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Abstract Integrative Data Analysis (IDA) encompasses a col-
lection of methods for data synthesis that pools participant-level
data across multiple studies. Compared with single-study analy-
ses, IDA provides larger sample sizes, better representation of
participant characteristics, and often increased statistical power.
Many of the methods currently available for IDA have focused
on examining developmental changes using longitudinal obser-
vational studies employing different measures across time and
study. However, IDA can also be useful in synthesizing across
multiple randomized clinical trials to improve our understanding

of the comprehensive effectiveness of interventions, as well as
mediators and moderators of those effects. The pooling of data
from randomized clinical trials presents a number of methodo-
logical challenges, and we discuss ways to examine potential
threats to internal and external validity. Using as an illustration
a synthesis of 19 randomized clinical trials on the prevention of
adolescent depression, we articulate IDA methods that can be
used to minimize threats to internal validity, including (1) hetero-
geneity in the outcome measures across trials, (2) heterogeneity
in the follow-up assessments across trials, (3) heterogeneity in the
sample characteristics across trials, (4) heterogeneity in the com-
parison conditions across trials, and (5) heterogeneity in the im-
pact trajectories.We also demonstrate a technique forminimizing
threats to external validity in synthesis analysis that may result
from non-availability of some trial datasets. The proposed
methods rely heavily on latent variable modeling extensions of
the latent growth curve model, as well as missing data proce-
dures. The goal is to provide strategies for researchers consider-
ing IDA.

Keywords Integrative data analysis . Synthesis
methodology . Participant-level meta-analysis .

Harmonization

Introduction

Integrative Data Analysis (IDA; Curran and Hussong
2009) is a framework for statistical analysis on a single
dataset resulting from the pooling of individual participant
data across multiple studies. Unlike meta-analysis, which
combines parameter estimates from previously completed
analyses on the separate studies, IDA estimates new pa-
rameters using the raw data combined across multiple
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studies. In this paper, we discuss analytic challenges and
solutions to using IDA to examine intervention effects
across multiple trials. Despite its challenges, IDA enables
researchers to examine intervention response across nu-
merous samples incorporating a broader range of risk and
protective factors. This pooling of individual-level data
across multiple trials also has a distinct advantage of en-
hancing statistical power allowing for more complex sta-
tistical models (Brown et al. 2013; Dagne et al. 2016).

IDA presents a number of methodological challenges for
data preparation and analytic modeling. The first of these is
measure harmonization. Even in a study combining trials
targeting the same outcome, say depressive symptoms, mea-
surement of outcomes, as well as baseline covariates may
differ across trials. A second challenge is heterogeneity in
the populations represented across trials. Trials generally dif-
fer in population characteristics of race/ethnicity, geographic
region, community socioeconomic status, as well as commu-
nity cultures and political histories. Prevention trials often
differ dramatically in the level of baseline risk, with some
trials being universal while others are selective or indicated.
A third area of challenge includes heterogeneity in study char-
acteristics. These differences include characteristics unique to
the protocol such as the timing of assessments or the mode and
target of delivery. This also includes the type of intervention
and the number of intervention conditions in the trial.

Some of these challenges have been addressed in the liter-
ature. For instance, Item Response Theory (IRT) has been put
forth as one method for handling measure harmonization. The
method relies on bridging items that are common across dif-
ferent measures and determines dimensionality of the under-
lying construct, tests for differential item functioning based on
subsets of the samples (e.g., gender and age), and finally cre-
ates a scale score (Bauer and Hussong 2009; Curran and
Hussong 2009; Curran et al. 2008). This IRT approach could
well be extended tomultiple dimensions using a bifactor mod-
el (Gibbons and Hedeker 1992), although we are unaware of
the use of the IRT and bifactor modeling in synthesizing in-
tervention effects across multiple trials. A second method in-
volves bridging measures rather than bridging items. Here, at
least one study includes assessments on more than one mea-
sure (Siddique et al. 2015). This approach enumerates all mea-
sures used in any of the trials and formally treats the measures
not used in a trial as missing data. Multiple imputation can
then be used to fill in the gaps with imputed data based on the
correlations across measures (Siddique et al. 2016) or a factor
model can be imposed on the data as presented in Brown et al.
(2016).

Concerns resulting from heterogeneity across trials have
also been addressed in the literature. When IDA is undertaken
with a small number of studies, or a group of studies that are
not considered representative of an entire population of such
studies, an indicator of trial membership can be included as a

fixed covariate in fixed effect modeling. With a large number
of trials, multilevel or random effects modeling can be used as
it is in meta-analysis (see Hedges and Vevea 1998 for
discussion of their relative merits and Hussong et al. 2013
for specific discussion of their use in IDA). Finally, multilevel
mixture meta-analysis modeling can be used to identify dif-
ferent clusters of trials as well as outcomes where effects are
distinct (Brown et al. 2008).

While solutions to these individual methodologic chal-
lenges of IDA analysis have been addressed individually in
the literature, these challenges compound quickly when work-
ing with data from multiple, longitudinal, randomized clinical
trials where follow-up assessment periods, outcome measures,
sample characteristics, and control or intervention groups are
likely to differ between trials. Even across trials targeting the
same outcome, the intervention approaches may differ signif-
icantly in terms of delivery target (e.g., delivered to individ-
uals vs. delivered to groups), theoretical framework (e.g.,
based in interpersonal therapy vs. cognitive behavioral thera-
py), and number of intervention arms (e.g., control compared
with single intervention, control compared with multiple in-
terventions, and comparison of two active interventions). All
of these challenges raise questions about the internal validity
of the synthesis study. External validity, the concern that se-
lection of those trials included in a synthesis may differ from
the universe of available trials, is also an important question
that needs to be addressed.

The methodologic aims of this manuscript are to articulate
methods that address generic questions of internal and exter-
nal validity in an IDA synthesis study that pools individual
participant data across multiple, longitudinal randomized clin-
ical trials. To address challenges to internal validity, we artic-
ulate methods and the underlying assumptions used to handle
(1) different outcome measures used in different trials, (2)
different follow-up assessments employed by the different tri-
als, (3) differences in sample characteristics across trials, (4)
combining results across trials containing different compari-
son conditions, (5) modeling variation in impact trajectories,
relying heavily on extensions to latent growth curve modeling,
and (6) assessing selection bias threats to external validity
based on non-availability of some trial datasets. We address
these methodological aims through the example of Brown
et al. (2016), an IDA of multiple adolescent depression pre-
vention trials aimed at clarifying the overall, and differential,
impact of depression-preventive interventions on trajectories
of depressive symptoms.

The data from Brown et al. (2016) consist of a combined
individual-level dataset of 19 randomized controlled preven-
tive trials targeting depression, general mental health, or prob-
lem behaviors among 5292 adolescents. The goal of the orig-
inal synthesis study was to better understand the impact of
preventive intervention on adolescent internalizing symptoms,
including depression as well as anxiety, withdrawal, and
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related symptoms. The original study also uncovered sources
of variation in the impact of the intervention as a result of the
robust, diverse sample created by pooling across the multiple
trials. Findings indicated an overall beneficial impact on 2-
year depressive symptom trajectories, with better outcomes
for adolescents involved in trials that were depression-fo-
cused, employed interventions based on cognitive behavioral
therapy or interpersonal therapy, and/or were delivered direct-
ly to the adolescent rather than a parent/guardian. The analy-
ses presented significant challenges due to variability in out-
come measures, timing of follow-up assessments, participant
samples, and intervention design. The trials and findings are
described in detail in Brown et al. (2016), and in this paper, we
focus on the underlying methodologic approaches used
therein.

In this paper, we first provide a brief overview of these 19
trials and their variations in measures, assessment, interven-
tion, and sample characteristics. As many of the challenges
faced in analysis can be viewed from a missing data perspec-
tive, we discuss this view next. Third, we present six chal-
lenges, their potential for affecting internal or external validity,
and what analytic strategies we have used to reduce these
threats. Finally, we discuss general lessons that are applicable
to other synthesis projects and methodologic approaches.

Variability Across Trials in the Collaborative Data
Synthesis for Adolescent Depression Trials

We discuss general challenges and ways to minimize
threats to validity for synthesizing findings from an analy-
sis of individual-level data from multiple trials; we illus-
trate solutions based on pooling of individual-level data
across the 19 prevention trials (Perrino et al. 2013). All
these 19 trials began between 1991 and 2007; they ran-
domized and repeatedly assessed 5210 adolescents meet-
ing our age restriction of 11 to 18 years old. There were
some basic similarities across these trials (see Suppl
Table A, to be published as Table 1 in Brown et al.
2016). All tested at least one preventive intervention
against a control condition in a randomized trial success-
fully conducted under a rigorous protocol. However, they
differed in major ways regarding participant selection
criteria, measures of adolescent internalizing behavior,
follow-up schedules, and the interventions themselves.
For this prevention synthesis project, the trials were delib-
erately chosen to include variations on these characteris-
tics, so that we could examine an overall effect of preven-
tion interventions on internalizing symptoms and, where
possible, to identify moderators and mediators of that ef-
fect, capitalizing on the enhanced power from the large
sample size and increased variability afforded by the
pooled dataset (Brown et al. 2013).

Measures Variability

A general issue encountered in synthesizing the effects of
interventions across trials on a behavioral primary outcome
is almost never measured with the same instrument across
all studies. Interventionists interested in measuring adolescent
depression have a wide range of measures to choose from, and
this presents a significant challenge in synthesis work. In our
study, eight measures of adolescent depression were identified
from the trials: four self-report measures (Youth Self Report—
Anxiety/Depression; Youth Self Report—Withdrawal/
Depression, Center for Epidemiologic Studies—Depression
Scale (CESD), and the Children’s Depression Inventory
(CDI)), three parent-report measures (Revised Behavior
Problem Checklist—Anxiety/Withdrawal; Child Behavior
Checklist (CBC)—Anxiety/Depression; Child Behavior
Checklist—Withdrawal/Depression), and one clinician rating
(Children’s Depression Rating Scale). Descriptions of the
measures are in Brown et al. (2016). We report elsewhere
(Howe et al. 2016) on psychometric analyses of a combined
individual-level dataset of 123 items available from baseline
depression measures in 16 of these studies. These item re-
sponse theory analyses provided support for a single common
factor, along with some variations by raters, particularly for
clinician ratings. In addition, there was evidence for some
differential item functioning when comparing boys and girls,
although these effects appear relatively small compared with
the global depression and rater effects. In evaluating the im-
pact of these trials, our general analytic approaches to these
diverse measures was to consider them as distinct, observed
indicators of an underlying latent variable representing inter-
nalizing symptoms (Brown et al. this issue), as we describe
below. This unobserved, latent variable is modeled as the
source of the association between the diverse observed mea-
sures of internalizing symptoms (i.e., Beffect indicators^;
Bollen and Lennox 1991).

Assessment Variability

Another universal regarding trials is that follow-up assess-
ment schedules vary across trials. Across our 19 trials, the
available longitudinal data ranges from 6 months to
15 years (see Suppl Fig. A, to be published as Fig. 2 in
Brown et al. 2016). Most trials included 4 to 6 time points
and our approach grouped follow-up times into clusters so
the data could be analyzed as a panel study. This
neglected exact observation times but allowed us to esti-
mate a correlation structure at each time interval.
Studying the pattern of available data points, we clustered
follow-up assessment periods into six time clusters up to
24 months post-baseline. Assessments beyond 24 months
were dropped because of the small number of trials hav-
ing such length of follow-up. Note that all time blocks
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had some data available across all these 19 trials,
and all trials included follow-up assessments
through the 14–18-month time block.

Intervention Variability

There are very few examples of exact replication of
interventions in behavioral research, at least in part be-
cause a funding and scientific emphasis on innovative-
ness over repetitiveness. The 19 trials included in our
analysis certainly differ in both substance and scope.
Although all of the trials were prevention trials, they
varied in important ways. Only 9 of the 19 trials specif-
ically targeted the prevention of depression. The other
ten trials targeted other important outcomes (general
mental health, externalizing, substance use, and high-
risk sexual behavior), and included measures of depres-
sive symptoms as part of their protocol. Eleven trials
utilized two intervention arms, seven trials utilized three
intervention arms, and one trial utilized four arms. We
categorized the active interventions as focusing on cog-
nitive behavioral therapy (CBT), interpersonal therapy
(IPT), or parenting skills development. Eleven trials
tested active control arms such as another evidence
based intervention (e.g., IPT, CBT, or the active inter-
vention of interest without a key component such as
parent groups) and the remaining eight utilized control
arms such as bibliotherapy.

Sample Variability

Prevention trials in a synthesis often include widely
different populations that range from universal, selec-
tive, to indicated. In our example, the 19 trials differed
in terms of their inclusion/exclusion criteria with some
trials targeting adolescents who had been in trouble with
authority, other trials focusing on adolescents who had
recently experienced a loss or family change, and others
employing a universal approach. These differences in
intervention target also resulted in samples that differed
significantly not only in terms of important co-
morbidities like externalizing but also on demographic
variables, specifically income and parent education (see
Suppl Table A, to be published as Table 2 in Brown
et al. 2016). Sample sizes for the individual trials ranged
from 41 to 697 adolescents, and eight trials also includ-
ed parents who attended either separate or conjoint in-
tervention sessions. Race/ethnicity of the participants
was reported for all but four trials and included White/
Caucasian, Hispanic (Non-White), Black/African-
American, Asian, Hawaiian/Pacific Islander, Native
American/Alaskan Native, and Other/Multiple.
Females comprised between 42 and 85% of the includ-T
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ed participants with the exception of one trial that included
solely females, and the age of participants ranged from 11 to
18 years. Adolescents were evaluated with a variety of psy-
chosocial, development, and depression measures, with the
CDI, CESD, and CBC being the most common.

Considering Synthesis as a Missing Data Problem

In any synthesis of multiple longitudinal trials, missing data
can be categorized into five distinct types. The first includes
data that were missing within a trial due to attrition or incom-
plete response; a type of missingness that occurs in virtually
all longitudinal trials. For example, a single participant may
have missed the scheduled 6-month follow-up interview for
his or her trial. Or the proportion of missing items left unan-
swered by a subject at a point in time may have exceeded 20%
of the number of items for that measure, a routine cutoff that
we used to classify the composite score as missing. The sec-
ond form is missingness as a result of measure selection. For
example, each trial team selected from a wide range of depres-
sive symptom measures; those measures not selected for a
particular trial can be considered missing data. Third, the dif-
ferent follow-up schedules in each of the 19 trials can be
considered as creating incomplete panel data. Fourth, we can
consider each subject in a two-arm trial having two potentially
observable measures, one being the set of longitudinal re-
sponses if assigned to the active intervention and the other
being the set of longitudinal responses if assigned to the con-
trol condition. Which of these outcomes is missing depends
on the random assignment to condition. Finally, the fifth type
of missing data is truncation. We only observe data from the
trials whose datasets were shared with us; any other data that
could be available from different trials are unknown. Our ap-
proach to truncation is very different from that used to handle
the other types of general censored data; we discuss this last
situation under external validation.

Ignorability of Details Regarding Why Data Are Missing
and Inferential Approach

Our general analytic approach relies on full information
maximum likelihood (FIML) to handle all types of miss-
ing data under a missing at random (MAR) assumption.
MAR assumes that missingness is unrelated to outcomes
once observed data are taken into account. FIML requires
this assumption in order to guarantee unbiased estimates
when including data on predictor variables when some
outcomes are missing. FIML conditions on observed co-
variates and maximizes this conditional likelihood after
averaging over any missing data, treating that portion of
the likelihood involving missing data as irrelevant, or ig-
norable for making inferences. Methods for analyzing

missingness of an individual’s datum at a point in time
on a particular measure in a single randomized trial (the
first of the types of missing data listed above) has been
heavily investigated by statisticians. While no analytic
method can be expected to produce accurate inferences
under all possible missing data mechanisms when there
are large amounts of missing data, approaches that use
FIML are known to be highly robust in such situations
(Brown 1990; Lavori et al. 2008; Siddique et al. 2008).

Now consider the second, third, and fourth types ofmissing
data listed above, involving trials having different measures,
different follow-up times, and missingness on conditions to
which they were not randomly assigned (e.g., active interven-
tion if assigned to control). We argue that for this set of well-
conducted trials and each of these situations, the data can
reasonably be considered to follow mechanisms classified as
missing at random (Rubin 1976). Missing at random is a tech-
nical term describing an important condition whereby the ex-
act reasons for why data are missing have no effect on the
inferences one can draw from the data. Thus, the data are
called ignorably missing. For missing at random to occur,
the missing data must have the same distribution as the ob-
served data once we condition on observed covariates. Under
conditions of missing at random, the method of full informa-
tion maximum likelihood is fully efficient in making infer-
ences as long as the underlying distribution is modeled accu-
rately, and we include all necessary covariates (Rubin 1976).

It is not immediately obvious that we can reasonably ignore
missing data mechanisms if all the trials have different follow-
up designs with different measures. Different trials have dif-
ferent reasons for missingness (e.g., more universal trials may
involve less follow-up and more self-report measures), but
whatever the reason, it should be identical for intervention
and control groups within each trial as assessment schedules
would be the same across conditions and assessors should be
blind to condition as well. Thus, the second through fourth
types of missingness should be ignorable. However, trial then
becomes a critical variable to account for in our analysis.
Because we know which subjects belong to which trials, trial
is an observed covariate for everyone, and analyses that for-
mally include models where each trial is permitted to have a
distinct pattern of growth, the inclusion of trial as a fixed effect
can then lead to appropriate inferences. Including trial as a
random effect, rather than a fixed effect, is also not likely to
produce much bias in our overall impact analysis of the dif-
ference between intervention and control, but such analyses
may possibly hide important variation as they involve averag-
ing over the entire set of trials. We also note for completeness
that latent variables are missing for everyone and therefore
missing at random (Brown 1983).

The estimation of these models also requires that the pat-
tern of observed variables across the trials is sufficient to iden-
tify all the parameters. For example, if one particular measure
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is only observed for a single trial, there is no information
available to assess its correlation with other measures
(Dagne et al. 2016; Howe et al. 2016).

A final important note is about trial selection for inclusion
into a synthesis study of this kind. As indicated in Fig. 1a from
Brown et al. (2016; see Suppl Fig. B), we obtained
participant-level data from 76% of the trials that we attempted
to include, but many other trials do exist. We discuss this issue
of truncation under external validity below.

Challenge No. 1: Heterogeneity in Outcome
Measures

Handling heterogeneity in the primary outcomes is the first
major task to address in any IDA. In our example, the outcome
measures for adolescent internalizing symptoms varied across
the 19 trials, and this presented a significant challenge in har-
monizing across the studies. We identified eight measures of
adolescent depression that were most common across the 19
trials in order to best capture a common construct of internal-
izing across all trials.

Extensive procedures were used to ensure equivalent coding
across trials.Whenever possible, we coded data based on original
items rather than precomputed constructs in each of the trials.
This allowed us to standardize how summary scores were com-
puted across all trials. For example, individual research teams
may have differed in how they handled missing items in the
computation of a summary score. By working with item-level
data, we standardized this across trials so that a summary score
was considered missing if less than 80% of the items were

completed by a participant, which is a common construct level
decision used by researchers.

Variants in measures abound, as instruments are shortened
or extended by individual researchers depending on the time
available for a survey or by their unique interests. By design,
some of the trials in our example did not measure the entire set
of available items on a particular instrument, or used a related,
custom version of an instrument. We treated these shortened
and custom measures as Bsurrogate^ measures and incorpo-
rated them into our analysis design. In one example, a trial
administered a custom set of items closely related to the CDI
on 77% of the participants, and the full CDI on the remaining
23%. The overlap of items between this custom measure and
the CDI allowed us to regress the summary score for the cus-
tom measure on the CDI in our model and thereby infer CDI
scores on these participants. In another trial, a shortened ver-
sion of the CESDwas used instead of the full measure, and we
used a similar regression approach to include these partici-
pants. The regression coefficients for this relationship were
calculated based on all the trials having full CESD items, as
the short form scores were computable. Also, we fixed the
regression coefficients to be the same across time panels and
trials, then used full information maximum likelihood to ac-
count for these surrogates in the analysis.

In any IDA, one needs to arrive at a conceptual definition
of the primary outcome of interest. In this example, our pri-
mary outcome variable was an unobserved latent variable of
depressive symptoms identified by the eight measures of de-
pressive and internalizing symptoms represented across the 19
trials. We estimated this latent variable model using only base-
line values first to assess for fit and found it was moderately
good given the large number of parameters involved
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Fig. 1 Second-order latent growth curve model. Though not pictured, the observed depression measures are indicators of the latent internalizing
construct at each time point
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(CFI = 0.88, RMSEA = 0.018). In the longitudinal model
described below, we used the same latent variable structure
at each time point and fixed the path coefficients between the
observed measure of depressive symptoms and the latent var-
iable to be equal across time. This ensures stability or consis-
tency of the latent construct over time (Hancock et al. 2001).
The assumption of loading invariance over time is commonly

considered necessary for growth models, although there is evi-
dence that modest violations of this assumption do not bias re-
sults in many cases (Edwards and Wirth 2012). Further, work is
clearly necessary to develop methods for testing invariance in
complex multilevel models of the sort we employed. The regres-
sion of surrogate measures, as described above, were also part of
this structure (Fig. 1). This latent variable approach enabled us to
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measure a construct of Bdepressive symptoms^ for every partic-
ipant in the 19 trials at each time interval, regardless of the num-
ber of observed measures of depressive symptoms available for
that particular participant. As discussed above, the missing data
can be thought of as Bplanned missingness^ resulting from trial
design.

The requirement for internal validity is that the factor
analysis model posits a single underlying latent construct
of depressive symptoms that covers self-reports, parent
reports, and clinical reports and assumes the same mea-
surement error structure across trials and time. As indicat-
ed, the model fit for latent depressive symptoms was ad-
equate, indicating general support for the one-dimensional
structure. While a formal test of equivalence across all
trials and times would likely find some significant varia-
tions, we feel reassured by the stability of the loadings
that we found across the many different models that we
fit. We note that for our analyses in this paper, we have
relied on depressive symptom data at the scale level. For
future follow-up analyses, we plan to use the items them-
selves in a more complex item response analysis (Howe
et al. 2016).

Challenge No. 2: Heterogeneity in Follow-up
Assessment Periods

As times of follow-up will differ across trials, some decisions
need to be made regarding which of two approaches should be
used to accommodate these variations. One approach is to
model data using each individual’s own time points; the sec-
ond is to cluster similar time points into batches and analyze as
a panel study. Both approaches have advantages and
disadvantages; the former approach is taken in Siddique
et al. (2016) and discussed more fully therein. In Brown
et al. (2016), we took a multivariate, panel data approach for
longitudinal data, as opposed to the alternative hierarchical
l inear model or mixed effect modeling approach
(Raudenbush and Bryk 2002) because it provided greater ca-
pacity to test models within a structural equation modeling
framework using latent growth curve modeling. We first
placed each trial’s follow-up times into six time blocks which
collected assessment points that were reasonably close togeth-
er, thus creating a panel design. The resulting time blocks
were as follows: baseline (time 0 (T0)), which was measured
for everyone, 7 days to less than 2 months (time 1 (T1)),
2 months to less than 5.5 months (time 2 (T2)), 5.5 months
to less than 9 months (time 3 (T3), 9 months to less than
14 months (time 4 (T4)), 14 months to less than 24 months
(time 5 (T5)), and 24 months (time 6 (T6)). Only a few trials
had measures at time 1 (7 days to 2 months), and all of those
that did also had measures at time 2 (2 to 3 months). Figure 2
from Brown et al. (2016; see Suppl Fig. A) identifies the

number of youth at baseline enrolled into the trial within ages
11–18 and shows the availability of follow-up data for each of
the trials at each time period up to 24 months post-interven-
tion. Note that all time blocks had some data available across
the 19 trials, with 6 of the trials measured up to 24months, and
all trials had at least one assessment through the14- to <24-
month block.

The major analytic challenge in this example, as well as
with other IDA for randomized trials, involves estimating la-
tent growth trajectories across time and outcome measure and
relate that to overall and specific intervention effects. In our
example, we did this by modeling a single latent construct for
depressive symptoms for the ith subject in the kth trial (ηikt) at
each time point (t). Across the seven assessment periods, we
constrained the loadings and intercepts on the measurement
model for depressive symptoms to be equal and allowed the
factor variances to change with time, controlling for covari-
ates. Specifically, the jth depression measure assessed at time t
for the ith subject in the kth trial, Yijkt, is an indicator of the
underlying latent variable, ηikt representing the underlying la-
tent construct of depression

Y ijkt ¼ μ j þ λ j � ηikt þ εijkt; i ¼ 1;…;Nk ; j ¼ 1;…; 8; k

¼ 1;…; 19; t ¼ 0;…; 6 ð1Þ

Here, μj and λj are means and factor loadings for the
jth measure, and εijkt is an error term, considered to
have a normal distribution with zero mean and unique
error σi

2. In these models, trials were treated as fixed
effects.

The latent constructs were used as indicators of a latent
growth model to estimate change in depression across time.
Specifically, we allowed for a general transformation of the
time axis to transform time (f(t)) that would linearize the effect
of the intervention. We allowed our modeling of the growth
over time, i.e., Bslope^ to capture any linear as well as nonlin-
ear pattern across time points. This is especially important in
prevention as prevention effects may diminish or even reverse
over time, and such patterns would not be detected if we
forced the pattern to be linear. Since linearity is specified in
a second-order growth model with loadings on the slope latent
variable equal to the time point where each of the six panels
were obtained (i.e., 0 for baseline, 6- for 24-month outcome),
nonlinearity was accounted for by allowing the second-level
factor loadings of the growth model to be estimated by the
data (see Suppl Fig. C, to be published as Fig. 3 in Brown et al.
(2016)). Latent variable growth modeling methods can easily
handle different follow-up times across trials, but still needs to
represent the overall pattern of growth adequately across time
and trial. Our approach permits the data to inform how the
pattern evolved over time and is quite general, enabling rec-
ognition of linear or non-linear type of growth.
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Specifically, our second-order model at the level of the indi-
vidual specified how these underlying latent depression variables
relate to individual-level growth curves specified by their inter-
cepts αik and slopes βik on this transformed time scale:

ηikt ¼ αik þ βik f tð Þ þ εikt; i ¼ 1;…;Nk ; k ¼ 1;…; 19; t

¼ 0;…; 6 ð2Þ

Growth models that employ latent factors in this way have
been referred to as Bsecond-order latent growth models^
(Hancock et al. 2001), Bcurve of factors models^ (McArdle
1988), and Blatent variable longitudinal curve models^ (Tisak
and Meredith 1990).

Our second-order latent growth model included these two
latent variables: baseline internalizing (αik or intercept) and a
latent variable for linear change on internalizing (βik or slope).
In our structural equation modeling, we controlled on
individual-level demographic variables of age, gender,
race/ethnicity, family income, and parent’s educational attain-
ment for both the second-level intercept and slope. We also
adjusted the intercept and the slope for trial as a categorical
factor. This introduction of fixed effects for trial was used
instead of two random effects for intercept and slope because
the number of trials was too small to estimate these variances
and covariances with sufficient precision given the few mea-
sures used in each trial. We were also concerned that single
random effects may not represent trial-level heterogeneity suf-
ficiently well. Because baseline levels of internalizing may
well influence the trajectory of internalizing, we regressed
the slope on the intercept to control for baseline internalizing.
A test of the intervention effect on each (two-arm) trial was
based on the impact on slopes of the indicator of intervention
status, Zik = 0 for control and 1 for intervention, after adjusting
for a vector of other covariates Xik.

βik ¼ τk þ π � αik þ θk � Zik þ δËCXik þ εik ; i

¼ 1;…;Nk ; ; k ¼ 1;…; 19 ð3Þ

Here. the trial-specific intervention versus control effects
are given by θk and individual-level errors εik. The overall
effect of the intervention versus control can be obtained using
the model,

θk ¼ θþ εk ; k ¼ 1;…; 19 ð4Þ

where θ is an overall mean, εk represents variation at the trial
level, and testing of intervention impact is based on H0: θ = 0
against a two-sided alternative.

A test of moderation of the intervention effect on slope
trajectory by baseline level of depressive symptoms was con-
ducted by testing whether the regression coefficients of the
latent slope on the latent intercept were different for

intervention versus control. The same approach was used to
test for other moderator effects at the individual or trial level.

A primary assumption for internal validity in this approach
is that variation in change over time within each cluster of
follow-up time points is negligible. Since the follow-up as-
sessments that are grouped together are relatively close in
time, we are comfortable making this assumption, but recog-
nize that we are unable to fully test for its accuracy. When we
examine the estimated trajectory of time (see Suppl Fig. C, to
be published as Fig. 3 in Brown et al. (2016)), the amount of
change between 9 and 14 months (time period 4) has a very
small rate of change, suggesting that this assumption is valid.

Challenge No. 3: Sample Heterogeneity

When attempting to combine effects across diverse trials, an
important issue for generalizability is the controlling of
between-study differences in the samples. Though there was
some overlap due to common prevention goals in our exam-
ple, each of the intervention studies had unique inclusion/
exclusion criteria, leading to differences in presence or level
of internalizing or externalizing symptoms at baseline. There
were also major differences due to socioeconomic status, with
some studies having a more disadvantaged sample than
others. Race/ethnicity was another source of between-study
heterogeneity, with some trials focused exclusively on partic-
ipants from a particular ethnic or racial group, and other stud-
ies inclusive of participants from multiple racial/ethnic
groups. A final important source of between-trial heterogene-
ity in the samples involved the intervention itself. Some inter-
ventions were based in treatment modalities such as Cognitive
Behavioral Therapy or Interpersonal Therapy. Other interven-
tions had strong family components with a significant amount
of time invested with parents of the target adolescent.

Our first global approach to controlling for between-study
differences in the sample was to include trial membership as a
covariate. For our study of 19 trials, this meant including 18
dummy-coded variables as covariates on the baseline level of
internalizing (intercept) and the trajectory of internalizing
across time (slope). Such modeling allows for baseline differ-
ences in internalizing across trials, which clearly is supported
by the data, and potential shifts in the course of symptoms in
control groups by trial. The particular choice of dummy cod-
ing, i.e., which trial is used as a contrast, has no effect on the
coefficient of overall intervention impact that is our primary
interest. By using this approach, we acknowledge that this
collection of 19 trials is not necessarily a random selection
from a broader population of similar studies. Instead, we in-
corporate trial membership as a fixed effect within the analytic
model which effectively removes variability due to differ-
ences between trials (Curran 2009). A key assumption for
internal validity in this approach is that the effects of the
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covariates do not vary across trial. That is, the tests of inter-
actions between trial, covariate, and intervention are not sta-
tistically significant.

Challenge No. 4: Multiple Intervention
Arms/Arm-Level Analyses

In the previous section, we described our approach to exam-
ining an overall impact across all trials. This method is appro-
priate as long as there is at least one active intervention and a
comparison condition in each trial. However, more can be
done when there are multiple intervention arms versus a single
control, or even when there are intervention arms tested
against one another without a control within the same trial,
as one would find in a comparative effectiveness trial. We
illustrate how we would approach these issues through our
specific example. In our example, each of the 19 trials includ-
ed one or two active intervention arms in the trial to compare
against one control condition. We were interested in the char-
acteristics of the intervention that may moderate treatment
effects, such as type of intervention (CBT, IPT, and family-
based), recipient of the intervention (child, parent, and both
conjointly) and whether the trial targeted depression as an
outcome. All the active arms in the trial were coded based
on these characteristics; all codes were checked for accuracy
by the trial principal investigators. This provided us an oppor-
tunity to assess whether intervention impact varied by type of
intervention or modality.

We attempted several types of analysis, the most general
being two-level growth modeling in Mplus (i.e., three-level
mixed effects modeling involving time, person, and arm of
trial). Unfortunately, these analyses did not converge due to
the modest number of trial arms (24) when fit with two corre-
lated random effects for intercept and slope. As an alternate
approach, we estimated within-trial intervention effects for
each active arm against control using the second-order growth
model with slope regressed on each trial (adjusting for inter-
cept and individual-level covariates) and extracted these ad-
justed empirical Bayes estimates and their standard errors into
a separate dataset. There were 6 of the 19 trials with two active
intervention arms, and these were compared with the same
control condition, resulting in the estimation of 24 effects
comparing the active intervention versus control. In a single
trial with two active arms and one control arm, the two em-
pirical Bayes estimates are dependent and required that we
account for such non-independence when analyzing arm-
level covariates. For trials with two active arms, we used or-
thogonal transformations to rotate these effect sizes as well as
the covariates and then revise their respective standard errors
to uncorrelated estimates while retaining the same multilevel
mean and variance-covariance structure. These orthogonal
transformations (Cholesky decompositions) were based on

the eigenvalue-eigenvector decomposition of the level-one
variance covariance matrix that preserved the total variance
at level one as well as the variance across the trials. Details can
be obtained from the last author.

Challenge No. 5: Examining Variation in Pathways
to Assess Differential Impact

As this project examined variation in impact, we included
analytic modeling that allowed subjects in the study to vary
both qualitatively and quantitatively in their response to inter-
vention. Following our earlier method work (Muthén and
Brown 2009; Muthén et al. 2002, 2010; Wang et al. 2005),
we used growth mixture models to assess such variations in
response. Specifically, an underlying mixture distribution pro-
vided each cluster with its own overall trajectory shape and
degree of variation, and each cluster had its own impact mea-
sure as well. Because these data all came from randomized
trials, the clusters were parameterized so that the parameters
for the baseline distributions within each trial were the same
for intervention as they were for control (e.g, same-class prob-
ability, intercept mean, and variance). We also held the mea-
surement error the same across clusters (Eq. 1). To permit the
intervention effects to vary across cluster, we allowed the un-
derlying time transform to linearity, f(t) in Eq. 2 to vary. To
assess potentially different intervention effects, we allowed
parameters that captured differences in the distribution of the
slope conditional on the intercept to vary by cluster as well
(e.g., π, θk, and its residual variance). Our main finding was
that the beneficial effect of these preventive interventions oc-
curred among those who started with an elevated, but subclin-
ical level of symptoms (Brown et al. 2016).

Challenge No. 6: Assessing Trial Selection Bias

The primary threat to external validity in a study of this kind is
related to the question of selection bias. That is, is the sample
of trials for which data are available representative of the full
universe of trial data in this substantive area? With respect to
external validity, we are interested in understanding how we
can relate the findings from these analyses to other prevention
trials in the literature that are not included in this synthesis.
Additionally, from the perspective of our research questions,
we would be less confident in our conclusions if we found the
included trials had stronger impact than did other prevention
trials whose individual data we did not obtain. Thus, we
looked for an existing report on trials that were comparable
with ours on a common outcome measure. Sandler et al.
(2014) had recently conducted an overview of published
meta-analyses on trials that focused on preventing depression
in youth. We used this overview to locate 85 distinct trials and
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coded their effect sizes post-intervention on the primary mea-
sure of depressive symptoms used by each of these trials.
Effect sizes for our trials that were reviewed by one or more
of these meta-analyses were extracted, but for the 16 of our 19
trials that were not included in this meta-analytic overview, we
computed effect sizes (ES) at 6 months from our data for each
intervention condition versus control.

Figure 2 provides the forest plot of the effect sizes of the
greater universe of trials compared with the 24 intervention
arms for the 19 trials included in this synthesis. Using random
effects models, we found effect sizes to be significantly dif-
ferent from zero for both our comparisons and those of the
other trials. The effect size for our trials showed a less bene-
ficial effect than the greater universe of trials (ES = −0.09
compared with ES = −0.19, respectively). Despite a small
overlap in the 95% confidence interval for our trials (−0.15,
−0.03) and the greater universe of trials (−0.25, −0.13), these
effect sizes are statistically different (z = 2.26, p = 0.024).
Because the overall effect size for the selected trials was closer
to zero than the effect size for the universe of trials, we con-
cluded that our approach has not selected the most significant
trials, which provides a more serious bias in inference than
that of the other direction.

To address representativeness of the trials in our synthesis,
we also compared the standard deviations in these two sets of
studies, finding twice as much spread in the 86 other depres-
sion prevention trials compared with ours. This is not surpris-
ing as the other prevention trials contained interventions tested
in widely different settings (e.g., schools) and tested on differ-
ent ages. Other than this smaller variance for our trials, we did
not find any other concerns that our select group of trials
differed from the larger population of trials.

We also extrapolated our growth model findings for our 24
comparisons to the remaining preventive trials by regressing
the difference in intervention versus control slopes on the ESs.
Such a procedure is commonly used in model-based survey
estimation when there is no formal random sampling selection
as is true in our study (Royall and Cumberland 1981). This
extrapolated effect based on our model-based approach using
post-intervention ESs resulted in virtually no change in our
inference because the correlation between ESs and our adjust-
ed slope differences in intervention versus control was near
zero after accounting for measurement error at the trial level.

Discussion

The pooling of individual participant data across multiple,
longitudinal, randomized trials is rich with methodological
challenges that have implications regarding internal and exter-
nal validity. Some of these validity issues are shared with
meta-analysis. Methodologically, these analyses were difficult
to carry out. Not only did trials vary by time of follow-up, they

used different measures to assess internalizing symptoms.
Many of the methodological approaches employed here have
been used in isolation rather than combination (Curran et al.
2008). The present work builds upon this literature by show-
ing how these multiple challenges can be addressed simulta-
neously using a large number of diverse randomized clinical
trials. The statistical methods we used in this paper, factor
analysis modeling to address measurement error in internaliz-
ing symptoms, different types of growth modeling to connect
outcomes across time, full information maximum likelihood
to handlemissing data, and growthmixture modeling to assess
variation in response, were able to work together to provide
inferences that painted a clear picture of impact. This was not
without some cost. The maximization algorithms that handled
missing data for some models took days to converge. It would
have been possible to compute more complex models in this
study with over 5000 longitudinal observations had there not
been such variations in measures and time points. Specifically,
we were unable to achieve convergence on any growth mix-
ture models involving three or more classes. Also, these var-
iations limited our ability to check our model. Thus, tests on
the stability of the underlying factor model over time were
limited by the trials’ different instruments and follow-up
times.

Within IDA, there are also alternate approaches to the latent
variable methods we employed. For instance, missing data,
including those data missing as a result of trial design, can
be imputed using multiple imputation methods, although such
methods have their own limits, as discussed in Siddique et al.
(2016). Siddique et al. (2016) conducted growth models that
used individual time points rather than pooling them together.
They found similar conclusions to those in Brown et al.
(2016), but these methods encountered more problems.
Specifically, they were forced to throw away individual cases
and trials because of the sparseness of measures across these
studies. Similarly, item-level analyses could be implemented
using procedures similar to those in the original IDA studies
(Curran et al. 2008). One perspective that is well represented
by such work is to identify items that have little differential
item functioning over time and across subpopulations.
Separating such items may provide clearer pictures of impact
than those methods that we used that relied on summaries of
items. There are major computational challenges to overcome
with the use of IRT-type models with such large, longitudinal
datasets, and moderation effects are anticipated to be challeng-
ing to evaluate.

As research moves further in the direction of synthesizing
participant-level data across trials, the use of common, well-
established measures across trials would certainly simplify the
analysis problems and provide additional opportunities for
assessing goodness of fit. The perspective of using common
measures across studies has a time-honored tradition in sci-
ence and is one of the major policy changes now under way at
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the National Institutes of Health. Indeed, the PhenX Toolkit
(Barch et al. 2016; Hendershot et al. 2015; Pathak et al. 2011)
includes measures that now must be used by US federally
funded researchers by default, and thereby lessen the harmo-
nization burden of combining data from different sources
(Barch et al. 2016; McCarty et al. 2014; Pan et al. 2012).
While common measures are important in moving science
forward, as attested to the challenges our example gave, we
do have three caveats. First, use of the same instrument by
different raters can produce quite variable results as Siddique
et al. (2011) have shown. Secondly, there are some advantages
to employing two or more respected measures of important
constructs, particularly target outcomes. Their inclusion
would strengthen the latent variable structures presented here
by providing more overlap in the measures across studies.
Third, the PhenX and other approaches to standardizing as-
sessments have the advantage of enforcing the use of the same
first-level measures and therefore can reduce some of the har-
monization problems. However, another approach, which we
believe will be used more often is computerized adaptive test-
ing or CAT (Gibbons et al. 2012). The algorithmic nature of
CAT selects the items for each person to be most informative,
based on responses to previous items. Thus, individuals re-
ceive different items until a predetermined level of measure
reliability is achieved. Based on a large pool of items and
psychometric studies that account for multiple dimensions,
CAT procedures can be highly efficient and readily used in
synthesis studies. As the science improves our understanding
of when best to measure long-range effects on internalizing
symptoms and other important outcomes, it may be possible
to establish more common follow-up assessment schedules
that would also strengthen these synthesis analyses by making
it possible to model time more precisely and limiting the reli-
ance on missing data methods. Such common schedules may
become even more important as decade-long preventive ef-
fects are being discerned (Sandler et al. 2014).

Integrative data analysis, whether it is based on a repository
of trials or is built through a partnership, is one of three ana-
lytic approaches to synthesizing the effects of an intervention
across randomized clinical trials. The others include meta-
analysis and parallel data analysis (Brown et al. 2013), and
in Table 1, we compare the strengths and challenges of each
method. Meta-analytic techniques provide an established
method for synthesizing across the summary statistics (e.g.,
effect sizes) reported in completed trials. It is comparatively
inexpensive, but as noted previously, this approach is limited
by assumptions about the comparability of outcomemeasures,
the potential for selection bias when relying on published
trials, and the general inability to assess for mediators and
moderators, particularly at the level of the individual.
Parallel data analysis involves combining analytic summaries
based on a common analytic protocol that is carried out sep-
arately by each individual research team. Thus, parallel data

analysis moves closer to IDA by estimating similar statistical
models across each individual trial separately, and then sum-
marizing across the resulting estimates. While parallel data
analysis is rarely performed, it can be a highly efficient meth-
od to use, especially when combined with strategically funded
funding for longer-term follow-up or assessment of measures
not in the original trial (Brown et al. 2007, 2013).

We have seen the value of IDA in addressing variation in
impact through measured as well as unmeasured covariates
that interact with intervention. Procedures for sharing of data
through partnership have been identified (Perrino et al. 2013)
and their potential for addressing scientific equity for minori-
ties and other populations has been noted elsewhere (Perrino
et al. 2015). This partnering does take considerable time to
develop, and the requirement of data sharing may lead to
highly select samples of trials. However, these disadvantages
can be countered by investigating selection bias against non-
shared trials as we have done in this paper and the benefit of
close feedback by the original research teams who have deep
tacit knowledge of their respective studies (Brown et al.
2013). The existence of a repository of studies, such as
NIMH’s National Database for Clinical Trials Related to
Mental Illness (NDCT) and NIDA’s National Addiction and
HIV Archive Program (NADHAP), are likely to have a
profound effect on the sharing of future trials.

There are a number of limitations inherent in this study.
Even with the large number of trials in this synthesis, we
recognize that there are many other prevention programs that
have been tested in trials that we have not included. Although
we examined effect sizes for trials not captured in this synthe-
sis and found they were on average reporting more beneficial
outcomes, we cannot rule out the possibility that the trials we
analyzed differed in other important ways. With the inclusion
of more trials, we would certainly enhance the overall findings
presented in Brown et al. (2016). Our use of extrapolated
empirical Bayes estimates to address dependency inherent in
multiple-arm trials is a less ideal method than using multilevel
modeling, limited in this trial by the small number of compar-
isons across our 19 trials. This paper was limited to one IDA
synthesis, and we did not include any simulation studies of
how these advanced methods would work together. Thus, we
cannot guarantee that our experiences will generalize. With
respect to measurement limitations, the latent construct of de-
pressive symptoms is based on the assumption that the ob-
served measures are capturing the same symptom levels for
members of subgroups within and across trials. Additionally,
the use of measures that employ different reporters (youth,
parent, and clinician) also presents the possibility of differen-
tial item functioning (Bauer et al. 2013) that is not accommo-
dated in the measure-level model used in this study. It will be
important to pursue future item-level psychometric work that
investigates the possibility for, and potential implications of,
such effects in synthesis data. A final, important, limitation
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was our limited ability to test moderated effects across impor-
tant classifications of interventions, including how they are
delivered and to whom. This occurred because of the large
degree of overlap (e.g., most cognitive based preventive inter-
ventions were delivered to higher income and more educated
populations). This particular limitation is thus not limited to
IDA.
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