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Abstract Individual participant data (IPD) meta-analysis is
a meta-analysis in which the individual-level data for each
study are obtained and used for synthesis. A common chal-
lenge in IPD meta-analysis is when variables of interest
are measured differently in different studies. The term har-
monization has been coined to describe the procedure of
placing variables on the same scale in order to permit pool-
ing of data from a large number of studies. Using data from
an IPD meta-analysis of 19 adolescent depression trials, we
describe a multiple imputation approach for harmonizing 10
depression measures across the 19 trials by treating those
depression measures that were not used in a study as miss-
ing data. We then apply diagnostics to address the fit of
our imputation model. Even after reducing the scale of our
application, we were still unable to produce accurate impu-
tations of the missing values. We describe those features of
the data that made it difficult to harmonize the depression
measures and provide some guidelines for using multiple
imputation for harmonization in IPD meta-analysis.
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In response to limitations imposed by traditional meta-
analysis, an increasingly popular approach for data syn-
thesis is individual participant data (IPD) meta-analysis
in which the raw individual-level data for each study are
obtained and used for synthesis (Riley et al. 2010). With
the raw data on hand, an analyst can adjust for patient-
level covariates and take into account repeated measures,
missing values, and differential follow-up times. In gen-
eral, pooling data from multiple studies results in larger
sample sizes, increased statistical power, increased variabil-
ity on important measures, and the capacity to test more
sophisticated models (Brown et al. 2016). When the com-
bined samples are more heterogenous than any single trial,
IPD meta-analysis may also provide increased confidence
in generalization (Perrino et al. 2013).

Another advantage of IPD meta-analysis is increased fre-
quencies of low base-rate behaviors such as suicide or drug
use. The frequency of these behaviors may be too low to be
modeled in any single study, but may be high enough when
aggregated across multiple studies. When multiple longitu-
dinal studies are combined, a much broader developmental
period can be considered, given overlapping age ranges
across the set of contributing studies (Curran and Hussong
2009). IPD meta-analysis can also substantially increase
power to detect moderation. Dagne et al. (2016) found that
the power to detect moderator effects for individual-level
moderators could be as much as 16 times greater for IPD
meta-analysis as compared to standard meta-regression.

IPD meta-analysis has its challenges. In particular, a
common situation is when variables of interest are measured
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differently in different studies. The term harmonization has
been coined to describe the procedure of placing variables
on the same scale in order to permit pooling of data from a
large number of studies (Griffith et al. 2015; Hussong et al.
2013).

There are a number of existing methods for data har-
monization which make use of the fact that even if differ-
ent studies use different outcomes, they are attempting to
measure the same construct or constructs of interest. One
approach is to treat the unobserved measures as missing data
and then replace them with plausible values using multiple
imputation (Rubin 1987; Gelman et al. 1998; Resche-Rigon
et al. 2013; Siddique et al. 2015; Kline et al. 2015).

With multiple imputation, missing values are replaced
with two or more plausible values to create two or more
completed data sets. Analyses are then conducted separately
on each data set and final estimates are obtained by combin-
ing the results from each of the imputed data sets using rules
that account for within-imputation and between-imputation
variability. See Harel and Zhou (2007) for a review.

In the context of harmonization for IPD meta-analysis,
multiple imputation has a number of advantages. Once
unmeasured variables have been imputed, analyses and their
subsequent inferences are based on existing scales of interest.
In addition, after the data set has been filled in, it can be shared
with other investigators and can be used for numerous anal-
yses using complete data methods. In fact, once a variable
has been multiply imputed, it may be used as an outcome in
one analysis and as a covariate in another analysis.

Siddique et al. (2015) describe an imputation-based
approach to harmonize outcome measures across five lon-
gitudinal depression trials where there is no overlap in
outcome measures within trials. They extend previous meth-
ods for harmonization by addressing harmonization in a
longitudinal setting where different studies have different
follow-up times and the relationships between outcomes
may change over time. They also discuss practical issues
in developing an imputation model including taking into
account treatment group and study and develop diagnostics
for checking the fit of the imputation model.

In this article, we describe a multiple imputation
approach for harmonizing depression measures across 19
longitudinal intervention trials where there is no single out-
come measure used by all 19 trials. We use the methods
of Siddique et al. (2015) for harmonization in a longitu-
dinal setting in order to account for differential follow-up
times between studies and to account for the fact that the
relationships between outcome variables may change over
time. This paper extends the work of Siddique et al. (2015)
by implementing the methods in a more challenging setting
with 10 measures sparsely distributed across 19 heteroge-
neous trials. None of the trials used in Siddique et al. (2015)
are among the 19 trials in this paper. We implement our
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methods using free and easily available software and high-
light those conditions where it is not possible to produce
accurate imputations, either due to an inability to estimate
the parameters in the imputation model or due to an inability
to estimate study-specific effects.

This article is organized as follows. In Section 2, we
describe the example that motivated this work, a study of 19
randomized trials for the prevention of depression among
adolescents. In Section 3, we describe our imputation model
and diagnostics for checking the quality of imputations
when variables are missing for all participants within a
study. Section 4 presents the results of applying our meth-
ods to the adolescent data and Section 5 offers discussion
and areas for future work.

Motivating Example

Our motivating example is an ongoing IPD meta-analysis
investigating moderators of treatment effectiveness for the
prevention of depression among adolescents. The project
consists of individual participant data from 19 adolescent
depression prevention trials. In 9 of the 19 trials, the inter-
vention was intended to specifically target youth depression.
In the remaining 10 trials, the focus of the interventions was
family-based interventions for behavioral health promotion,
and for substance abuse and HIV/AIDS sexual risk behavior
prevention. Each trial was an RCT with both an interven-
tion and a control group. More details regarding this project
are described in the accompanying article by Brown et al.
(2016) in this same issue.

Table 1 lists the 19 trials and various study characteris-
tics. The trials ranged in size from 41 to 697 participants and
were roughly half male and half female. Participants were
mostly teenagers, with an age range of 7 to 21 years of age.
Ten of the 19 studies were longer than 2 years, but for this
IPD meta-analysis, we only use data from the first 2 years
of each trial. Based on these data, the average number of
assessments (including baseline) was four, and trial dura-
tion ranged from 6 to 24 months with an average duration
of 17 months.

The last column in Table 1 lists the number of depres-
sion measures used in each trial. While some trials only used
one depression measure, most used more than one and the
Project Alliance 1 trial used six depression measures.

Table 2 lists the 10 different depression measures used in
each of the 19 studies and their average values at baseline.
Several important points are worth noting. First, there is no
measure that is used by all the trials. Second, some mea-
sures are self-reported (denoted by a (S) after the measure),
some measures are parent-reported (denoted by a (P)), and
one measure is clinician-rated (denoted by a (C)). The
third point is that while 10 measures are listed, several
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of the measures are subscales of a larger measure. The
Child Behavior Checklist (CBCL) Anxious/Depressed sub-
scale (CBCL-A), the CBCL Withdrawn/Depressed subscale
(CBCL-W) (Achenbach 1991), and the CBCL Depression
scale (CBCL-D) (Clarke et al. 1992) are all derived from
the CBCL. Hence, all three of these parent-reported sub-
scales are often measured in the same trials. Similarly,
the Youth Self Report (YSR) Anxious/Depressed sub-
scale (YSR-A) and the YSR Withdrawn/Depressed subscale
(YSR-W) (Ebesutani et al. 2011) are both derived from the
YSR and tend to be used in the same trials. Trials that
used the YSR also tended to use the Revised Brief Problem
Checklist Anxiety/Withdrawl subscale (RBPC) (Quay and
Peterson 1996).

Table 2 also includes two measures, The Center for
Epidemiologic Studies Depression Scale (CESD) (Radloff
1977; 1991; Eaton et al. 2004) and also what is referred
to as the CESDI10. For some follow-up time points, the
CATCH IT trial (trial 18) only used 10 items from the
CESD, and we refer to this measure as the CESD10 (Radloff
1977). Since the CESD10 is a subset of the CESD, we are
able to calculate the CESD10 for all studies that used the
CESD except for the ADEPT trial (trial 10) for which item
level CESD data were not available. For those follow-up
occasions where the CATCH-IT trial did not use the full

CESD, we treat the CESD as missing data while recog-
nizing that the CESD and the CESDI10 are highly corre-
lated and that we have four studies that contain both these
measures.

Roughly speaking, the 19 trials can be placed into three
categories based on which depression measures they used:
(1) those trials that use the Children’s Depression Inven-
tory (CDI) (Helsel and Matson 1984; Kovacs 1984) and
the CBCL, (2) those that use the YSR, and (3) those that
use the CESD and the Children’s Depression Rating Scale
(CDRS) (Poznanski et al. 1985; Mayes et al. 2010). Our
imputation procedure relies on our ability to estimate the
relationship among all these variables. In this regard, trials
8, 10, 84, and 247 are particularly important because they
provide connections between the three groups of measures.
Trial 8 uses the CBCL and the YSR and trial 84 uses the
CDI, CBCL, and the YSR. Together, these two trials link
categories 1 and 2. Trial 247 links categories 1 and 3 through
the CDI and CESD and Trial 10 links categories 2 and 3
through the CBCL and CESD. Still, as highlighted by the
shaded cell entries in Table 2, there is a great deal of sparse-
ness in our data set. If we think of Table 2 as an 19 x 10
matrix, then only 50 of the 190 cells are filled in. As will
be shown, this sparseness will prevent us from filling in all
missing cells accurately.

Table 1 Trial names and trial-level descriptive statistics for the 19 adolescent depression trials consisting of 5547 participants

Trial Trial name Number Percent Age Number Duration Number
ID Female (range) Assess (months) Measures
1 New beginnings 240 49 10 (9-12) 4 9 4
2 Family bereavement 245 47 11 (7-16) 3 14 4
3 Familias unidas I 258 53 13 (12-16) 4 24 1
6 Familias unidas DJJ 242 36 15 (12-17) 3 12 3
8 Bridges (Puentes) 542 51 12 (11-14) 3 14 5
10 ADEPT 94 60 15 (13-18) 4 24 2
12 Project alliance 2 592 48 12 (10-14) 3 24 2
14 Familias unidas CDC 160 49 15 (14-18) 4 12 3
17 Family talk 135 43 12 (9-15) 3 18 1
18 CATCH IT 83 57 17 (14-21) 6 12 2
28 Penn resiliency program (PRP) I 697 46 12 (9-15) 6 24 1
49 Prevention of depression study (PODS) 316 59 15 (13-17) 3 6 3
50 K-IPT AST 57 60 15 (13-17) 6 18 3
61 Narsad IPT 41 85 13 (11-16) 4 6 3
78 Familias unidas II 213 36 14 (12-16) 3 15 3
84 Project alliance 1 179 55 12 (11-14) 3 24 6
98 Preparing for the drug free years 667 52 11(10-13) 3 15 2
(PDFY) and Iowa strengthening
families program (ISP)

247 IPT-AST vs CBT 379 55 14 (13-18) 18 1
698 Penn resiliency program (PRP) 11 407 48 12 (10-15) 24 1
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Methods

Our approach for harmonizing the depression data across
the multiple trials follows that of Siddique et al. (2015)
where the uncollected depression measures are consid-
ered missing data and missing observations are multiply
imputed. To check the quality of our imputations, we per-
form diagnostics using the re-imputation strategy of He and
Zaslavsky (2012) in which observed data are deleted and
then imputed and quantities based on imputed values are
compared to the same quantities using observed values.

Set Up

We begin by assembling the data in a vertical (long) for-
mat, so that each row represents a single participant at a
single point in time. Columns are time, demographics, and
the 10 different depression measures used across all tri-
als. To account for skewness in outcomes and non-linear
trends over time, all depression measures were transformed
using a square root transformation. Imputations were also
performed on the original scale. Time, measured as the
number of months since baseline, was log-transformed.
Once imputation is complete, all depression measures are
back-transformed to their original distributions.

Imputation Model

Our imputation model is a multivariate linear mixed-effects
regression model as described by Schafer and Yucel (2002)
and implemented in the R (R Core Team 2012) pack-
age PAN (Zhao and Schafer 2013). This model was used
by Siddique et al. (2015) to harmonize multiple depression
measures in a IPD setting. Using notation from Schafer and
Yucel (2002), let y; denote an n; x r matrix of multivari-
ate data for participant i, i = 1, ..., m, where each row of
y; is a joint realization of depression measures Yy, ..., Y,
which are measured n; times. We assume that y; follows a
multivariate linear mixed-effects model of the form

yi=XiB+Zbi +¢ (1

where X; (n; X p) and Z; (n; X q) are known covariate matri-
ces, B (p x r) is a matrix of regression coefficients common
to all units (the “fixed effects”) and b; (q X r) is a matrix
of coefficients specific to unit i (the “random effects”). We
assume the n; rows of the error terms ¢; are independently
normally distributed as N (0, ¥) and the random effects are
distributed as vec(b;) ~ N(O, ¥) (where the “vec” oper-
ator vectorizes a matrix by stacking its columns). In our
model, fixed effects include an intercept term, months since
baseline (log-transformed), the square of log-transformed

Table 2 Baseline means and missing data patterns of the 19 adolescent depression trials. Measures followed by an (S) are self-reported measures.
Those followed by a (P) are parent-reported measures. Those followed by a (C) are clinician-rated

Trial ID | CDI(S) | CBCL-A(P) | CBCL-W(P) | CBCL-D(P) | YSR-A(S) | YSR-W(S) | RBPC(P) | CESD(S) | CESD10(S) | CDRS(C)
I 5.81 5.30 2.69 433

2 9.74 474 2.95 168

3 3.2

6 470 3.82 5.68

8 3.82 2.95 3.33 5.73 3.93

10 7.76 24.45

12 | 7.49

14 5.00 381 5.35

17 | 568

18% 22.38 12.19

28 | 8.8

19 15.66 8.89 28.81
50 26.37 14.02 28.14
61 25.22 13.15 27.88
78 4.96 424 6.55

84 | 938 2.99 2.25 3.58 5.75 3.02

98 4.49

247 | 9.93 17.20 9.62

698 | 10.88

CDI: Children’s Depression Inventory (self-reported)
CBCL-A: Child Behavior Checklist, Anxious/Depressed Subscale (parent-reported)

CBCL-W: Children’s Depression Inventory, Withdrawn/Depressed Subscale (parent-reported)
CBCL-D: Child Behavior Checklist Depression Scale (parent-reported)

YSR-A: Youth Self-Report, Anxious/Depressed Subscale (self-reported)

YSR-W: Youth Self-Report, Withdrawn/Depressed Subscale (self-reported)

RBPC: Revised Brief Problem Checklist, Anxiety/Withdrawal Subscale (parent-reported)
CESD: Center for Epidemiological Studies Depression Scale (self-reported)

CESD10: Center for Epidemiological Studies Depression Scale, 10 items only (self-reported)
CDRS: Children’s Depression Rating Scale (clinician-rated)

* The CATCH IT Trial only used the full CESD at baseline
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months since baseline, gender, and age. Random effects ini-
tially included an intercept term and a random months since
baseline term.

Imputations of the missing components of y; are gener-
ated by drawing from the posterior predictive distribution of
the missing data P (Y,,i5|Yops). PAN does this using Markov
Chain Monte Carlo (MCMC) (Schafer and Yucel 2002),
which requires the specification of prior distributions for the
parameters in the imputation model in Eq. 1. Here, we use
non-informative priors for both the fixed effects and ran-
dom effects. Specifically, we assume an improper uniform
density for the regression coefficents 8 and non-informative
inverse-Wishart priors for the covariance matrix of the ran-
dom effects and the error variance with r x 2 and r degrees
of freedom, respectively, and scale parameters equal to the
identity matrix. We assessed convergence of our Markov
chains by visual inspection of trace plots and autocorrelation
plots as well as by using formal MCMC diagnostics (Cowles
and Carlin 1996).

Imputations were performed separately by treatment
group so that all of the parameters in Eq. 1 can vary by
treatment group. Since both sets of imputations (those based
on untransformed values and those based on square root
transformed values) assume the data are continuous, once
missing values were imputed, we considered two strategies
to put imputed values back on an ordinal scale: (1) rounding,
where values were rounded to the nearest possible value;
and (2) leaving imputed values as continuous which means
that negative values remain negative, even though all of the
scales in Table 2 are non-negative. Strategy 2 is motivated
by research showing that when imputing limited-range vari-
ables, it may be best to allow imputed values to remain out
of range (Rodwell et al. 2014).

Associations Among the Depression Measures

Fitting the parameters of the model in Eq. 1 requires esti-
mation of the association among all the measures listed in
Table 2. That is, for every possible pair of measures, there
must be at least one trial in which both measures are given
to the same participants. For example, in order to estimate
the pairwise association of the CDI with the other variables
in Table 2, we can use trials 1, 2, and 84 to estimate most of
these associations. More problematic is the CDRS which is
used in only three trials and overlaps only with the CESD.
So, while we are able to estimate the relationship between
the CESD and the CDRS, we cannot estimate the relation-
ship of the CDRS with any of the other depression measures.
This will ultimately prevent us from accurately harmonizing
the CDRS across all 19 trials. Since the CDRS does not pro-
vide any information on the relationship between itself and
any other variables besides the CESD, we have dropped the
CDRS from our list of variables to be harmonized.

Similarly, the RBPC is either measured by itself (trial
3) or with the YSR. In fact, in trial 3 (Familias Unidas 1),
the RBPC is the only measure given to participants. Thus,
the only relationship we can measure using the RBPC is
the relationship between the RBPC and the YSR. However,
most trials that use the RBCP also use the YSR and vice-
versa. Furthermore, the YSR itself lacks overlap with most
of the other measures. This is evident in Table 3 which dis-
plays the correlation matrix of all the depression measures.
The numbers in parentheses below the correlations on the
diagonal report the number of trials which use each mea-
sure. The numbers in parentheses below the correlations on
the off-diagonal report the number of trials which use both
of the measures listed in the row and column. For example,
eight trials use the CDI and one trial uses both the CDI and
the CESD whose correlation is 0.81. The shaded cell entries
in Table 3 identify those pairs of measures in which there
is no overlap. The YSR does not overlap with the CESD in
any trial, so that it cannot be harmonized in those four trials
that use the CESD and nothing else (trials 18, 49, 50, 61).
For this reason, and for the additional reason the RBPC has
very low correlation with the YSR, we also drop the RBPC
from our list of measures to be harmonized. This has the
undesirable consequence of requiring us to also remove trial
3 from the 19 trials we wish to synthesize. A similar deci-
sion to drop trial 3 was made by Brown et al. (2016) in the
companion paper in this issue.

Looking at Table 3, only the CDI emerges as a poten-
tial variable for harmonization. The CDI overlaps with all of
our remaining measures. The correlations between the CDI
and all three CBCL subscales are low, but that is a nature
of the two measures, one being self-report, the other par-
ent report. Even if we did have item-level data from the
ADEPT Trial (trial 10) which would allow us to calculate
the CESD10 for this trial (and thus estimate the association
with the CBCL-D and the CESD10), the CBCL-D is not a
good target for harmonization due to its low correlation with
the CESD. Thus, while we will impute all of the depression
measures using the model in Eq. 1, we focus our attention
on the CDI since it is the only outcome that has the potential
to be imputed accurately.

Besides the large number of NA’s which indicate that the
correlation was not estimable because there were no trials
which used both measures on the same participants, what is
notable about Table 3 is how low the correlations are. While
the correlations among subscales of the same measures are
moderately high, correlations across different measures are
relatively low, especially considering that many of these
scales are presumable measuring the same construct. This
is likely due to the fact that the measures in Table 3 are
a collection of self-reported, parent-reported, and clinican-
rated measures. For example, the correlation between the
CBCL-D (parent-reported) and CDI (self-reported) and
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Table 3 Correlation matrix of all depression measures at baseline
across the 19 trials. The number in parentheses under the correlation
is the number of trials which used the depression measure (diag-
onal) or the number of trials using both measures (off-diagonal).

Measures followed by an (S) are self-reported measures. Those fol-
lowed by a (P) are parent-reported measures. Those followed by a (C)
are clinician-rated

CDI(S) CBCL-A(P) CBCL-W(P) CBCL-D(P) YSR-A(S) YSR-W(S) RBPC(P) CESD(S) CESD10(S) CDRS(C)

CDI(S) 1.00 0.‘21 0.27 0128 0.56 0.43 NA 0.81 0.77 NA

(8) (3) (3) (3) (1) (1) (0) (1) (1) (0)
CHCLA) W w w w W w w @ W
R
F v o e B
e o
R
e v % 1:0? ?0?
CESD(S) 1.20 0(3)0 ()(3)8
CESD10(S) 1(.;))0 o(?;
CDRS(C) 1(.;))0

is only 0.28. And the correlation between the CBCL-A
(parent-reported) and the YSR-A (self-reported) is 0.18.
Most notable, the correlation between the CBCL-D (parent-
reported) and the CESD (self-reported) is negative and equal
to —0.03. The correlations of the RBPC (parent-reported)
with the YSR-A (self-reported) and YSR-W (self-reported)
are also low, 0.10 and 0.16, respectively. The only large
correlation between two different scales is that of the CDI
and CESD which are both self-reported and whose baseline
correlation is 0.81.

Each depression measure is imputed based on a regres-
sion which conditions on the remaining depression mea-
sures. Thus, when imputing the CDI, not only do we need
to be able to measure the pairwise association of the CDI
with the other depression measures, we must also be able to
measure the association of the other depression measures
with themselves. This second condition is slightly prob-
lematic because, as mentioned before, not all the measures
overlap with each other. The CBCL-A and the CBCL-W do
not overlap with the CESD. For this reason, we also remove
the CBCL-A and the CBCL-W from our measures to be
imputed. The YSR-A and the YSR-W also do not overlap
with the CESD, but we cannot remove both these measures
because they are the only measures used by trials 6, 14, 78,
and 98. However, the partial correlation of the CDI and the
YRS-W, controlling for the YSR-A is only 0.07 at baseline.
Therefore, without much loss of information, we can also
remove the YSR-W from our imputation model.

Table 4 is a revised version of Table 3, now only includ-
ing those five measures and 18 studies in our reduced impu-
tation model. The shaded cell entries are those measures
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with no overlap and thus inestimable covariances. In our
Bayesian set-up, when parameters cannot be identified, their
posterior distribution is equal to their prior distribution. Our
non-informative inverse-Wishart prior for the covariance
matrix sets these covariances to be centered around 0. If the
unobserved correlations are small, the non-informative prior
will have little effect on the resulting imputations. In the
discussion, we describe alternative approaches for handling
these inestimable parameters.

Imputation Diagnostics

In our setting, where the amount of missing data is consider-
able and where we are imputing values for every participant
within a trial for some depression measures, it is partic-
ularly important to check the imputation model and the
quality of its imputations. Here, we use posterior predictive
checks using numerical summaries based on test statistics
(Gelman et al. 1996). We focus on diagnostics that capture
important features of the data that are relevant to our target
analyses.

Table 4 Correlation matrix of depression measures at baseline

CDI(S) CBCL-D(P) YSR-A(S) CESD(S) CESDIO0(S)
CDI(S) 1(.;))() 0(:)? )8 0(. f )6 ()(. f)l (](17)7
CBOLD(P) B @ w o
YSRAG) ® 0w
. P
CESD10(S) 1(‘5?)0
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Our approach follows the posterior predictive checking
and re-imputation strategy of He and Zaslavsky (2012). We
do this by duplicating trials 1, 2, 84, and 247 which contain
the CDI and at least one of the other measures in Table 4.
Next, we deleted all values of the CDI in these duplicated
trials. Finally, we concatenated these deleted data sets with
the original 18 trials treating the duplicated trials as if they
were four additional trials. Table 5 describes the design of
our re-imputation strategy. Note that a limitation of the strat-
egy is that it does not allow us to investigate how well our
imputation model imputes the CDI in those trials that do not
use the CDI.

Next, we generated imputations using the imputation
model described above. Let Y be the observed values of the
CDI from the duplicated data prior to deletion and Y"?
the imputed version of the CDI in the duplicated data set.
To compare observed data to imputed data, we use a test
statistic, T (Y, 6), some scalar function of the data. Poste-
rior predictive checking consists of comparing 7 (Y, ) to
the distribution of T (Y™, 0) where T (Y™ 0) is the test
statistic based on imputed values of Y. Lack of fit of the
imputed data to the observed data can be measured by the
posterior predictive p-value (ppp), the probability that the
imputed data are more extreme than the observed data, as
measured by the test quantity (Gelman et al. 1996; Gelman
et al. 2004).

A small ppp suggests that the proposed imputation
model is not adequate to support the targeted post-
imputation analysis (He and Zaslavsky 2012). We inves-
tigated three sets of test statistics that capture important
relationships linked to our substantive analyses. These test
statistics are as follows: (1) the correlation between the CDI
and an observed measure at each time point; (2) the means
of the CDI at each time point; and (3) the slope of the control
group, the treatment group, and the treatment effect from a
regression model regressing the CDI values on (log) months
since baseline.

Table 5 Design of the duplication and re-imputation strategy. Mea-
sures followed by an (S) are self-reported measures. Those followed
by a (P) are parent-reported measures

ID of Measures Measures

duplicated deleted in remaining in

trial duplicate data set duplicate data set
CDI(S) CBCL-D(P)

2 CDI(S) CBCL-D(P)

84 CDI(S) CBCL-D(P), YSR-A(S)

247 CDI(S) CESD(S), CESDI10(S)

Results Based on Application to Adolescent Data

We begin this section by presenting the results of the diag-
nostics to ensure that our imputations are reasonable and
are replicating important relationships relevant to our tar-
get analyses. We then analyze the adolescent data using the
CDI as our depression outcome of interest. First, we only
analyze those eight trials which used the CDI. We then ana-
lyze all 18 trials using both observed CDI and imputed CDI
data.

MCMC Diagnostics

The first step in evaluating our imputation model is check-
ing the convergence of the Markov chain used to generate
the imputations. We assessed convergence of our Markov
chains by visual inspection of trace plots and autocorrela-
tion plots. These diagnostics made it very apparent that we
were not able to estimate all of the parameters in our impu-
tation model. For many of the measures in Table 4, there
was not enough overlap to measure correlations at both the
within- and between-participant level. That is, we could not
assume both the random effects and the error terms were
correlated across measures. This caused us to consider a
vastly reduced model in which the covariance matrix W of
the random effects vec(b;) ~ N(0, ¥) is block diagonal
such that the random effects across outcomes are indepen-
dent (random effects within an outcome are still correlated).
Thus, all the association between measures is via the error
covariance. This simplified structure has a number of con-
sequences. First, it assumes that the correlation between
two outcomes over time is constant. This is a reasonable
assumption as all the measures are presumably measuring
the same construct of interest. But due to floor and ceiling
effects (see for example (Siddique et al. 2015)), correlations
between measures can change as a function of time. The sec-
ond result is that different outcomes measured on the same
participant at different times are assumed to be independent.
For example, a participant’s value on the CDI at baseline is
independent of their value on the CBCL-D (but not the CDI)
at some follow-up time point.

MCMC diagnostics also suggested that our model did not
have adequate data to estimate both random intercept and
random slope terms for all measures, even with our block
diagonal covariance structure. Thus, only random intercept
terms were included in our imputation model. This has the
result of assuming measure variances are constant over time.

We generated 500,000 parameter draws from our reduced
imputation model from a single Markov chain. Trace plots
and autocorrelation plots of those parameters associated
with the CDI reflected convergence of the chain. Formal
diagnostics based on the Geweke Diagnostic (Geweke 1992)
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and the Gelman-Rubin diagnostic (Gelman and Rubin 1992)
based on three parallel chains also suggested convergence.
After diagnosing convergence, we ran one of our chains for
an additional 500,000 iterations and drew 100 imputations
by drawing values from every 5,000 iterations.

Results from Posterior Predictive Checking

Figures 1 and 2 (available online) display histograms of
imputed and observed CDI values from the duplicated data
sets. Figure 1 shows imputations based on the imputation
model where depression measures were square root trans-
formed prior to entering the imputation model. Imputed
values were then squared. The panel on the left of Fig. 1 is
a histogram in which imputed values were squared but not
rounded to the nearest observed value. As a result, there are
a few imputed values greater than 54 which the maximum
possible value on the CDI. The middle panel is a histogram
in which imputed values were squared and rounded to the
nearest observed value such that all values are within the
range of the CDI (0 to 54). The panel on the right is a
histogram of observed CDI values from the duplicated data.

Figure 2 is an imputation based on the imputation model
where depression measures were not transformed prior to
entering the imputation model. The panel on the left of
Fig. 2 is a histogram in which imputed values were not
rounded to the nearest observed value. As a result, there are
negative imputed values which are not possible on the CDI.
The middle panel is a histogram in which imputed values
were rounded to the nearest observed value such that there
is a spike at O from rounding negative imputed values to O.
The panel on the right is a histogram of observed CDI values
from the duplicated data.

Although the imputed values in the middle panel of Fig. 1
appear to best preserve the distribution of the observed data,
this is not necessarily the goal of our imputation model.
Instead, we wish to preserve important features of the data
that are relevant to our target analyses. To this end, we
also performed posterior predictive checks of correlations,
marginal means, and changes of CDI scores over time.
Based on the results of these posterior predictive checks,
we selected the imputation model where measures were
imputed on their original scale and not rounded. Results
from this model are presented below.

Table 6 displays the results of posterior predictive checks
(based on 100 imputed data sets) for both control and treat-
ment group participants of the correlation between the CDI
and an observed measure in the duplicated trials described in
Table 5. In both intervention groups, correlations at baseline
and the first two follow-up time points were checked. As
mentioned above, our imputation model assumes that partial
correlations between any two measures are time-invariant.

@ Springer

As a result, imputed analyses do not capture changes in cor-
relations over time. Instead, correlations based on imputed
values are averaged over time. For trial 2, the correlation
in the duplicated trial (with a deleted and imputed mea-
sure) is similar to the observed correlation and the two-sided
posterior predictive p values are larger than 0.05. For the
remaining trials, the observed correlation and the correla-
tion calculated using the duplicated data set are not similar
and the posterior predictive p values are small, sometimes
even equal to 0. These results suggest that our imputa-
tion model is not preserving all the relationships among the
data.

Table 7 displays the results for both control and treatment
group participants of posterior predictive checks of the mean
of the CDI in the duplicated trials at baseline and the first
two follow-up time points. In both intervention groups, the
results suggest that imputed means are inaccurate. There are
two reasons for this inaccuracy. The first is that failing to
preserve relationships as demonstrated in Table 6 leads to
inaccurate imputations. The second reason is that our model
does not incorporate trial-level effects. For example, trials
1, 2, and 84 have similar baseline CBCL-D scores of 4.33,
4.68, and 3.58, respectively. However, their baseline CDI
scores are not similar, 5.81, 9.74, and 9.38, respectively. Not
accounting for trial-level effects in our imputation model
results in pooling observations across trials. The result is
that when imputing the CDI in trial 1, the imputed values
are skewed toward the CDI values in trials 2 and 84 which
are much larger than those in trial 1.

Table 8 displays the results of posterior predictive checks
of the fixed coefficients of a random intercept and slope
regression model of the imputed depression score as a func-
tion of log(number of months since baseline + 1) for each
trial in Table 5. Results are for the control group slope,
the treatment group slope, and the difference between the
two slopes (i.e., the treatment effect). As with the marginal
means and correlations, results are attenuated toward the
average for all trials. However, because there is less
treatment effect heterogeneity in our data (at least for the
four duplicated trials), treatment effects based on duplicated
data are close to observed treatment effects and all poste-
rior predictive p values are large, the smallest being equal to
0.38. However, this result is not due to an imputation model
that fits the data well. Instead, it is a fortunate result of trials
1, 2, 84, and 247 having similar treatment effects.

Post-Imputation Analysis of Adolescent Trial Data

Despite the findings from the imputation diagnostics, which
suggested that our imputation model is not preserving
important features of the data, we proceeded to discard
the duplicated data and analyze the data from the 18
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Table 6 Posterior predictive checks of simple correlations at the first
three time points in trials 1, 2, 84, and 247. Results are based on
imputed CDI values and their correlation with an observed measure.

The CDI and CESD are self-reported measures. The CBCL-D is
parent-reported

Condition Trial Observed Baseline Time 1 Time 2
ID measure Obs. Imp. PPP Obs. Imp. PPP Obs. Imp. PPP
CBCL-D 0.23 0.06 0.16 0.29 0.09 0.10 0.15 0.05 0.42
Control 2 CBCL-D 0.22 0.14 0.46 0.16 0.09 0.48 0.24 0.11 0.24
84 CBCL-D 0.50 0.16 0.00 0.19 0.12 0.64 -0.01 0.20 0.20
247 CESD 0.84 0.46 0.00 0.82 0.50 0.00 0.79 0.45 0.00
CBCL-D 0.40 0.09 0.00 0.16 0.03 0.06 0.19 0.04 0.02
Treatment 2 CBCL-D 0.19 0.11 0.46 0.14 0.05 0.26 0.05 0.08 0.68
84 CBCL-D 0.24 0.08 0.20 0.01 0.08 0.54 0.25 0.10 0.26
247 CESD 0.78 0.38 0.00 0.66 0.39 0.00 0.75 0.45 0.00

Obs. observed
Imp. imputed

ppp posterior predictive p-value

adolescent trials. We analyzed the CDI scores (both
observed and imputed) as a function of treatment and time
using the following random intercept and slope regression
model. Let CDI;j; be the CDI score for participant i at
occasion j, j = 1,...,n; intrial k,k = 1,...18. And let
time;ji be the time since baseline and 7; a variable indicat-
ing whether participant i was randomized to the intervention
or control group. Then, our model is

CDI;jx = Po + Bitime;j + Pa(time;j * T;) + bok

As in our imputation model, time has been transformed as
log(months since baseline + 1). We did this so that we
could model time linearly in order to simplify the presenta-
tion of our analyses and avoid having to include a quadratic
effect for time in our model. The term bg; is a random
trial effect with mean O and follows a normal distribu-
tion. The terms bg; and by; are random intercept and slope
terms, respectively, and follow a bivariate normal distribu-
tion, again with mean 0. The error term ¢;; also follows
a normal distribution and is independent of the random

+bo; + biitime;ji + €.

@

effects.

Table 7 Results from posterior predictive checks of CDI means at the first three time points for control and treatment group participants in trials

1,2, 84, and 247

Condition Trial Baseline Time 1 Time 2
ID Obs. Imp. PPP Obs. Imp. pPPP Obs. Imp. PPP
5.33 7.64 0.00 4.51 7.14 0.00 3.68 6.56 0.00
2 9.57 8.77 0.32 8.32 7.52 0.36 8.02 7.01 0.24
Control
84 9.46 9.35 0.88 9.53 8.39 0.20 11.02 7.90 0.00
247 10.86 10.65 0.74 12.24 11.07 0.02 10.49 9.95 0.42
6.04 7.89 0.00 4.37 6.38 0.00 3.87 5.89 0.00
9.87 8.49 0.02 7.98 6.73 0.04 7.30 6.29 0.06
Treatment
84 9.31 8.83 0.58 8.71 7.18 0.06 7.62 6.73 0.36
247 9.19 9.53 0.60 9.12 9.14 0.98 9.43 9.09 0.52

Obs. observed
Imp. imputed

ppp posterior predictive p-value
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Table 8 Results from posterior predictive checks of intercept, slope, and difference between slopes in trials 1, 2, 84, and 247

Trial Control slope Tx slope Tx effect

ID Obs. Imp. PPP Obs. Imp. PPP Obs. Imp. PPP
—0.95 —0.56 0.16 —1.05 —-0.93 0.54 —0.10 —-0.37 0.38

2 —0.61 —0.60 0.94 —-0.91 —0.85 0.66 —0.30 —0.24 0.90

84 0.30 —0.39 0.00 —-0.37 -0.73 0.14 —0.68 —0.34 0.38

247 0.15 —0.23 0.00 —0.19 —-0.47 0.06 —0.34 —-0.24 0.68

Obs. observed
Imp. imputed

ppp posterior predictive p-value

In this model, inference focuses on the regression coef-
ficient B,, the time by treatment interaction. This term is
the difference in slopes between intervention and control
groups. Table 9 presents the results of our analysis using
only the observed CDI scores as well as using both observed
and imputed CDI scores. Focusing on the treatment by time
interaction in Table 9, the treatment effect is significant
in both CDRS analyses. That is, overall, those who were
assigned to one of the eight preventive interventions had
more improvement in symptoms than those assigned to the
control condition. In terms of effect sizes, at 24 months,
the effect size from the analysis which uses the observed
data is —0.11. The effect size from the analyses which uses
both observed and imputed data is —0.13. For the most part,
there is very little difference between the two analyses. This
result is not surprising. As was demonstrated, our imputa-
tion model was not able to incorporate information from

Table 9 Observed-only and post-imputation analyses of CDI scores.
Observed-only analyses are based on the eight trials that used the
CDI (n = 2874 participants). Imputed analyses are based on 100

other trials that did not use the CDI. Thus, we see little
difference between the two analyses. However, the vari-
ance components in the imputed analyses are smaller than
those in the observed analyses. This likely reflects the fact
that our imputation model did not include these between-
person effects. Thus, random effect variances are smaller
and residual variance is larger.

Discussion

We have described a multiple imputation approach for har-
monizing outcomes across multiple longitudinal trials. In
our motivating example, we initially sought to harmonize
10 measures across 19 trials. This proved to not be possi-
ble using our methodology, because there was not enough
overlap across measures to enable us to estimate their joint

imputations for all missing CDI scores and include the eigh trials that
used the CDI and the 10 trials that did not use the CDI (n = 5289
participants)

Observed
Parameter Est SE t value
Intercept 8.53 0.70 12.18
Time —0.43 0.08 —-5.36
Tx*time —0.26 0.09 —2.76
SD(byr) 1.92
SD(bo;) 6.43
SD(b1;) 1.65
Corr(bo;, b1;) —-0.47
SD(eij1) 4.16

p value Est SE

<.001 9.38 0.44

<.001
.006 -0.29 0.09 33 .001

Observed and imputed

t value
21.49
—5.59

p value
<.001
—0.44 0.08 <.001
1.64
5.95
1.13
—0.37
4.48

SD(bq;) standard deviation of random trial-level intercepts, SD(bg;) standard deviation of random subject-level intercepts, SD(b;;) standard
deviation of random subject-level slopes, Corr(bo;, by;) correlation of random intercepts and slopes, SD(g; ;) standard deviation of residual error
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distribution. We then pursued a more modest goal, drop-
ping one of the trials and attempting to harmonize only
the CDI which was already used in 8 of the 18 remain-
ing trials and overlapped with most of the other measures
in at least one trial. Based on our imputation diagnostics,
this reduced model did not appear to preserve relationships
among variables or produce accurate imputations. Perform-
ing imputations on the original scale of the outcomes or
after square root transformation did not improve our results,
nor did rounding or not rounding the imputations. Still,
this exercise was informative, because it highlighted those
conditions that are necessary for harmonizing measures
across multiple trials using multiple imputation. We now
summarize each of these conditions.

Trial-Level Variability Should be Incorporated
into the Imputation Model

Our imputation model was a two-level hierarchical model
where repeated observations were nested within individ-
ual. As a result, clustering at the trial level was ignored,
and observations on different participants within the same
trial were assumed to be independent. See Siddique et al.
(2015) for a formal presentation of the assumptions that are
made when three-level IPD data is imputed under a two-
level imputation model. Ignoring between-trial variability
in our imputation model resulted in imputed values which
underestimated between-study variability. As a result, impu-
tations of marginal means were attenuated, as our imputa-
tion model assumed the conditional means across all trials
were the same. Not including random time effects at the
trial level assumes that treatment effects are the same across
trial. Post-imputation treatment effects were then attenuated
toward the overall treatment effect.

At first blush, in a data set which contains 19 trials, incor-
porating between-trial variability into our imputation model
would appear to be feasible. However, in a setting where
a depression measure can be missing for every participant
within a trial, estimating random-effects at the trial level for
each depression measure requires sufficient information to
measure the correlation between measures at the trial level
which requires that both measures must be used together in
three or more trials. As can be seen in Table 3, most pairs of
measures overlap in fewer than three trials.

Two sources of between-trial variability in our data set
are the various interventions used in the different trials and
the various patient populations. When it is not possible to
incorporate trial-level variability into the imputation model,
one option is to restrict the number of trials to a more
homogenous sample with respect to patient population and
intervention type. This could potentially remove the need to

model trial-level variability at the expense of addressing a
different research question.

Relationships Among Variables over Time
must be Allowed to Change

Again, due to the sparsity in our data, we were unable to
estimate random slope effects at neither the trial nor the
participant level in our imputation model. Thus, our mod-
els assume that variances of measures are constant over
time and that the correlations between measures are time-
invariant. However, looking at the observed columns in
Table 6, correlations with the CDI appear to change over
time. An imputation model that assumes this correlation is
the same at all time points will generate inaccurate (or dif-
fuse) imputations. Since our analyses are concerned with
measuring change over time, it is essential that our imputed
values preserve these relationships over time

Measures to be Harmonized Should be Related
to one Another

This last condition seems obvious but it was an issue in
our data. Although all studies sought to measure depression,
some studies used self ratings, others used parent ratings,
and some used clinician ratings. Some subscales sought to
measure different components of depression. The result, as
seen in Table 3 are ten measures that are for the most part,
not highly correlated with one another. This is in contrast
with our prior work (Siddique et al. 2015) where we har-
monized the CDRS and the Hamilton Depression Rating
Scale (HDRS) (Hamilton 1960). In our study, the correlation
between the CDRS and the HDRS was as high as 0.85. It is
not enough that targets of harmonization putatively be mea-
suring the same construct. The variables themselves need to
be highly correlated.

A useful diagnostic in our setting is the fraction of
missing information (Rubin 1987) which measures the addi-
tional inferential uncertainty in a parameter due to missing
data. In some settings, a high rate of missing values for a
variable does not automatically translate into high rates of
missing information for its marginal parameters because the
variable may be highly correlated with other variables that
are more fully observed (Schafer, 1997). In those situations,
multiple imputation can provide precise and valid infer-
ences. The percentage of missing CDI values in our final
set of 18 trials was 65 %. In our analyses of the CDI with
observed and imputed data reported in Table 9, the fraction
of missing information for the time by treatment interaction
term was 61 %. The similarity of these two values sug-
gests that the other depression measures in our data set did
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not help improve the accuracy of our imputation model and
highlights the importance of having variables in the imputa-
tion model that are highly correlated with the variables that
have missing values.

Conclusion

We sought to harmonize 10 measures across 19 trials and
were unable to do so primarily due to the large amount of
missing information, the lack of overlap across measures,
and the low correlations among many of the measures that
did overlap. We pursued harmonization via multiple impu-
tation because, when done correctly, it has the following
advantages: variables remain on their original scale, special
analytical methods are not required after the data have been
imputed, relationships among variables are preserved, and
between-trial variability is accounted for. If the analyst is
willing to forgo some of these advantages, other approaches
may be feasible. The simplest approach is to standardize
all measures and treat them as if they were identical on
the transformed scale. Standardization can be easily applied
in most situations with continuous measures and does not
require specialized software. However, standardization does
not take into account differences in the measurement prop-
erties of different scales and tends to mask heterogeneity
between studies. Interpretation can be difficult because the
analysis is no longer on the original scale (Griffith et al.
2015).

Latent variable methods which assume a single common
factor may be more feasible in our setting but use sophis-
ticated models and require assumptions regarding measure-
ment invariance over time that can be hard to check. This is
the approach taken by Brown et al. (2016) in this issue who
imposed a two-level latent growth model on the depression
measures. Their approach borrows strength across studies
by relying on a common single depression factor whose
measurement properties are assumed to be constant over the
2 years of data.

A promising approach in our opinion is to bring in addi-
tional sources of information. One way to obtain additional
information is by drilling down to the item level and link-
ing items across measures. When the same items occur in
different measures, an item response theory (IRT) approach
can be used (Curran et al. 2008; Curran 2009; Curran and
Hussong 2009; Bauer and Hussong 2009). Even if there
is no overlap in items across instruments, a bifactor IRT
approach can be used to determine a single factor that
is shared across all instruments and separate factors that
account for differences in instruments. This approach has
been investigated on these same data by Howe et al. (2017)
who were able to identify invariant items (i.e., showed no
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differential item functioning) despite extreme sparseness in
the overlap of instruments and items.

Another source of (external) information are “bridging
studies” that provide overlap on measures when there is
no overlap in the data set of interest. These bridging stud-
ies can be appended to the data set of interest in order to
facilitate harmonization (Siddique et al. 2015). Two other
potential approaches are to create synthetic data (Schifeling
and Reiter 2015) or use informative priors (Réssler 2003).
A careful simulation study investigating properties of the
above methods—in addition to imputation—for large scale
harmonization would be a useful contribution to the litera-
ture. In particular, how these methods perform when faced
with the challenges encountered in this paper as follows: lit-
tle overlap among measures to be harmonized, substantial
between-trial variability, and low (and changing over time)
correlation among variables.

Increasingly, researchers are collecting data from mul-
tiple studies in order to synthesize findings and perform
more sophisticated analyes. These projects will continue
to grow as federal funding agencies encourage data shar-
ing (National Institutes of Health 2003; National Science
Foundation 2011) and more journals require the release of
data to accompany manuscripts. Methods that harmonize
variables across data sets and facilitate analyses by many
researchers are increasingly important in order to make full
and efficient use of synthesized data and take advantage of
the potential of IPD meta-analysis to address new questions
not answerable by a single study.
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