unconsidered common variables (so-called
confounders) are present and show that, by using DDA, all
three explanatory models are mutually distinguishable.

In the following sections, we, first, introduce the basic
principles of analyzing directional dependence and formally
define and review the assumptions of competing mediation
models when the treatment is randomized. Then, the two di-
rection dependence components of asymmetry properties of
higher-order correlations and asymmetry properties of the in-
dependence assumption of explanatory variables and error
terms of competing models are introduced. These asymmetry
properties can be used to probe the causal precedence of
mediator-outcome relations. Significance tests for hypotheses
concerning the causal effects of mediator-outcome relations
are proposed, and results of a simulation study are presented
that evaluates the performance of the tests when selecting the
“true” mediation model. A data example is given for illustra-
tive purposes. The article closes with a discussion of possible
extensions and empirical requirements of the DDA
methodology.

The Direction Dependence Principle

In this section, we focus on the simple linear mediation model,
i.e., x denotes the randomized treatment, m is the tentative
mediator, and y is the tentative outcome. Note that the present-
ed approach can easily be extended to multiple mediation
models (further details are provided in the Discussion
section). Mediator and outcome are restricted to be continu-
ous. However, considering that many studies in prevention
science make use of composite scores, the presented approach
is still applicable to a broad range of research areas. Assuming
that mediator and outcome are measured on the same occa-
sion, Fig. 1 conceptually summarizes at least three possible
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explanations of a mediation effect. For all three explanatory
models, we assume that the treatment x affects both, the me-
diator m and the outcome y, describing a partial mediation
process (note that DDA is also applicable in case of full me-
diation processes). The first model assumes that the mediator
causes the outcome (i.e., m→ y; Fig. 1a). The second model
assumes a reversed causal flow, that is, the outcome causes the
mediator (y→ m; Fig. 1b). The third model postulates that an
unknown common variable u (a confounder) exists that in-
duces a spurious mediator-outcome association (m← u→ y;
Fig. 1c). Conventional linear regression-based methods and
standard linear structural equation models (SEMs) cannot be
used to decide which model best represents the underlying
data-generating mechanism. The reason for this is that both
methods use data variation up to only second order moments,
i.e., variances and covariances. By definition, the covariance
is symmetric, i.e., cov(m, y) = cov(y,m), and, thus, no empir-
ical information is available that would help to distinguish
cause and effect (von Eye and DeShon 2012). In SEM, this
symmetry property is reflected by so-called Markov equiva-
lence classes, i.e., classes of models in which each model has

the exact same support by the data in terms of model fit (Stelzl
1986). In contrast, DDA considers data information beyond
second order moments (skewness and kurtosis) because asym-
metry properties of the Pearson correlation and the related
linear model exist under non-normality. These asymmetry
properties describe data situations in which variables can no
longer be exchanged in their roles as explanatory and outcome
variables without leading to systematic violations of model
assumptions. In other words, by making use of non-
normality of variables, it is possible to identify the model that
best approximates the underlying causal mechanism. In the
following paragraphs, we define the three mediation models
considered in Fig. 1 and introduce two asymmetry properties
of the mediator-outcome path under randomized treatment.
We also describe significance procedures to test hypotheses
compatible with directional dependence. To simplify presen-
tation, we assume that m→ y is the “true” confounder-free
model and y→ m represents the directionally mis-specified
model. To simplify notation, we, first, focus on direction de-
pendence in bivariate mediator-outcome relations and ignore
the randomized treatment effect. Approaches to adjust for
treatment effects will be taken up later.

Competing Mediation Models

Throughout this article, we assume that the data-generating
mechanism can validly be described by the linear model.
Thus, under randomized treatment x and a causal mechanism
of the form m→ y, the mediation model can be written as
(without loss of generality the intercepts are fixed at zero
and continuous variables have zero means and unit variances)

m ¼ bmxxþ em xð Þ ð1Þ
y ¼ byxxþ bymmþ ey xmð Þ ð2Þ

where byx, and byx + bmxbym represent the direct and total ef-
fects of x on y and bmxbym represents the indirect effect of x on
y via m (in general, unless otherwise stated, we refer to pa-
rameters as population values). Parameter estimates can be
obtained using ordinary least squares (OLS) or, in SEMs,
maximum likelihood estimation (DDA can be applied under
either estimation scheme). The error terms em(x) and ey(xm) are
assumed to be independent of the predictors and of each other,
i.e., unconfounded variable relations are assumed (here
cov(em(x), ey(mx)) = 0 is equivalent to the sequential ignorability
assumption in the causal mediation framework; Imai et al.
2010). While the predictor x is assumed to be independent
from the error terms due to randomization, independencemust
be presumed for the mediator. Further, we assume that the
error terms are asymmetrically distributed (i.e., non-zero
skewnesses), which deviates from the classical mediation
model where error normality is usually part of the model
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Fig. 1 Conceptual diagrams of three possible explanations of a
randomized treatment (x) and a significant mediator-outcome relation.
Treatment status is determined at study baseline, m and y are assumed
to be measured at the same follow-up measurement occasion. Rectangles
represent observed variables, circles represent unobserved variables.
Model (a): m causes y, Model (b): y causes m, and Model (c): an
unconsidered confounder u is responsible for the m-y relation



definition. It is important to note that the normality assump-
tion is not needed to ensure that OLS point estimates are
unbiased, consistent, and (among all linear unbiased estima-
tors) most efficient (Fox 2008). However, statistical inference
on regression parameters might be in jeopardy under non-
normal errors. Although significance tests are quite robust
for large samples, bootstrap techniques can be used as a rem-
edy (cf. Davison and Hinkley 1997). Because em(x) in Eq. (1)
is skewed, the continuous mediator (m) will also be skewed
and quantified to have non-zero skewness where skewness is
defined as γm ¼ E m − E m½ �ð Þ½ 3�=σ3

m (the expected value op-
erator E is shorthand for “average over all subjects”).

The second model that can be entertained is the one that
treats y as the mediator andm as the outcome (Fig. 1b). If y→
m instead of m→ y represents the underlying flow of causa-
tion, the mediation model changes to

y ¼ byxxþ ey xð Þ ð3Þ
m ¼ bmxxþ bmyyþ em xyð Þ: ð4Þ

Again, x represents the experimentally controlled treatment
with bmx, and bmx + byxbmy being the direct and total effects of
x on m and byxbmy being the indirect effect of x on m via y.
Again, the error terms ey(x) and em(xy) are assumed to be
skewed and independent of model-specific predictors and of
each other.

Finally, as a third possible explanation, an unconsidered
confounder u can induce a spurious mediator-outcome asso-
ciation (Fig. 1c; note that the present approach can also detect
partial confounding). In this case, the model can be written as
follows:

m ¼ bmxxþ bmuuþ em xuð Þ ð5Þ
y ¼ byxxþ byuuþ ey xuð Þ: ð6Þ

Here, the confounder u and/or the two error terms are as-
sumed to be skewed and errors are assumed to be independent
of model-specific predictors and of each other. The parameters
bmu and byu quantify the magnitude of the confounding effect.

Asymmetric Properties of Higher-Order
Correlations

The first direction dependence component considered here
makes use of asymmetry properties of higher-order correla-
tions (HOCs) of variables

cor m; yð Þij ¼
cov m; yð Þij

σi
mσ

j
y

ð7Þ

with cov m; yð Þij ¼ 1=n∑ m − mð Þi y − yð Þ j being the higher-

order covariance sample estimate and σi
m and σ j

y being the

ith and jth power of the standard deviations of m and y.
When using the power values i = j = {1, 2}, HOCs of m and
y can be expressed as a function of the Pearson correlation of
m and y (ρym) and the skewness of the “true” mediator.
Specifically, when m→ y is the “true” model, one obtains
cor m; yð Þ12 ¼ ρ2ymγm and cor(m, y)21 = ρymγm, which implies

that

ρym ¼ cor m; yð Þ12
cor m; yð Þ21

ð8Þ

(Dodge and Rousson 2000). Because the correlation coeffi-
cient is bounded by the interval – 1 ≤ ρym ≤ 1, it follows that
(excluding a perfect linear correlation of ∣ρmy∣ = 1 due to
practical irrelevance)

cor m; yð Þ212 < cor m; yð Þ221 ð9Þ

holds whenever m is the “true” mediator and y is the “true”
outcome. Similarly, one observes

cor m; yð Þ212 > cor m; yð Þ221 ð10Þ

under the causally reversed model where y is the “true”
mediator and m is the “true” outcome. A bootstrap confi-
dence interval (CI) for the difference in HOC estimates,
d = cor(m, y)221 − cor(m, y)212, can be constructed for statisti-
cal inference. Here, bootstrap samples of size n are drawn with
replacement from the original sample and d is computed for
each new sample. This process is repeated B times and those d
values that are associated with theα/2 × 100th and (1 –α/2) ×
100th percentiles reflect the (1 – α) × 100 CI limits for the
desired significance level α. If d is significantly larger than
zero, then m→ y is more likely to approximate the data-
generating mechanism. Conversely, if d is significantly small-
er than zero then y→ m is more likely to hold.

If a confounder induces the mediator-outcome association,
HOCs of m and y are functions of (1) the skewness of the
confounder and (2) the pairwise correlations of the confounder
with m and y. Specifically, under the model m← u→ y, one
obtains cor m; yð Þ12 ¼ ρmuρ

2
yuγu and cor m; yð Þ21 ¼ ρ2muρyuγu

(with γu ¼ E u − E u½ �ð Þ½ 3�=σ3
u being the skewness of the con-

founder) which leads to the ratio

cor m; yð Þ12
cor m; yð Þ21

¼ ρyu
ρmu

: ð11Þ

In other words, the outcome of the HOC test depends on
the magnitude of the ratio of two correlations ρyu and ρmu.
When ρ2yu is smaller than ρ2mu, it follows that d > 0 and one

is more likely to select the modelm→ y. In contrast, when ρ2yu
is larger than ρ2mu, then d < 0, which points at the reversed
model y→m. Thus, the HOC test assumes unconfoundedness
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of the “true”model and should be applied with caution when-
ever confounders are likely to be present. To empirically eval-
uate the absence/presence of influential confounders, the sec-
ond DDA component (tests based on independence proper-
ties) can be used.

Asymmetric Independence Properties

In linear regression modeling, “independence” refers to the
assumption that the magnitude of the error made when
predicting the outcome is unrelated to model predictors.
Again, let the model in Fig. 1a be the “true” model. Due to
randomization, x will be independent of em(x) in Eq. (1) and
ey(xm) in Eq. (2). Further, in the absence of confounders, inde-
pendence will also hold for m and ey(xm). In contrast, non-
independence of m and ey(xm) will hold when either a con-
founder is present (cf. Fig. 1c) or the mediator-outcome path
is directionally mis-specified (cf. Fig. 1b). Consider the case in
which one erroneously assumes a directional effect from y to
m, i.e., the mis-specified bivariate model takes the form m =
bmyy + em(y). When inserting the correctly specified bivariate
model y = bymm + ey(m), the error term of the mis-specified
model can be written as (Shimizu et al. 2011; Wiedermann
and von Eye 2015b)

em yð Þ ¼ 1 − ρ2my
� �

m − bmyey mð Þ ð12Þ

In other words, both, y and em(y), are linear functions of the
“true” mediator m and the “true” error term ey(m) from which
follows that y and em(y) will be non-independent. Further, for
an unconsidered confounder, the independence assumption
will be violated in both directionally competing models.
This can be seen by expressing the error terms of the two
competing bivariate models involving m and y as a function
of the true mechanism y = byuu + ey(u) and m = bmuu + em(u)
which gives

ey mð Þ ¼ byu − bymbmu
� �

u − bymem uð Þ þ ey uð Þ
em yð Þ ¼ bmu − bmybyu

� �
u − bmyey uð Þ þ em uð Þ:

ð13Þ

In other words, m and the error term ey(m) share u and em(u)
as common influences and y and em(y) have the common in-
fluences u and ey(u). While these two examples serve as intu-
itive explanations, a rigorous proof of non-independence in
directionally mis-specified models of non-normal variables
is given in Shimizu et al. (2011) and Wiedermann and von
Eye (2015b).

Because OLS residuals and model predictors will always
be uncorrelated by construction, significance tests beyond
first-order correlations are needed to test independence.
Independence tests for (linearly uncorrelated) variables have

extensively been discussed in signal processing (Hyvärinen
et al. 2001). Here, we focus on so-called non-linear correlation
(NLC) tests. In essence, NLC tests make use of the fact that
stochastic independence is defined as zero correlation of any
continuous unbounded functions of two variables x1 and x2,
formally, cov(g(x1), f( x2)) = 0 for any functions f and g. These
tests rely on the Pearson correlation test applied to non-
linearly transformed variables and are, thus, easy to use. In
the present context, squaring residuals is of particular value,
because, in the mis-specified model y→m, non-linear covari-
ances then contain information of the skewness of the “true”
mediator and the “true” error term (Wiedermann et al. 2017),

cov y; e2m yð Þ
� �

¼ ρmy 1 − ρ2my
� �2

γm þ ρ2myσ
3
ey mð Þγey mð Þ : ð14Þ

Thus, the non-linear correlation of y and e2m yð Þ increases
with the skewness of m and ey(m). Because independence is

assumed in the “true” model m→ y, i.e., cov m; e2y mð Þ
� �

= 0,

the two competing models are asymmetric in their indepen-

dence properties. For example, if cor y; e2m yð Þ
� �

≠ 0 and

cor m; e2y mð Þ
� �

= 0 then m→ y is more likely to approximate

the underlying mechanism. Conversely, if cor y; e2m yð Þ
� �

= 0

and cor m; e2y mð Þ
� �

≠ 0 then y→ m is more likely to hold.

Significance testing can be carried out using Pearson’s corre-
lation test.

Model Selection Guidelines and Adjusting
for Treatment Status

So far, we have treated the mediator-outcome association as a
bivariate linear model ignoring the treatment effect. To adjust
for the treatment effect, we make use of the fact that any
multiple linear regression model can be expressed as a partial
regression model based on residualized variables.
Specifically, DDA can be performed on treatment-
residualized variants of the mediator and the outcome to either
select m→ y, y→ m, or m← u→ y. First, one estimates the
two auxiliary regression models where y and m are regressed
on the treatment x. The extracted residuals of these auxiliary
models (i.e., ey(x) for the model x→ y and em(x) for the model
x→ m) represent “purified” measures of y and m adjusted for
the treatment effect. Thus, the two adjusted models reflecting
m→ y and y→ m, can also be estimated via

ey xð Þ ¼ aymem xð Þ þ θy mð Þ ð15Þ

em xð Þ ¼ amyey xð Þ þ θm yð Þ ð16Þ
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where regression coefficients and error terms are equivalent to
those of their multiple variable counterparts in Eq. (2) and (4),
i.e., bym = aym, bmy = amy, ey(xm) = θy(m), and em(xy) = θm(y).
Performing DDA tests using the models in Eq. (15)
and (16) enables one to evaluate the causal direction
of the mediator-outcome relation while adjusting for
the treatment effect.

The following decision rules can be used to probe the caus-
al precedence of the tentative mediator and tentative outcome
(now replacing population parameters with sample estimates):

& m is more likely to be the mediator and y is more
l ike ly to be the outcome, i . e . , m → y, when

(1) d ¼ cor êm xð Þ; êy xð Þ
� �2

21
− cor êm xð Þ; êy xð Þ

� �2
12
is signif-

icantly larger than zero and (2) non-linear correlations

of êm xð Þ and θ̂y mð Þ do not significantly deviate from zero

and, at the same time, non-linear correlations of êy xð Þ
and θ̂m yð Þ do significantly deviate from zero (êm xð Þ and
êy xð Þ refer to the estimated residuals of the two auxiliary

regression models described above, and θ̂y mð Þ and θ̂m yð Þ
are the estimated residuals of the models (15) and (16)).

& y is more likely to be the mediator and m is more
l ike ly to be the outcome, i .e . , y → m , when

(1) d ¼ cor êm xð Þ; êy xð Þ
� �2

21
− cor êm xð Þ; êy xð Þ

� �2
12
is signif-

icantly smaller than zero and, (2) non-linear correla-

tions of êm xð Þ and θ̂y mð Þ do significantly deviate from

zero and, at the same time, non-linear correlations of

êy xð Þ and θ̂m yð Þ do not significantly deviate from zero.

& A confounder u is most likely to be present, when non-
linear correlation tests do not allow a clear-cut decision,
i.e., when tests of both models are significant/non-signif-
icant. The latter emerges from the fact that confounders
can decrease the magnitude of non-normality of variables
to a degree that renders non-independence no longer de-
tectable. Further, in this case, the difference measure d
depends on the magnitude of the correlations of m and y
with the confounder u (see above).

Performance of the Model Selection Strategy

In this section, we present the results of a Monte-Carlo simu-
lation study that assessed the performance of model selection
using the proposed decision guidelines. Data were simulated
according to the true model given in Eq. (1) and (2), i.e., x is a
binary treatment variable, m is a continuous mediator, and y is
the continuous outcome. We restricted the simulation to the
case of equal group sizes. Model intercepts were fixed at zero
and regression coefficients were selected to account for small

(2% of the variance of the dependent variable), medium (13%
of the variance), and large effects (26% of the variance; Cohen
1988). The error terms of the mediation model, em(x) and
ey(xm), were generated to exhibit zero means, unit variances,
and pre-specified skewness values of 0, 1, and 2 (which is in
line with skewness values observed in practice; e.g., Cain et al.
2017). In the zero-skewness case, errors were randomly drawn
from the standard normal distribution. Because no directional
decisions are possible in the normal case, these scenarios refer
to the Type I error behavior of the model selection procedure.
Non-zero skewness values were obtained by sampling from
the gamma distribution and were used to quantify the empir-
ical power of the tests to identify the “true” model. Sample
sizes were n = 200, 500, and 1000. The simulation factors
were fully crossed and 1000 samples were generated for each
of the 3 (effect size of bmx) × 3 (effect size of byx) × 3 (effect
size of bym) × 3 (skewness of em(x)) × 3 (skewness of ey(xm)) × 3
(sample size) = 729 simulation conditions.

For each variable triple, x, m, and y, we, first, regressed m
and y on x and extracted the corresponding residuals, êm xð Þ and
êy xð Þ, reflecting the “treatment-purified” mediator and out-

come variables. These variables were subsequently analyzed
using the two simple linear regression models given in Eq.
(15) and (16), that is, reflecting m→ y and y→ m. One thou-
sand bootstrap samples were used for the HOC test. To eval-
uate the independence assumption, NLC tests (using the
square function for residuals) were separately performed for
both models using a significance level of 5%. Model selection
was based on the decision guidelines given above.

Results

Table 1 gives the percentages of correctly identifying the caus-
al model m→ y in terms of main effects of the simulation
conditions (i.e., results for one condition are aggregated across
all levels of the remaining conditions). The first four columns
show the model selection results for the HOC test and the
combined decisions of separate NLC tests in the normal case
and when error terms are skewed (see columns labeled with
“non-normal case”). Percentages of selecting the “true”model
based on the HOC test are close to zero. That is, the procedure
is overly conservative in Type I error decisions (note that con-
servative decisions lead to reduced power which does not in-
validate HOC test results per se). In contrast, Type I error rates
of the combinedNLC tests are close to the nominal significance
level of 5% across all simulation conditions. Overall, in the
normal case, no distinct decision can be made as expected.

Next, we focus on the non-normal case. As noted above,
asymmetry of the mediator is of central importance for both
DDA tests. Thus, we focus on cases in which γem xð Þ > 0.

Percentages of identifying the “true” model increase with the
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sample size and the magnitude of the causal effect bym. The
power of the NLC procedure increases with the non-normality
of both error terms (em(x) and ey(xm)). In contrast, the power of
the HOC test increases with the non-normality of em(x) and
decreases with the non-normality of ey(xm). Because all tests
were adjusted for treatment effects, the magnitudes of the
effects involving x (byx and bmx) had virtually no impact on
the power of the tests. In general, the HOC test was less pow-
erful than separately evaluating error independence using
NLC tests. The last four columns in Table 1 summarize com-
bined decisions of both approaches for γem xð Þ > 0. Percentages

in which both approaches correctly identifym→ y were close
to the observed power curves of the HOC test. Most impor-
tant, the rates of inconclusive decisions and the rates of erro-
neously selecting the reverse model y→ m are virtually zero.
Overall, both procedures show adequate power properties and
are able to identify the correct mediation model. Following
Cohen’s (1988) 80% power criterion, we arrive at the

following conclusions with respect to the most influential fac-
tors (bym, γem xð Þ , and n): For large bym effects and moderately

skewed errors (γem xð Þ = 1), sample sizes n ≥ 500 are needed to
achieve acceptable power (for γem xð Þ = 2, even small sample

sizes such as n = 200 are sufficient). For medium bym effects
and moderately skewed errors large samples (n = 1000) are
needed, while small sample sizes are sufficient for highly
skewed errors. Finally, for small bym effects, sample sizes be-
yond n = 1000 would be required even for highly skewed
errors (for this scenario, we observe a power of 68.4%).

Data Example: The Impact of Acupuncture on Quality
of Life and Chronic Pain

We now illustrate HOC- and NLC-based model selection
using a real-world data example with the intention of empha-
sizing different possible outcomes that can be obtained from

Table 1 Percentages of selecting m→ y for HOC and NLC tests as a
function of simulation factors when error terms are normally distributed
(normal case) and when em(x) is skewed (non-normal case). Values in

parentheses give the percentages of selecting the mis-specified model
y→m. The last four columns give percentages of combined decisions
of the two tests

Normal case
(γey xmð Þ = γem xð Þ = 0)

Non-normal case
(γem xð Þ > 0)

Combined decisions
(Non-normal case: γem xð Þ > 0)

Conditions HOC NLC HOC NLC HOC: m→ y HOC: m→ y HOC: y→m HOC: y→m
NLC: m→ y NLC: y→m NLC: m→ y NLC: y→m

byx
Small 0.4 (0.3) 4.3 (4.0) 65.8 (0.1) 79.9 (0.8) 63.3 0.0 0.0 0.1

Medium 0.4 (0.3) 4.0 (4.0) 65.7 (0.2) 79.9 (0.8) 63.3 0.0 0.0 0.1

Large 0.3 (0.3) 4.0 (3.9) 65.7 (0.2) 79.9 (0.8) 63.3 0.0 0.0 0.1

bym
Small 0.3 (0.4) 4.7 (4.4) 25.5 (0.4) 52.1 (2.2) 24.4 0.0 0.0 0.3

Medium 0.3 (0.4) 3.7 (3.9) 80.9 (0.0) 93.0 (0.2) 78.2 0.0 0.0 0.0

Large 0.4 (0.3) 3.8 (3.5) 90.8 (0.0) 94.7 (0.1) 87.4 0.0 0.0 0.0

bmx
Small 0.3 (0.3) 4.1 (4.0) 65.7 (0.2) 79.9 (0.8) 63.3 0.0 0.0 0.1

Medium 0.3 (0.3) 4.0 (4.0) 65.8 (0.2) 80.0 (0.8) 63.4 0.0 0.0 0.1

Large 0.3 (0.4) 4.1 (3.8) 65.7 (0.1) 79.8 (0.8) 63.2 0.0 0.0 0.1

n

200 0.4 (0.4) 4.2 (3.9) 47.6 (0.3) 69.1 (1.4) 45.9 0.0 0.0 0.1

500 0.3 (0.3) 4.0 (3.9) 68.9 (0.1) 80.9 (0.8) 66.3 0.0 0.0 0.1

1000 0.3 (0.3) 4.1 (4.0) 80.9 (0.0) 89.7 (0.3) 77.7 0.0 0.0 0.0

γey xmð Þ

0 0.3 (0.3) 4.1 (3.9) 72.9 (0.0) 77.0 (1.1) 68.8 0.0 0.0 0.0

1 – – 67.3 (0.1) 80.4 (0.8) 64.8 0.0 0.0 0.1

2 – – 57.8 (0.3) 82.3 (0.6) 56.3 0.0 0.0 0.2

γem xð Þ

0 0.3 (0.3) 4.1 (3.9) – – – – – –

1 – – 54.1 (0.2) 76.5 (1.1) 52.4 0.0 0.0 0.1

2 – – 77.4 (0.1) 83.3 (0.6) 74.2 0.0 0.0 0.0
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DDA (i.e., situations in which one causal model is clearly
preferred vs. situation in which confounders are likely to be
present). The data come from a randomized controlled trial
that evaluates the effectiveness of acupuncture to treat chronic
headache in primary care patients (Vickers et al. 2004; Vickers
2006). In total, 401 patients (205 with acupuncture treatment
and 196 control patients) between 18 and 65 years of age
(M = 45.5, SD = 11.1) completed a daily diary on health-
related quality of life (HRQoL; cf. de Wit and Hajos 2013)
and headache severity for 4 weeks at baseline, 3 months, and
1 year after randomization. HRQoL was measured using the
SF-36 health status questionnaire (Stewart andWare Jr. 1992),
headache severity was measured four times a day and scaled
using composite scores of a six-point Likert scale (0 = no
headache, …, 5 = intense, incapacitating headache).

Vickers et al. (2004) reported that acupuncture treatment
significantly improved headache and HRQoL (specifically for
the subscales energy/fatigue and health change). Within the
various factors affecting HRQoL, perceived pain is a known
mediator (Azizabadi Farahani and Assari 2010). We use
follow-up data 1 year after randomization and ask whether
the relation of acupuncture, headache severity, and HRQoL
can be represented by a mediational mechanism. Specifically,
we test the hypothesis that the effect of acupuncture on
HRQoL is mediated by headache severity. However, because
experimental control was not applicable for headache severity,
the reverse causal flow (HRQoL→ headache) or the presence
of unconsidered confounders cannot be ruled out. Thus, we
use DDA tests to empirically confirm a directional relation of
the form headache→HRQoL. We use two headache mea-
sures (composite scores of headache severity and number of
days of headache in 28 days) and two different HRQoL mea-
sures (subscales energy/fatigue and health change) from 297
patients who provided valid data 1 year after randomization.
Table 2 summarizes descriptive statistics for the considered
headache and HRQoL measures. Because outliers can ad-
versely affect the validity of DDA, regression diagnostics
were applied in a pre-evaluation phase to detect potentially
conspicuous observations (Wiedermann and von Eye
2015b). Based on Cook’s distances, one observation was clas-
sified as conspicuous. This observation was omitted from

subsequent analyses. In total, four different mediation models
were estimated. In all models we adjusted for patients’ age and
baseline headache and HRQoL scores.

Results

Based on bias-corrected accelerated (BCa) nonparametric
bootstrapping CIs (with 2000 resamples), we found signifi-
cant indirect effects for all four mediation models (cf.
Table 3) confirming that acupuncture lowers headache sever-
ity which, in turn, increases HRQoL. In addition, we obtained
significant direct effects for all four models (results not
shown) suggesting a partial mediation process of acupuncture,
headache, and HRQoL. Next, we evaluated the directionality
assumption of the mediator-outcome path inherent to all me-
diation models. Headache and HRQoL measures significantly
deviated from normality (all Shapiro-Wilk p’s < 0.001; skew-
ness estimates ranged from − 0.26 to 1.40 at baseline and from
− 0.37 to 1.75 for 1-year follow-up measures; excess-kurtosis
estimates ranged from − 0.85 to 1.77 at baseline and from
− 0.54 to 3.49 at the 1-year follow-up; cf. Table 2) and, thus,
fulfill distributional requirements of DDA. Two thousand
bootstrap samples were used to approximate 95% CI limits
of the HOC test. The independence assumption was evaluated
using NLC tests of squared residuals and untransformed pre-
dictors. Results are summarized in Table 3. In general, no
distinct decisions are possible based on HOC tests which is
line with the observation that rather large sample sizes are
needed to achieve acceptable statistical power. Thus, we base
direction dependence decisions on independence properties of
competing models. NLC tests retain the null hypothesis of
independence for all models that posit headache→HRQoL
and, at the same time, reject independence in three out of four
reversed models (HRQoL→ headache; all ps < 0.05). When
focusing on headache frequency and perceived health change
independence is retained in both models. Making use of the
decision guidelines for NLC tests, we have found empirical
evidence that headache severity is more likely to causally
affect HRQoL than the other way around in three out of four
mediation models.

Table 2 Mean (M), standard
deviation (SD), skewness (γ), and
excess-kurtosis (κ) for headache
and HRQoL measures at baseline
and 1-year follow-up

Baseline 1-year follow-up

M SD γ κ M SD γ κ

Headache score 25.45 15.49 1.40 1.77 18.92 15.47 1.75 3.49

Headache frequency 15.81 6.67 0.42 − 0.85 12.43 7.51 0.74 − 0.42
Health change 52.97 16.29 0.76 1.41 59.41 19.63 0.24 0.12

Energy/fatigue 49.87 20.18 −0.26 −0.62 54.77 20.72 − 0.37 − 0.54
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Robustness of Direction Dependence Results

To complete the analysis, a bootstrapping approach was
used to evaluate the robustness of DDA results. For unsta-
ble DDA solutions (e.g., due to suboptimal sampling or
outliers), one would expect that causal conclusions vary
across resamples. The overall percentages how often
DDA tests provide evidence for the target model, the caus-
ally reversed model, or indicate the presence of common
causes can serve as post hoc measures of robustness. For
each mediation model, 1000 resamples were generated
(i.e., resampling subjects from the original dataset with
replacement). For each resample, HOC and NLC tests were
performed while adjusting for treatment status, age, and
baseline headache and HRQoL scores. Detailed results
are given in Table S1 in the online supplement of the arti-
cle. Overall, the mediation model that involved energy/
fatigue and headache severity scores shows the highest
stability in DDA decisions. Here, in about 74% of the
resamples, the model headache→ HRQoL is preferred
over the other two possible models (the reversed model
was preferred in only 0.5%, and a confounded mediation
model was suggested in about 26% of the resamples). In
contrast, focusing on perceived health changes and head-
ache frequency, a confounded mediation model is sug-
gested in about 67% of the resamples which is in line with
the results in Table 3. Overall, we conclude that the postu-
lated mediation effect of acupuncture on HRQoL through
headache can be interpreted as causal when focusing on
energy/fatigue levels of patients. However, when focusing
on perceived health change, unobserved confounders are
likely to bias the mediator-outcome relation and estimated
mediation effects should not be endowed with causal
meaning.

Discussion

The present article introduced principles of direction de-
pendence to prevention scientists and demonstrated that
two tests compatible with DDA can be used to empirically
evaluate the conceptual theory of an intervention.
Simulations showed that DDA has adequate power to de-
tect the true data-generating mechanism. Because data
were simulated according to the model m→ y, either the
HOC or the NLC test can separately be used. However,
because the “true” model is not known a priori when
real-world data are analyzed, we recommend using both
tests. While NLC tests are essential to test confoundedness,
HOC tests evaluate distributional properties of variables
reflecting directional assumptions. Non-normality of errors
is the key element for model identification (DDA tests can
be applied for left- or right-skewed distributions).Ta
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Estimated model residuals are of central importance for
inference concerning directionally competing models.
Because error non-normality does not affect the validity
of OLS point estimates which are, in turn, used to estimate
model residuals, direction dependence tests based on resid-
uals (such as the NLC test) will give unbiased results.
Bootstrapping can be used to guarantee valid inference
on linear model parameters. Further, to keep matters sim-
ple, we focused on a single level simple mediation model
with no covariates. However, the presented approach can
easily be extended in all three domains.

Covariates (e.g., background or baseline measures) are
usually included in regression models to increase precision
of estimates and statistical power. In the HOC test, addi-
tional covariates can be considered in the same way as
when adjusting for treatment status. That is, covariates
with causes outside the mediation model (in the sense of
an exogenous variable) and known to affect the mediator
and/or the outcome can be entered in the two auxiliary
regression models that regress y and m on the treatment
x. The residuals of these extended auxiliary models then
represent “purified” mediator and outcome measures that
are adjusted for treatment and covariate effects. While a
similar strategy can be applied for non-linear correlation
tests in case of categorical covariates (e.g., gender, ethnic-
ity, etc.), covariates that are continuous in nature (e.g.,
baseline scores, age, etc.) can directly be entered in the
regression equations of the mediation model.

Prevention researchers are often confronted with complex
nested data structures (e.g., patients are nested in health insti-
tutions). While extensions of DDA to multilevel models are
currently not available, it is important to realize that several
research questions can already be answered using DDA. The
reason for this is that several single-level alternatives to mul-
tilevel models exist when researchers are primarily interested
in subject-level (level 1) hypotheses (Huang 2016). In this
case, contextual (level 2) clusters are conceptualized as noise
and fixed effects models (i.e., representing J clusters by J—1
dummy variables) or running analyses on demeaned data (i.e.,
level 2 mean centering dependent and independent variables)
can be used to account for clustering effects. From a DDA
perspective, fixed effects can again be incorporated using the
two-stage auxiliary regression approach described above.

While the simple mediation model given in Eqs. (1) and (2)
remains the most frequently estimated model in observational
and experimental research, intervention studies in prevention
science are often concerned with multiple mediational mech-
anisms. The presented approach can straightforwardly be ap-
plied in the presence of multiple mediators. In case of k me-
diators, the model in (1) and (2) extends tomi ¼ bmixxþ emi xð Þ
and y ¼ byxxþ ∑k

i¼1bymimi þ ey xmð Þ for all i = 1,…, k media-

tors (Hayes 2013). While the treatment effect is again

partialled out of all putative mediators and the putative out-
come, DDA can be used to evaluate the direction of effect by
separately reversing those mediator-outcome paths for which
γemi xð Þ≠ 0. One can proceed in a similar fashion for multiple

tentative outcomes.
The DDA tests proposed in this article have several limita-

tions that need to be addressed in future research. First, non-
normality is the key element of DDA.While a high prevalence
of non-normal variables has repeatedly been reported in em-
pirical data (e.g., Micceri 1989; Cain et al. 2017), it is impor-
tant to realize that not every form of non-normality makes
observed variables eligible for the proposed methods. In gen-
eral, DDA assumes that non-normality reflects an inherent
characteristic of variables under study which implies that
non-normality as a result of poor item selection, scaling,
ceiling/floor effects, or outliers can lead to biased direction
dependence results. Thus, the usage of high-quality measure-
ment instruments and a careful pre-evaluation of variable
characteristics are central steps towards meaningful causal
statements. In addition, stability of DDA results can be eval-
uated using nonparametric bootstrapping.

Second, while NLC tests are easy to use, these tests are not
rigorous in detecting any form of independence. Because the
choice of non-linear functions is almost arbitrary (we focused
on the square function due to its relation to the skewness of
“true” predictors) and testing all existing non-linear functions
is impossible, the current approach introduces additional Type
II errors beyond cases of small sample sizes. In other words,
even if a zero correlation is observed for a specific non-linear
function, one cannot rule out that other functions exist for
which non-zero correlations would be obtained. While our
simulation study suggests that simple non-linear tests have
adequate power (and even outperform HOC tests), more so-
phisticated independence tests are needed to overcome addi-
tional Type II errors. Recently, two promising approaches
have been proposed, the Hilbert-Schmidt Independence
Criterion (Gretton et al. 2008) and the distance correlation
(Székely et al. 2007). Both methods can be shown to detect
any form of dependence in the large sample limit. Comparing
the performance of various independencemeasures in the con-
text of DDA constitutes future research material. Similarly, in
the present study, direction dependence tests were based on
raw residuals (i.e., the discrepancy of observed and fitted out-
come values). Alternatively, standardized or studentized resid-
uals may be employed which have the advantage that leverage
of data points is considered as well. While differences be-
tween raw, standardized, and studentized residuals tend to be
small for large sample sizes, making use of standardized or
studentized residuals may be useful in cases of small sample
sizes. Comparing the performance of different residual esti-
mates is also material for future research.
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Third, extensions of DDAwhen interaction effects are pres-
ent are needed to allow for testing the direction of effect while
accounting for a third variable that modifies the mediator-
outcome relation. Similar extensions would enable researchers
to apply DDA tests in polynomial regression models (i.e.,
models that consider higher-order terms, cf. Aiken and West
1991) when non-linear variable relations exist. Here, again, a
two-step approach similar to the one used to account for treat-
ment and covariate effects may be used. That is, first,
regressing mediator and outcome on products of variables
(in case of interaction effects) or higher powers of variables
(in case of non-linear relations) and, second, performing DDA
on the extracted residuals may allow directional statements
with respect to the linear components of variable relations.
Evaluating the adequacy of this approach constitutes an im-
portant future research endeavor.

Overall, DDA is a powerful tool that can help to uncover
the structure of causal effect mechanisms, in particular, in
situations in which multiple theories exist of the mechanism
through which an intervention affects an outcome. To make
the proposed DDA tests accessible to prevention researchers,
we provide software implementations of HOC and NLC tests
in SPSS (macros and introductory material can be
downloaded from http://www.ddaproject.com).
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